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Abstract
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Introduction

Pathology diagnosis is a highly complex process where 
multiple clinical and diagnostic factors have to be taken 
into account in an iterative fashion to produce a plausible 
conclusion that most accurately explains these factors from 
biological standpoint.[1] Information from patient clinical 
history, morphological findings from microscopic evaluation of 
biopsies, aspirates, smears as well as data from flow cytometry, 
immunohistochemistry (IHC), and “omics” modalities, such 
as comparative hybridization arrays and next‑generation 
sequencing, are used in the diagnostic process, which 
currently can be described more like a subjective exercise 
than a well‑defined protocol. As such, it can frequently lead 
to diagnostic pitfalls, which may harmfully impact a patient 
case with a wrong diagnosis. The diagnostic pitfalls are most 
often encountered in the case of complex diseases such as 
cancer,[2] where multiple fine‑grained clinical phenotypes may 

require a better understanding of genomic variations across 
patient populations and therefore require better protocols 
for pathology diagnosis. It is especially important in light of 
realizing precision medicine ideas.[3] A better understanding 
of pathology diagnosis, especially of heuristics of visual 
reasoning over microscopic slides, is crucial to develop means 
for new genomic‑enabled precision diagnostics methods.

Over the last decade, digital pathology (DP) and whole slide 
imaging (WSI) have become a mature technology that allows 
reproduction of the histopathologic glass slide in its entirety.[4] 
For the first time in history of microscopy, diagnostic quality 
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digital images can be stored electronically and analyzed using 
computer algorithms to assist primary diagnosis and streamline 
research in biomedical imaging informatics.[5] This has not been 
possible before the DP era when cropped image areas from 
pathology slides could be used only to seek second opinion or 
share the diagnostic details with clinicians. At the same time, 
gaze‑capturing devices have undergone transformation from 
bulky systems to portable, mobile trackers that can be installed 
on laptops, and used to seamlessly collect user’s gaze.

There have been a number of research studies where WSI was 
used to analyze visual patterns of regions of interests (ROIs) 
annotated without[6‑9] and with gaze‑tracking technology.[10] 
In the former case, ROIs were identified either manually 
or using a viewport analysis, and in the latter case, gaze 
fixation points were used for the same purpose. Gaze 
tracking along with mouse movement has also been used 
to study pathologists’ attention while viewing WSI during 
pathology diagnosis[11] as well as to study visual and 
cognitive aspects of pathology expertise.[12] The underlying 
idea in majority of these studies was to analyze captured 
gaze data with respect to the ROIs marked in the pathology 
images, gaze time spent within the ROIs, and total number 
of fixations within the ROIs as measures of diagnostically 
relevant viewing behavior. However, it is challenging to 
use ROIs to articulate underlying biology to understand 
visual heuristics of specific diagnostic decisions. It is not 
trivial to encode morphological patterns of an ROI using 
narrative language. As such, ROI might not be an effective 
means to translate best practices findings from gaze‑tracking 
studies into the pathology education and pave a road toward 
precision diagnostics.

In this paper, we present PathEdEx, a web‑based, WSI‑ and 
gaze tracking‑enabled informatics framework for training 
and mining of visual and nonvisual heuristics of pathology 
diagnosis. PathEdEx system enables the development 
of interactive online atlases that can be used not only 
for educational purposes but also have the potential of 
capturing best diagnostic strategies and representing 
them in high‑explanatory format for pathology practice. 
We demonstrate the capabilities of PathEdEx for mining 
visual and nonvisual diagnostic heuristics by performing 
quantitative studies on the time dynamics of zooming and 
panning operations utilized by experts and novices to come 
to correct diagnosis, association rule (AR) mining[13] studies 
to determine sets of diagnostics factors that consistently 
result in a correct diagnosis and quantifying differences in 
diagnostic strategies across different levels of pathology 
expertise using Markov chain (MC) modeling[14,15] and MC 
Monte Carlo (MCMC) simulations.[16,17] These studies allowed 
us to understand effective and efficient practices of human 
diagnostic heuristics that can be passed over to the next 
generation of pathologists and streamline implementation 
of precision diagnostics in precision medicine settings. The 
studies are performed using the first PathEdEx interactive 
training atlas of hematopathological cancers.

Methods

Each PathEdEx training atlas is a web‑based system and 
runs inside a browser window as a thin client in an in‑house 
developed multitiered informatics ecosystem depicted 
in Figure  1. The systems tier represents a foundation of 
the PathEdEx, containing essential software modules for 
processing of imaging and nonimaging data.

Whole slide imaging management module
This module is responsible for processing of WSIs. The 
client side of this module is implemented in JavaScript using 
Bootstrap[18] and JQuery[19] libraries and the WSI online viewer 
is based on the OpenSeaDragon JavaScript library[20] that 
enables the interactive viewing of large WSIs over internet. 
At the server side, WSIs are served by IIPImage server which 
is an open‑source tiled image server.[21] The WSI images of 
the patient cases are obtained by scanning the slides with 
the  Aperio ScanScope CS (Leica Biosystems)[22] slide scanner 
at × 40; and they are converted to tiled pyramid TIFF images 
using the open‑source VIPS library.[23] Each TIFF image 
contains 256 × 256 pixel tiles of the slide at seven different 
zoom levels. This enables the efficient communication of 
the whole slide data since only the visible part of the WSI is 
served to the client at any time. The WSI online viewer allows 
users zooming and panning of the image to provide a virtual 
microscope experience.

The multiscale gaze processing module
This module is responsible for capturing and processing of gaze 
data. The module consists of the gaze data server manager that 
works on the server side, the gaze data client manager that works 
on the client side inside of a browser, and the driver‑connector 
that provides connectivity to a gaze capturing software 
supplied by a gaze tracker manufacturer. The data exchange 
between the WSI online viewer, gaze data server manager, 
and the gaze data client manager, and the driver‑connector is 
implemented using web sockets technology. This enables a 
fast and real‑time communication. When a user starts viewing 

Figure 1: PathEdEx is a multitiered informatics ecosystem that enables 
education and research in digital pathology and pathology informatics
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a WSI, the gaze data client manager is notified by WSI online 
viewer [blue‑dotted section in Figure 2] about a WSI viewing 
session and sends a request to the driver‑connector that in turn 
communicates with a vendor‑specific gaze capturing software 
to start collecting gaze data [left side of Figure 2]. The collected 
data flow back through driver‑connector to the gaze data client 
manager. The gaze data client manager uses viewport data from 
WSI online viewer such as viewport position, zooming, panning, 
and mouse position information to compute in real‑time the 
coordinates of each gaze point relative to the origin of the WSI 
and sends them to the gaze data server manager  [bottom of 
Figure 2]. The gaze data server manager saves the coordinates 
in a database for further processing and analysis.

Human‑computer interaction processing module
This module of the PathEdEx systems tier provides functionality 
to managing user sessions for specific applications. On the 
basic level, it provides authentication and authorization 
functionality for PathEdEx users and groups. On the higher 
level, this module manages data related to various diagnostic 
algorithms as well as users’ navigational data as they use 
such PathEdEx resources as WSI. PathEdEx provides a set of 
software tools with graphical user interface to help pathology 
experts define reference diagnostic algorithms for different 
types of cases. These algorithms as well as users PathEdEx 
navigational data are stored in form of graphs in a Neo4J 
database, which has superior capabilities for structured queries 
over relational databases.[24]

Bio‑objects library, whole slide imaging annotation, and 
image processing module
This module is responsible for capturing and storing information 
about microanatomical structures on histopathological WSIs. 

For instance, different types of cells and tissues are treated 
as “biological objects” by the PathEdEx system and stored 
in form of WSI annotations. At present, majority of such 
bio‑objects are defined semi‑automatically by experts using 
in‑house developed software tools.  However, the work in 
underway to use advanced WSI image processing algorithms 
to aid WSI annotation. For instance, we have been developing 
novel methods for follicle and nucleus detection on WSI[25,26] 
and plan on incorporating these algorithms into the PathEdEx 
ecosystem.

Interactive whole slide imaging‑enabled training atlases
The application tier of PathEdEx informatics ecosystem 
[middle panel in Figure 1] represents interactive, WSI‑enabled 
pathology atlases that assist pathology trainee in learning 
various pathology subspecialty areas using simulated 
WSI‑rich diagnostic environment. Here, we present the first 
such PathEdEx Atlas that consists of 55  patient cases of 
hematopathological cancers from University of Missouri Ellis 
Fischel Cancer Center. Each case includes a complete set of 
information such as clinical notes, radiological imaging studies, 
WSI of histopathology slides, IHC, and molecular tests and any 
additional laboratory data that are available for the case. For 
each patient case, PathEdEx includes a reference diagnostic 
workflow that is defined by an expert hematopathologist. The 
trainee reviews images and makes decisions on selection of 
additional tests. Any unjustified selection of a test in PathEdEx 
is penalized by a negative score, which reflects dollar amount 
of the corresponding test. For instance, if after reviewing 
morphological aspects of a hematoxylin and eosin (H and E) 
WSI slide, a trainee decides to view a specific IHC WSI slide 
but that IHC test is considered to be irrelevant to the case, 
he or she will receive a penalty. Every attempt to diagnose 

Figure 2: Processing of multiscale gaze data over whole slide imaging in PathEdEx
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similar cases is logged and the overall progress of a trainee 
during a period is reported along with a detailed analysis of 
the diagnostics decisions. The trainee’s diagnostic workflow is 
then stored for the analysis and progress assessment purposes. 
An example of a trainee’s diagnostic workflow is presented 
in Figure 3.

Diagnostic heuristic mining module
This module of PathEdEx of data mining and analytics tier 
is responsible for the essential functionality that supports 
diagnostic heuristic mining studies. Specifically, it provides 
data structures and representational models for manipulation 
and quantification of visual and nonvisual diagnostic entities. 
To do that, PathEdEx introduces a number of novel informatics 
approaches. Unlike ROI‑based gaze tracking studies that are 
based on low‑level, pixel‑based features, mining of visual 
diagnostic heuristics in PathEdEx is based on high‑level, 
semantic labels that represent visual diagnostic clues (VDC) 
related to biological entities such as, for instance, type of 
cells (e.g., centroblasts, Reed–Sternberg cells), and diagnostics 

factors (e.g., mitotic rate). Therefore, the results of heuristics 
mining in PathEdEx are much easier for understanding by 
a human expert and for drawing quantitative conclusions 
about most impactful factors that lead to correct diagnosis. 
The annotation of gaze data with semantic labels is done on a 
semiautomatic fashion and is followed by a fully computerized 
processing of visual and nonvisual heuristics analytics. 
Because VDCs play a central role in mining of pathology 
diagnostic heuristics, we describe it here in greater details.

The human eye goes through a series of fixation points and 
saccades during processing of a visual scene. Since the human 
ability to discriminate fine detail drops off outside of the 
fovea, eye movements help process the visual field through 
a series of fixation points separated by saccades (the actual 
eye movement) from one fixation point to other. The typical 
mean duration of fixation is about 180–275 ms.[27] The vision 
is suppressed during the saccade, and visual information is 
acquired during the fixation. Hence, a procedure to compute 
fixation points is required to analyze the collected eye gaze 

Figure 3: Example of diagnostic worklfow. A trainee selects a case and reads the patient history, then goes through radiology images, H and E whole 
slide imaging images, selects immunohistochemistry tests, and views immunohistochemistry whole slide imaging, and other available material 
(flow cytometry, etc.), and chooses a diagnosis
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data. In case of histopathologic images, these fixation points 
can be grouped into visual diagnostic focus areas (VDFAs) 
and annotated. That way instead of an analysis of “low‑level 
individual” fixation points, a more biologically relevant 
analysis of possibly diagnostically relevant VDFAs can be 
performed. Unlike commercial off‑the‑shelf fixation points 
algorithms, the PathEdEx’s VDFA algorithms are specifically 
designed to take into account morphological structures of 
histopathologic sections. We have been developing a number 
of novel algorithms that are designed to identify and annotate 
VDFAs on histopathologic images such as tissue‑, cell‑, and 
sub‑cellular level microanatomical structures of different 
morphology. However, in the context of this paper, we describe 
only one such method that is based on mean shift clustering.

Mean shift algorithm is a nonparametric clustering technique 
that does not require prior knowledge of the number of 
clusters and does not constrain the shape of the clusters. Mean 
shift considers the set of points as discrete samples from an 
underlying probability density function. For each data point, 
mean shift defines a window around it and computes the mean 
of the data point. Then, it shifts the center of the window to the 
mean and repeats the algorithm until convergence. The set of 
all locations that converge to the same mode defines the basin 
of attraction of that mode. The points that are in the same basin 
of attraction are associated with the same cluster. Hence, the 
mean shift clustering algorithm is a practical application of 
the mode finding procedure. Since mean shift does not make 
assumptions about the number of clusters, it can find naturally 
occurring clusters in the data. Mean shift clustering requires 
a bandwidth parameter that defines the scale of clusters. 
Smaller bandwidth leads to larger number of smaller scale 
clusters whereas larger bandwidth leads to smaller number 
of larger scale clusters. We represent the collected eye gaze 
data associated with a WSI slide as a set of four‑dimensional 
points (x, y, z, t) where dimensions correspond to coordinates 
of the eye gaze (x, y) and zoom level of the slide (z) at time (t). 
Sets of points are separated by zoom levels, and clusters 
are found at each zoom level. The cluster centers  (modes) 
represent the fixation points of user’s eye. Discovered in this 
fashion, clusters will correspond to VDFAs, which are then 
annotated in semiautomatic setting. An example of the result 
of identification of VDFAs is shown in Figure 4. The VDFAs 
are then annotated during a diagnostic heuristic mining study 
to represent VDCs as will be demonstrated in the results and 
discussion section.

Results and Discussion

Mining visual and nonvisual diagnostic heuristics
We have conducted three data mining studies of visual and 
nonvisual diagnostic heuristics. The main purpose of these 
studies was to test the capabilities of PathEdEx informatics 
framework. We were not focused on comprehensiveness of 
the studies setup and the scientific validity of the results and 
conclusions. Instead, we aimed to demonstrate the utility 
of the PathEdEx as a framework to uncover and quantify 

pathology diagnostic heuristics with high‑explanatory results 
over a complete set of diagnostic materials from real patient 
cases, which is to our best knowledge has not been previously 
reported.

Study 1: Quantification of diagnostic workflow
A total of 9 users navigated through four selected cases in the 
developed PathEdEx online atlas of hematopathology cases. 
The users were given numerical ranks to indicate their level 
of experience starting with rank one for expert pathologist 
up to rank six for postsophomore fellows (PSFs). They were 
also sorted into three groups of three users for a less granular 
ranking. Table 1 shows the distribution of experience levels 
and their ranks.

Their navigation and gaze data were collected as described 
in the methods section. The selected four patient cases had 
a total of 29 WSIs of H and E and IHC slides. Since each 
user has a freedom to order different number of IHC tests 
as they deem necessary, not every user went through all 
29 images. Total number of image views was 149, averaging 
about 16 WSI views per user. The collected gaze data were 
analyzed using PathEdEx’s diagnostic heuristic mining 
module. Gaze data for each image were first separated by 
their corresponding zoom levels, and then, the mean shift 
algorithm was applied to gaze data at each zoom level to 

Figure 4: Computational method to identify visual diagnostic focus areas 
using sliding window (SW) over zoom/time dimensions (250 ms cutoff) 
with consequent application of mean shift clustering over positional 
dimensions X and Y with fixed bandwidth parameter per each zoom level

Table 1: Experience levels and given ranks for users in 
the quantification of diagnostic workflow study

Experience level Number of users Ranks Groups
Expert pathologist 2 1, 2 A

A4th year resident 1 3
2nd year resident 1 4 B

B1st year resident 2 5
Post-sophomore fellow 3 6 C
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compute fixation points. A  set of 17 features that had the 
potential to capture viewing behavior was computed for each 
user and each WSI using the collected and computed data. 
The computed features were as follows:
•	 1 ‑ Number of zoom levels with user’s fixations in the 

image
•	 2 ‑ Number of fixation points in the image
•	 3 ‑ View time of the image
•	 4 ‑ Total duration of fixations in the image
•	 5 ‑ Mean zoom level in the image weighted by number 

of fixations
•	 6 ‑ Total distance of eye gaze scan in the whole image
•	 7 ‑ Total distance of eye gaze scan within fixation clusters
•	 8 ‑ Focus ratio: Total distance (6) divided by end to end 

gaze distance in the image
•	 9 ‑ Dispersion: Within‑fixation distance (7) divided by 

total distance (6)
•	 10 ‑ End‑to‑end gaze distance in the image
•	 11 ‑ Dispersion: Average of dispersions computed at each 

separate zoom level
•	 12 ‑ Mean zoom level (over viewing time) of the image
•	 13 ‑ Standard deviation of zoom level (over viewing time) 

of the image
•	 14–17  ‑  Means and standard deviations of zoom level 

differences in time with and without zeroes.

Figure 5 shows an example of eye gaze data superposed on a 
WSI. Since users can pan and zoom, the trajectory of the eye 
gaze represents all zoom levels converted to the global image 
coordinates.

Table 2 shows the total time spent on different aspects of the 
cases while Figure 6 presents a comparison between an expert 
and a PSF in terms of the distribution of the fixation points 
among zoom levels. PSF navigates through a variety of zoom 
levels whereas the expert spends time concentrated on a small 
number of zoom levels. Figure 7 shows the zoom levels as a 
function of time for the same users.

We computed Pearson’s correlation coefficient and Spearman’s 
rank correlation coefficient between these features and the 

given ranks overall image views to explore the relations 
between features capturing visual behavior and the level of 
experience.

Figure  8 presents the Pearson’s coefficients computed 
overall images for each feature versus three groups of users. 
The best correlations are obtained for 9th  and 11th  features 
(dispersion features) at about r = 0.2. Spearman’s coefficients 
also show similar results. Computing with more granular 
ranks (1 through 6) did not change these results significantly. 
The low correlation values suggest that these features do not 
successfully capture the general viewing behavior overall 
WSIs. Since these images belong to separate patient cases 
with different levels of diagnostic challenges, we computed 
the same set of correlations per case basis. Figure 9 shows the 
correlations and P values for each of the four patient cases.

Figure  5: Examples of captured gaze data of an expert  (left) versus 
post‑sophomore fellow (right). Colors indicate different zoom levels of 
the image where the eye gaze is captured. Expert localizes and finds 
diagnostic clues quickly; postsophomore fellow roams the image at 
different zoom levels

Figure 6: Number of fixation points per zoom level for an expert (blue) 
versus postsophomore fellow (red) viewing a whole slide image. Expert 
has a total of 34 eye fixations; postsophomore fellow has a total of 
77 fixations

Figure  7: Zoom levels versus time for an exper t  (blue) versus 
postsophomore fellow (red) viewing a whole slide image. Expert views 
it for 19 s; postsophomore fellow views it for 32 s. Expert quickly zooms 
in on diagnostic clues whereas postsophomore fellows roams the image 
at several zoom levels

Table 2: Total navigation time (min) for all cases

Time spent 
(min)

Experts Senior 
research

Junior 
research

PSFs

Reading 
patient history

0:58 3:5 1:39 2:30 2:23 2:32 1:59

Viewing 
H & E slides

5:34 18:32 11:30 22:10 9:46 15:12 13:16

Viewing IHC 
slides

3:53 9:12 6:00 16:55 5:41 2:4 6:31

Looking at 
other materials

0:39 12:18 3:23 13:32 2:58 7:7 6:34

Choosing 
diagnosis

0:29 3:32 2:4 5:10 3:23 2:39 2:35

Total case time 11:33 46:39 24:36 60:17 24:11 29:34 30:55
Data are summarized from detailed logs of user navigation 
through the case pages and slides. PSFs: Postsophomore fellows, 
IHC: Immunohistochemistry, H&E: Hematoxylin and eosin
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The users in three groups show higher correlations with some 
of the features depending on the case. For Case 1, 2nd feature 
(r = 0.63, P = 0.07) and 9th feature (r = 0.69, P = 0.04) have the 
best correlations. For Case 2, 7th feature (r = 0.63, P = 0.07) 
and 9th feature (r = 0.58, P = 0.1) have best correlations. For 
Case 3, 6th  feature  (r = 0.58, P = 0.1), and for the Case 4, 
9th  feature  (r = 0.63, P = 0.068) have the best correlations. 
The correlations improve slightly for the more granular ranks 
of 1–6 and 11th feature becomes one of the highest correlated 
features in this category. In general, the dispersion features 
and number of fixations and their scan distance show higher 
correlation with levels of experience. Even though the P values 
are not low enough to reject the null hypothesis, these results 
suggest that these features have the potential to capture viewing 
behavior on a case‑by‑case basis.

As we discussed elsewhere in this paper, gaze tracking data 
analysis is becoming more available in radiology and pathology. 
Many studies analyze the captured gaze data with respect to the 
ROI marked in the medical images; gaze time spent within the 
ROI, and total number of fixations within the ROI are computed 
as measures of diagnostically relevant viewing behavior. In 
this study, we analyzed a variety of features computed from 
the gaze data on their own merit without utilizing ROIs to 
explore possibility of capturing viewing behavior directly from 
the gaze data. Utilizing ROIs may not be feasible for every 
case in pathology, especially for cases where diagnosis can be 
reached by analyzing any number of cells in the WSI without 
resorting to a particular ROI. Our study has shown that some 
features have the potential to capture viewing behavior on 
a case‑by‑case basis. This suggests that cases with different 
levels of diagnostic challenges influence the viewing behavior 
of the users that are captured by different features. Grouping 
patient cases by the diagnosis and other relevant information 
can elucidate the diagnostic heuristics of users.

This study has several limitations. The number of users per 
experience level is low even when grouped into three levels. 
Any user with sufficiently different viewing behavior in 

comparison to her group can skew the statistics. Another 
limitation is the accuracy of initial rankings. We rank all 
users in the same year of residency as equal which may not 
be realistic. And finally, the computed features may not be 
ideally capturing the viewing behavior. Even though there are 
a variety of features that can be borrowed from other domains 
to represent spatiotemporal data (x, y, t) we do not want to lose 
the high explanatory power of simpler features as they can 
be used as feedback to the participants. We are planning to 
conduct a more comprehensive study with more participants 
and patient cases grouped adequately for their diagnostic 
challenges to pursue high explanatory features that can capture 
viewing behavior and be used as a supplement to the rest of 
the numerical scoring in PathEdEx to keep track of user’s 
progress. We are also currently working on automated and 
semiautomated detection and classification of cells and other 
relevant morphologies, as a part of the PathEdEx’s bio‑object 
library WSI annotation and image analytics module, to enable 
statistics computed over the types of cells and other relevant 
objects (follicles, etc.) the users viewed.[26]

Study 2: Uncovering association of visual diagnostic clues 
with diagnostic decisions
In this proof‑of‑concept study, we set the goal to uncover 
associations between sets of VDCs utilized by trainees most 
often and corresponding diagnoses that the trainees selected 
during PathEdEx training sessions. To do that, we annotated 
each VDFA with a set of VDCs. The set of VDCs used in 
hematopathology cases of the first volume of PathEdEx 
is shown in Table  3. The annotation was performed in a 
semiautomatic fashion. After processing raw gaze data and 
generating VDFAs, VDFAs were displayed one at a time to an 
expert hematopathologist, who assigned a set of VDCs that the 
expert believed might have been the goal of a trainee’s visual 
investigation of a particular VDFA [Figure 10]. Each VDC had 
an associated confidence level assigned by the expert. VDCs 
with confidence level above the selected threshold (0.75 chosen 
for initial experiments) were selected to AR study. Treating 
each trainee’s diagnostic session as an AR “market basket 
transaction” and corresponding VDCs and trainee’s diagnostic 
choice as “basket items,” we computed frequent item sets and 
induced ARs of the form:

VDC1, VDC2,…, VDCN ≥ Diagnosis

Figure 11 presents an example of ARs inferred from PathEdEx 
hematopathology atlas’s diagnostic training sessions. The 
primary goal of this preliminary AR study was only to test the 
capabilities of PathEdEx of manipulating VDCs. At present, 
more comprehensive AR studies are underway. In one such 
study, we compare the choice of VDCs used by experts and 
novices as well as identify VDCs that frequently lead to right 
and wrong diagnoses. In another AR study, we set a goal 
to quantify the contribution of various VDCs to diagnostic 
accuracy if they are added to a set of “routinely” used VDCs 
in specific diseases. Furthermore, in the future AR studies, 
we plan to extend a set of VDCs by other diagnostic clues, 

Figure 8: Pearson’s correlation coefficients computed for each feature 
versus the group ranks over all image views



Journal of Pathology Informatics8

J Pathol Inform 2017, 1:29	 http://www.jpathinformatics.org/content/8/1/29

such as IHC and molecular tests and other units of diagnostic 
information.

Study 3: Uncovering and quantification of diagnostic 
strategies
In addition to performance quantification for pathologists, the 
PathEdEx platform provides capabilities for capturing their 
reasoning processes. Although pathologists receive similar 
training during medical school, experience with real cases 
allows them to develop heuristics that enables experts to make 
faster and more reliable judgments. With navigation data being 

recorded, the PathEdEx platform enables data analytics to 
analyze the strategies that pathologists adopt to approach and 
diagnose each case.

In this study, we adopt Markov models to quantify the 
transition probabilities among visual and nonVDC. In other 
words, we aimed to quantify probabilities of choosing specific 
tests for specific diagnostic clues, for example, IHC tests, 
at each point of iterative diagnostic process. For instance, 
after observing morphology and obtaining results for a set of 
specific diagnostic tests, which can serve as diagnostic clues, 

Figure 9: Correlations computed on a case‑by‑case basis for users in three groups
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we computed probabilities of selecting other diagnostic tests. 
These probabilities can serve as a representation of a diagnostic 
strategy by an individual pathologist (even though it can still 
vary for the same pathologist).

Markov models abstract the behavior of a system as a 
series of transitions among possible states. The probability 
of next state depends only on the current state and a finite 
number of transition histories. In this study, we define that 
the current state contains all the information needed for 
the next transition. During trainee’s simulated diagnostic 
process, PathEdEx platform records navigation of web pages 
and selection of diagnostic clues  (e.g.,  radiology images, 
IHC stains, cytogenetics), which are modeled as states. 
The recorded navigational data from one page to another is 
mapped into a sequence of state transition. Then, we compute 
the transition matrix by calculating the transition probabilities 
from each state to all other states. Depending on the case, 
generated models normally have a state set size around 80.

Figure 12 shows two examples of Markov models generated 
using the navigational data from two pathologists diagnosing 
a classic Hodgkin’s lymphoma case. Due to the large size of 
all possible states, transitions with 0 probability (states which 

are never visited) are omitted in the graph. We can see that the 
expert not only spends less time and visits fewer states but also 
exhibits more deterministic behavior possibly manifesting a 
presence of a clear strategy.

As a preliminary study, we used two‑way ANOVA with 
replication to establish that the Markov models do capture 
the reasoning of pathologists, i.e.,  there are significant 
statistical differences between the Markov models generated 
by a group of pathologists and a group of Markov models 
with random transitions (the null distribution). The group 
of random Markov models is generated using MCMC 
method. Each group contains five individual models 
of the same pathology case. The ANOVA result with λ 
significance level of 0.05 is shown in Table 4. It shows that 
there are statistically significant interactions of groups and 
transitions. However, the difference between the two groups 
is not as significant. We therefore hypothesized that the 
difference among pathologists’ Markov models (diagnostic 
strategies) is statistically significant to an extent that it 
diminishes the difference of group of pathologist to group 
of random Markov models. To investigate this hypothesis, 
we grouped our models according to pathologists. Each 
pathologist group contains the same five cases. The two‑way 
ANOVA result for five groups  (pathologists) is shown in 
Table 5. Here, we see that there are statistically significant 
differences among pathologists in addition to the significant 
interactions. Considering the five pathologists vary in the 
level of expertise, the results suggest that pathologists might 
develop different strategies as they get more specialized and 
experienced. They also suggest that the strategy differences 
directly influence how they consider each material in a 
pathology case. Similar studies were performed by Treanor 
et  al.[28] However, more in‑depth studies are needed to 
be performed to provide statistical significance for this 
conjecture.

Table 3: Visual diagnostic clues
Clear cells
Endothelial cells
Eosinophil
Epithelial cells
Fibrosis
Germinal center
Giant cell
Histiocyte
Immunoblast
Irregular lymphocyte
Large centroblast
Large centrocyte
Mitotic figure
Monocyte
Monocytoid B‑cell
Negative immunostain
Neutrophil
Paraimmunoblast
Plasma cell
Platelet
Positive immunostain
Prominent vessels
Red cells
RS cell
RS‑like cell
Small centroblast
Small centrocyte
Small round lymphocyte
Smudge cell
Tingible body macrophage
Unknown cell
RS: Reed‑Sternberg

Figure  10: Semi‑automatic annotation of visual diagnostic focus 
areas with a set of visual diagnostic clues. One visual diagnostic focus 
area (cluster of gaze points) is shown on the right and a corresponding 
set of visual diagnostic clues assigned by an expert hematopathologist 
with confidence levels is shown on the left
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At each iterative stage of a diagnostic process, a pathologist 
attempts to find an evidence to narrow down the possible 
outcomes. These underlying tasks can also be included in 
the model as a latent variables or hidden states using hidden 
Markov model  (HMM).[28,29] With HMM, each trace that the 
PathEdEx platform records is a sequence of observations, and the 
underlying tasks are hidden states. We can infer the question that 
the pathologist is trying to answer by observing what material 
is being reviewed. In addition to a sequence of diagnostic 
clues modeled by Markov model, HMM can also generate 
the unobserved reasoning sequence of pathologists so we can 
quantifiably model their reasoning processes for each case.

This study suggests that experienced pathologists do better than 
trainees. Future in‑depth studies can possibly statistically prove 
this logical assumption. However, due to different training 
and practices, pathologists can develop their own diagnostic 
strategies, which can lead to equal diagnostic conclusions. 
Another issue is related to diagnostic and biological 
isomorphism. For instance, different pathologists can utilize 
different antibodies to determine cell lineage in hematopoietic 
cancer cases. Furthermore, our previous work on selection of 
antibody tests suggests that there is even an intrapathologist 
variability (i.e.,  the same pathologist can use different tests 

for the same goal on different days).[1] We are in process of 
enhancing PathEdEx to identify equivalence classes for visual 
and nonVDC that have the same diagnostic and biological 
purpose. To do that, we are building an ontology‑driven 
informatics framework to support diagnostic and biological 
isomorphism.

Conclusion and Future Work

Here,  we have presented PathEdEx,  a  WSI and 
gaze‑tracking‑enabled framework. The PathEdEx informatics 
framework can be used not only to build comprehensive 
interactive online pathology training atlases that utilize cutting 
edge WSI imaging technology but also leverage multiscale 
gaze‑tracking technology to capture trainees’ diagnostic 
workflow patterns of using nonvisual and visual diagnostic 
materials. We have also demonstrated the potential of using 

Figure 11: Example of association rules induced using PathEdEx with support, confidence, and lift parameters

Figure 12: Markov models generated with navigational data by expert (top) 
and novice (bottom) pathologists diagnosing the same case. Transitions 
with 0 probability are omitted

Table 4: Result of two‑way ANOVA with replication 
comparing random model to model by pathologist

Source of 
variation

SS df MS F P F 
criteria

Groups 0.003716 1 0.003716 2.608858 0.106274 3.841628
Transitions 17.3481 6888 0.002519 1.768176 8.4E‑253 1.029971
Interaction 16.34651 6888 0.002373 1.66609 2.9E‑200 1.029971
Within 78.50178 55,112 0.001424
Total 112.2001 68,889
SS: Sums of square, MS: Mean of square

Table 5: Result of two‑way ANOVA with replication for 
5 pathologists with 5 cases each

Source of 
variation

SS df MS F P F 
criteria

Pathologists 0.012196 3 0.004065 4.171269 0.005817 2.605
Transitions 81.30678 6083 0.013366 13.71462 0 1.030973
Interaction 27.22417 18,249 0.001492 1.530701 0 1.018871
Within 94.87121 97,344 0.000975
Total 203.4144 121,679
SS: Sums of square, MS: Mean of square
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PathEdEx and such computational models as ARs data mining 
techniques and MC models and MCMC simulations to 
uncover and quantify trainees’ diagnostic heuristics, identify 
diagnostic patterns (e.g., AR rules and transition probabilities 
that often lead to correct/wrong diagnoses) and represent them 
as high‑explanatory narrative descriptors that can be readily 
used in pathology education.

The purpose of the performed heuristic mining studies was only 
to demonstrate the capabilities of the PathEdEx framework. 
We plan to conduct a set of comprehensive studies to uncover 
specific heuristic patterns that frequently lead to accurate 
diagnoses as well as those that lead to diagnostic pitfalls. For 
these studies, we are planning a greater number of pathology 
trainees of various levels of expertise. We are also planning 
to improve identification of VDFAs by incorporating the 
morphology of histologic section to build a solid foundation 
for running probabilistic computational models. In these future 
studies, we will aim to define and quantify the deviation or 
distance of trainees’ diagnostic heuristics from reference 
diagnostic workflows utilized by pathology experts. We will 
also aim to study how much biology (vs. simple morphological 
patterns) is leveraged and articulated by pathologists for 
diagnostic and prognostic decisions. Many more PathEdEx 
interactive atlases are currently in development, including 
blood smears, head and neck pathology, and neuropathology. 
The future volumes of PathEdEx atlases will be expanded 
to include:  (i) A “display of diagnostic clues mode” that 
circles and highlights diagnostic cells and patterns and 
provides pertinent ancillary studies for “search and identify” 
function, (ii) review video of expert gaze data for educational 
purposes, and (iii) expanded answers to include key points, 
which will satisfy the knowledge‑based problems for novices 
and improve application of knowledge to visual clues. 
Furthermore, since assumption that gaze fixation always means 
diagnostically interesting spot can prove to be wrong, we are 
in process of enhancing identification of VDFAs using image 
information at locations corresponding to the gaze fixations. 
Such “content‑aware” identification of VDFAs, in our view, 
can result in reduction of false positive VDFAs through an 
additional “feedback” loop to justify specific gaze fixations.

We are currently in process of establishing of a PathEdEx 
academic consortium. Members of the consortium will be 
able to utilize the PathEdEx platform for educational and 
research activities, get technical support as well as to share case 
materials for larger multi‑institutional and cross‑disciplinary 
studies.

All in all, the PathEdEx informatics tools have great potential 
to uncover, quantify, and study pathology diagnostic heuristics 
and can pave a path for precision diagnostics in precision 
medicine era.
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