
Vol. 30 no. 20 2014, pages 2981–2982
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btu426

Structural bioinformatics Advance Access publication July 4, 2014

YASARA View—molecular graphics for all devices—from

smartphones to workstations
Elmar Krieger* and Gert Vriend
Centre for Molecular and Biomolecular Informatics, NCMLS, Radboud University Nijmegen Medical Centre, 6500 HB
Nijmegen, the Netherlands

Associate Editor: Janet Kelso

ABSTRACT

Summary: Today’s graphics processing units (GPUs) compose the

scene from individual triangles. As about 320 triangles are needed to

approximate a single sphere—an atom—in a convincing way, visualiz-

ing larger proteins with atomic details requires tens of millions of tri-

angles, far too many for smooth interactive frame rates. We describe a

new approach to solve this ‘molecular graphics problem’, which

shares the work between GPU and multiple CPU cores, generates

high-quality results with perfectly round spheres, shadows and ambi-

ent lighting and requires only OpenGL 1.0 functionality, without any

pixel shader Z-buffer access (a feature which is missing in most mobile

devices).

Availability and implementation: YASARA View, a molecular model-

ing program built around the visualization algorithm described here, is

freely available (including commercial use) for Linux, MacOS,

Windows and Android (Intel) from www.YASARA.org.

Contact: elmar@yasara.org

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on March 17, 2014; revised on May 18, 2014; accepted on

June 25, 2014

1 INTRODUCTION

In 1966, Cyrus Levinthal pioneered molecular graphics at the

Massachusetts Institute of Technology, when he set up the first

interactive wire-frame display of a protein on a monochrome

oscilloscope (Levinthal, 1966). Since then, molecular graphics

has made tremendous progress, mostly thanks to the video

game industry, which induced the rise of graphics processing

units (GPUs). Today many different molecular visualizers are

available, e.g. VMD (Humphrey et al., 1996), Chimera

(Pettersen et al., 2004), PyMol (DeLano, 2005) or QuteMol

(Tarini et al., 2006), each using different tricks to boost rendering

performance and quality. We describe an algorithm that can

cope with two specific difficulties: first, it does not depend on

high-end shader tricks and thus works on smartphones too. And

second, it does not require expensive precalculation steps that

depend on atom positions. It can thus visualize moving atoms,

allowing to perform interactive molecular dynamics simulations

on smartphones and tablets.

2 METHODS

The general idea is very simple and has been used ever since texture

mapping became part of 3D graphics: if an object is too complex (like

the 960 triangles required to draw a single water molecule in Fig. 1A) it is

replaced with ‘impostors’, i.e. fewer triangles that have precalculated tex-

tures attached, which make them look like the original object. Texture

mapping means that a triangle is not rendered with a single color, but an

image (the texture) is attached to it instead. For each of the three triangle

vertices, the programmer can specify the corresponding 2D coordinates in

the texture, and the hardware interpolates in between. So, instead of

drawing 320 triangles to create one, still somewhat edgy atom, we

simply draw the precalculated image of a perfectly round atom. As tex-

tures may be partly transparent, this image can be drawn as a simple

square (transparent in the corners), which requires just two triangles.

In practice, many different images of atoms are needed, as atoms can

have different colors and sizes. Regarding colors, we use blue, magenta,

red, yellow, green, cyan and gray, and blend any two of them with a

variable blending factor to support color gradients. Regarding sizes, the

precalculated images can be shrunk on the fly during texture mapping,

but the shrinking procedure reduces the image quality. That is why mul-

tiple smaller images of each atom are stored as well. Changing the texture

during rendering reduces performance, and consequently all these atom

images are squeezed into a single texture of size 1024� 1024, which is

shown in Figure 1B. When the user changes the position of the light

source, this texture is updated from a collection of 200 different views,

prerendered with www.POVRay.org. For stereo graphics, a second tex-

ture is used that has the atoms prerendered from a slightly shifted point

of view.

This straightforward approach has not been routinely used in the past

for the following reason: when the GPU draws a pixel, it stores its

Z-value (the distance from the view-plane) in the Z-buffer, and then

never again draws a pixel at this location, unless it has a smaller

Z-value. When spheres are modeled with lots of triangles as in

Figure 1A, each pixel has the right Z-value associated, so that the spheres

intersect correctly thanks to the Z-buffer. With our shortcut, however,

each sphere consists of just two triangles that are parallel to the view-

plane, and each pixel of the sphere image thus has the same Z-value.

Consequently, the spheres do not intersect at all, instead the closer one

completely occludes the more distant one. This is fine when drawing non-

intersecting spheres (in sticks and balls and sticks visualization styles), but

obviously goes wrong with a space-filling style. The logical solution

would be to adjust the pixel Z-values on the fly during rendering (with

a so-called ‘pixel shader’), but this approach is either slow (because the

hardware can no longer perform an early Z-test to discard pixels) or not

supported at all (e.g. mobile devices based on OpenGL ES lack this

feature, and PowerVR GPUs do not even have a Z-buffer). The al-

gorithm described here therefore takes a different route; it shares the

work between central processing unit (CPU) and GPU according to

the following recipe, which can easily be distributed over multiple CPU*To whom correspondence should be addressed.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

www.YASARA.org
mailto:elmar@yasara.org
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu426/-/DC1
MIT
that
'
'
Since
ince
grey
'
x
-
www.POVRay.org
,
-
&
very
'
'
'
,
XPath error Undefined namespace prefix

cores (a very detailed 20-page step-by-step recipe has been included as

Supplementary Material):

(1) The CPU transforms the atom coordinates from object

space to screen space and immediately discards atoms that are

offscreen.

(2) For each atom i, the CPU creates a temporary Z-buffer that in-

cludes atom i and all the more distant atoms k, which can influence

the shape of atom i by intersection, i.e. those atoms whose sphere

image touches atom i and who are closer along Z than their own

radius Rk. The atoms k could be found quickly with a neighbor

search grid, but it turns out that the trivial approach to just look at

covalently bound atoms is good enough.

(3) Finally, the CPU loops over the pixel lines in the temporary

Z-buffer of atom i, checks which lines are affected by intersections

and emits a number of triangles that trace these intersections. The

principle is clarified in Figure 1C, which shows how to draw a

water molecule with just 14 triangles instead of 960 triangles.

(4) If atoms are shown as sticks or balls and sticks, cylinders need to

be drawn that connect the atoms (Fig. 1E). To reduce the polygon

count, only the front side of the cylinders is drawn, using between 2

and 18 triangles, depending on the distance from the viewer.

Cylinders always use the same texture as the atoms (Fig. 1B),

which ensures visual continuity.

(5) Shadows and ambient lighting are calculated per atom, not per

pixel. The CPU first draws a low-resolution depth map of the

scene where atoms have a diameter of just 15 pixels (Fig. 1D),

either seen from the position of the light source (shadows) or

from the six main directions (ambient lighting). Then it integrates

the amount of light reaching each atom (i.e. the fraction of pixels

not occluded by closer ones) and darkens the atom accordingly

(using either GL_EXT_fog_coord or multi-texturing).

This fast way of drawing molecules also has three limitations compared

with the classic approach: First, atom colors must be mixed from two of

the standard colors present in the texture (Fig. 1B), which allows to create

most useful colors, but not all colors. Second, the maximum atom size on

screen is limited to the largest atom size in the texture (currently,

256� 256 pixels), unless one wants to use lower quality upscaled

atoms. To prevent atoms from getting too small, YASARA therefore

restricts its window size to Full HD, but we plan to double the texture

size to 2048� 2048 soon, covering 4K and similar hires displays. And

third, drawing transparent atoms is not straightforward and currently not

implemented.

3 RESULTS

A visualization example for the chaperonin GroEL/ES (1AON,
58 884 atoms) with real-time shadows is shown in Figure 1F.

On a 240 EUR Motorola Razr i smartphone (Intel Atom
Z2480@2GHz with two threads and PowerVR SGX 540,

960� 540 pixels, Android 4) the algorithm reaches 4–12
frames per second, depending on the number of atoms on
screen (or 5–30 fps with ambient lighting but no shadows).

This is about 10� as fast as other popular apps (which, however,
do not support shadows). On a Windows 8 tablet with the faster

Atom Z2760 CPU@1.8GHz, four threads, 1366� 768 pixels
and PowerVR SGX 545, the frame rate ranges from 8–15 fps

(12–30 fps without shadows, about 6� as fast as others). On a
high-end workstation, the frame rate is usually above the refresh

rate of the screen (60Hz) for all but the largest structures (ribo-
somes etc.). We separately tested the usability for interactive

molecular dynamics (not in YASARA View) and obtained 4
fps on the Motorola Razr i for Dihydrofolate reductase in

water (23 788 atoms), 7.9A VdW cutoff and PME electrostatics,
just enough to pull atoms around.

ACKNOWLEDGEMENT

The authors thank the YASARA users for their invaluable feed-
back and financial support.

Funding: YASARA View is part of the NewProt project (www.
newprot.eu) that is funded by the European Commission within
its FP7 Programme, under the thematic area KBBE-2011-5 with

contract number 289350.

Conflicts of interest: none declared.

REFERENCES

DeLano,W.L. (2005) The case for open-source software in drug discovery. Drug

Discov. Today, 10, 213–217.

Humphrey,W. et al. (1996) VMD: visual molecular dynamics. J. Mol. Graph., 14,

27–28.

Levinthal,C. (1966) Molecular model-building by computer. Sci. Am., 214, 42–52.

Pettersen,E.F. et al. (2004) UCSF Chimera—a visualization system for exploratory

research and analysis. J. Comput. Chem., 25, 1605–1612.

Tarini,M. et al. (2006) Ambient occlusion and edge cueing for enhancing real time

molecular visualization. IEEE Trans. Vis. Comp. Graph., 12, 1237–1244.

Fig. 1. A water molecule rendered classically with 960 triangles (A) or quickly using texture mapping and precalculated impostors arranged in a single

texture (B). The texture contains ray-traced images of spheres with various colors (two of which are blended with a variable factor to create other colors

and color gradients) and various sizes (so-called ‘mipmaps’, which reduce aliasing artifacts). The spheres coated with a stellar nebula are used to draw

atoms selected by the user. The gray checkerboard indicates transparent pixels. Using texture (B), the water molecule in (A) can be drawn quickly using

just 14 triangles (C). Low-resolution depth map of PDB file 1CRN to calculate shadows (D), balls and sticks of 1CRN (E) and space-filling display of

PDB file 1AON (F)

2982

E.Krieger and G.Vriend

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu426/-/DC1
-
&
to
*
*
x
-
-
x
 do
x
 to
-
x
www.newprot.eu
www.newprot.eu

