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Rehmannia glutinosa is a potent medicinal plant with a significant importance in traditional Chinese med-
icine. Its root is enriched with various bioactive molecules mainly iridoids, possessing important pharma-
ceutical properties. However, the molecular biology and evolution of R. glutinosa have been largely
unexplored. Here, we report a reference genome of R. glutinosa using Nanopore technology, Illumina
and Hi-C sequencing. The assembly genome is 2.49 Gb long with a scaffold N50 length of 70 Mb and high
heterozygosity (2%). Since R. glutinosa is an autotetraploid (4n = 56), the difference between each set of
chromosomes is very small, and it is difficult to distinguish the two sets of chromosomes using Hi-C.
Hence, only one set of the genome size was mounted to the chromosome level. Scaffolds covering
52.61% of the assembled genome were anchored on 14 pseudochromosomes. Over 67% of the genome
consists of repetitive sequences dominated by Copia long terminal repeats and 48,475 protein-coding
genes were predicted. Phylogenetic analysis corroborates the placement of R. glutinosa in the
Orobanchaceae family. Our results indicated an independent and very recent whole genome duplication
event that occurred 3.64 million year ago in the R. glutinosa lineage. Comparative genomics analysis
demonstrated expansion of the UDP-dependent glycosyltransferases and terpene synthase gene families,
known to be involved in terpenoid biosynthesis and diversification. Furthermore, the molecular biosyn-
thetic pathway of iridoids has been clarified in this work. Collectively, the generated reference genome of
R. glutinosa will facilitate discovery and development of important pharmacological compounds.
� 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Plants are source of rich natural products representing tremen-
dous resources for drug development. There are over 200,000 plant
secondary metabolites known to date with several compounds
heavily used as drugs [1]. Besides their applications in drug discov-
ery, plants are exploited by human for centuries as herbal drugs
and traditional knowledge of plant-based therapies have been
transmitted from generation to generation. Population in India,
China, Japan, Korea and several African and South American coun-
tries considerably rely on traditional herbal medicine [2]. Among
the 21,000 medicinal plants listed by the World Health Organiza-
tion, Rehmannia glutinosa Libosch. Ex Fisch. & C.A. Mey represents
one of the most important. It is widely cultivated in Asian countries
such as China, Korea, Japan and Vietnam. R. glutinosa has been
listed as one of the 50 fundamental herbs in traditional Chinese
medicine [3]. It plays a wide range of long lasting pharmacological
activities on human health with very less side effects [4]. The main
medicinal tissue of R. glutinosa is the tuberous root (Fig. 1), which is
used for the treatment of heat and strengthening body tonicity. It
has also significant effects on the cardiovascular system, central
nervous system, immune system, and visceral system based on
in-vitro assays [4–10].

Several bioactive compounds with important pharmaceutical
activities have been reported in R. glutinosa root including iridoids
(catalpol, rehmannioside A, B, C and D, geniposide, aucubin),
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Fig. 1. Phenotype of Rhemannia glutinosa cultivar Qinhuai used in this study. Left: whole plant in flowering stage, Right above: leaf, Right below: tuberous root. Scale = 1 cm.
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ionones and phenylethanoids [3,4,11,12]. Despite the beneficial
properties of these bioactive compounds, the molecular mecha-
nisms of their formation are yet to be elucidated mainly because
of the lack of high-quality genome resources in R. glutinosa [13–
17].

The exact phylogenetic placement of R. glutinosa in the Lamiales
order has been elusive. Initially, based on morphological traits it
was placed in the Scrophulariaceae family but after several revi-
sions, it has been classified as a species of the Orobanchaceae fam-
ily [18–21]. Nonetheless, the genome structure and evolution of R.
glutinosa is yet to be elucidated.

Sequencing and investigating genome evolution in medicinal
plants is essential for elucidating their phylogenetic relationship,
promoting their sustainable exploitation and facilitating plant-
based drug discovery [22]. Genome sequences of several species
in the Lamiales order are now available [23–28], which will facili-
tate comparative evolutionary studies in R. glutinosa. Recently, the
rapid development in new sequencing technologies (Oxford Nano-
pore Technologies (ONT), PacBio sequencing) and complementary
long-range scaffolding technologies (Hi-C sequencing and Bionano
optical maps) have facilitated the generation of chromosome-scale
genome assemblies in various plant species with large and com-
plex genomes [29,30].

In this report, we de novo sequenced and assembled a reference
genome of R. glutinosa by combining ONT long reads, Illumina
NovaSeq short reads and Hi-C sequencing. We annotated and char-
acterized the structure and evolutionary history of the large and
complex genome of R. glutinosa. We further performed a
genome-wide prediction and expression analysis of terpene syn-
thase and UDP-dependent glycosyltransferases gene families
known to be involved in the biosynthesis and diversification of ter-
penoids. Our work elucidates the genomic evolution of R. glutinosa
and provides essential genomic resources for decoding the syn-
thetic pathways of bioactive compounds to facilitate molecular
breeding of cultivars with improved medicinal attributes.
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2. Material and methods

2.1. Plant materials, DNA library construction and sequencing

Rehmannia glutinosa Libosch. Ex Fisch. & C.A. Mey cultivar Qin-
huai is one of the ten main cultivars grown in China. Qinhuai is
rich in catalpol, verbascoside, iridoids, and is mainly grown in Jiao-
zuo, Daohuang district, Henan province, China. Healthy tissue-
cultured plants of Qinhuai were obtained from the College of Phar-
macy, Henan University of Chinese Medicine, China. High-quality
genomic DNA was isolated from fresh leaves using the conven-
tional cetyltriethylammonium bromide method [31]. Agarose gel
electrophoresis was used to check the integrity of DNA (DNA
Integrity Number > 8) /RNA (RNA Integrity Number > 6). In order
to obtain longer reads, it is generally necessary to screen large
fragment sequences through gel cutting instead of sequence frag-
mentation. Illumina sequencing pair-end libraries with insert size
of 150 bp were prepared using Nextera DNA Flex Library Prep Kit
(Illumina, San Diego, CA, USA). Sequencing was performed using
the Illumina NovaSeq platform (Illumina, San Diego, CA, USA).
Raw reads (170.32 Gb) were cleaned to discard low-quality reads
(reads with adaptors and unknown nucleotides and reads
with>20% low-quality bases) using the FastQC (v.0.11.8) tool
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
and, after data filtering, 157.73 Gb clean data were used for subse-
quent analyses (Table S1).

For Oxford Nanopore sequencing, the libraries were prepared
with the standard protocol from Oxford Nanopore Technologies
previously detailed by Song et al. [32]. The purified library was
loaded onto primed R9.4 Spot-On Flow Cells and sequenced using
a PromethION sequencer (Oxford Nanopore Technologies, Oxford,
UK) with 48-h runs at Wuhan Benagen Tech Solutions Company
Limited, Wuhan, China. Base calling analysis of raw data was per-
formed using the Oxford Nanopore GUPPY software (v0.3.0). A
total of 297.86 Gb raw data was generated with 230.83 Gb ‘passed’
reads after quality control.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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2.2. RNA library construction, sequencing and data processing

Total RNA was extracted from young leaves, mature leaves, jas-
monic acid-treated leaves and roots, salicylic acid-treated leaves
and roots of cultivars Qinhuai, Huaifeng and Wen85-5 using the
HiPure Plant RNA Kit according to the manufacturer’s instructions
(Magen, Guangzhou, China). RNA samples were pooled and used
for library preparation following the standard protocol from
Oxford Nanopore Technologies with the library prep kit (SQK-PC
S109 + SQK-PBK004). The library was loaded onto R9.4 SpotON
Flow Cells (Oxford Nanopore Technologies, Oxford, UK) and
sequenced using a 48-h run time. In addition, Illumina RNA-seq
(Illumina NovaSeq, San Diego, CA, USA) short reads were generated
based on tissue culture seedlings (triplicate samples) from the cul-
tivars Huaifeng and Qinhuai. RNA-seq reads were remapped to the
reference genome assembly using STAR (v.2.7.0; parameters: --
twopassMode None) [33] and the FPKM was calculated to evaluate
the expression level of each gene using the RSEM (v.1.2.15) tool
[34].

2.3. Genome assembly

Based on the sequencing data, the K-mer analysis method [35]
was used to estimate the genome size and heterozygosity using the
kmer_freq program in the gce package (v.1.0.0) [36]. Genomic
assembly was performed using SMARTdenovo software (https://
github.com/ruanjue/smartdenovo; parameter: -p jvh -k 17 -J
2000 -t 32 -c 1). Two rounds of error correction were performed
on the assembly result based on the Nanopore sequencing data
using Racon (v.1.4.11) (https://github.com/isovic/racon). Two
rounds of error correction were performed on the assembly result
based on the Illumina Novaseq sequencing data using Pilon (v.1.22;
parameters: default) [37]. Finally, the genome was de-hybridized
using the Purge_haplotigs pipeline (v.1.0.4) [38] to obtain the final
assembly result.

2.4. Pseudochromosome level assembly using Hi-C

High-quality DNA extracted from young leaves of healthy
tissue-cultured plants was used for Hi-C sequencing. Formalde-
hyde was used for fixing chromatin. In situ Hi-C chromosome con-
formation capture was performed according the DNase-based
protocol described by Ramani et al. [39]. The libraries were
sequenced using 350 bp paired-end mode on an Illumina NovaSeq
(Illumina, San Diego, CA, USA). For pseudochromosome level scaf-
folding, we used the assembly software ALLHIC (v. 0.9.12) [40] and
3D-DNA (v.180419) [41] for stitching, and then we imported the
final files (.hic and .assembly) generated by the software into Juice-
box (v1.11.08) [42] for plotting.

2.5. Genome annotation

2.5.1. a) repeat sequence annotation
We used the RepeatModeler (v.1.0.4) (https://github.com/

rmhubley/RepeatModeler) software to build our own repeat
library. After merging the repbase library, we used RepeatMasker
(v.4.0.5) (http://www.repeatmasker.org/) for genome repeat
annotation.

2.5.2. b) gene prediction
Gene prediction was performed using MAKER software

(v.2.31.8) [43] and Augustus software (v.3.0.3) [44]. Protein coding
sequences from 15 species including, Cuscuta australis, Ipomea nil,
Capsicum annuum, Solanum melongena, Solanum lycopersicum,
Chrysanthenum nankingense, Helianthus annuus, Sesamum indicum,
Erythranthe guttata, Olea europeae subsp. sylvestris, Utricularia
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gibba, Antirrhinum majus, Arabidopsis thaliana, Oryza sativa and Vitis
vinifera (Table S2), were mapped to the assembly of R. glutinosa
using BLAST (v.2.6.0+; parameter: -evalue 1e-5) [45]. The predicted
genes were corrected with the de novo assembled RNA-seq long
and short reads using Trinity (v.2.6.6) [46]. Next, we employed
the BUSCO software (v.4.1.2) [47] for evaluating the quality of
the prediction based on the eukaryotic database.

2.5.3. c) gene function annotation
Using BLAST (v.2.6.0+; parameters: -evalue 1e-5 -

max_target_seqs 5 -num_threads 10) [45], the predicted protein
sequences were compared with the transposable element (TE) pro-
tein library. After removing the TE protein genes, the protein-
coding genes were functionally annotated based on seven publicly
available databases including, Uniprot [48], Pfam [49], GO [50],
KEGG [51], Swissprot [48], Interpro [52] and NR [53].

2.5.4. d) Non-coding RNA annotation
Based on the structural features of tRNA, tRNAscan-SE (v.1.23)

[54] was used to find tRNA sequences in the R. glutinosa genome.
Furthermore, rRNA prediction was performed using RNAmmer
(v.1.2) [55]. The miRNA and snRNA was predicted using Rfam_s-
can.pl (v1.0.4) by inner calling using Infernal (v1.1.1) [56].

2.6. Gene family and evolutionary analysis

2.6.1. a) Gene family clustering
All amino acid sequences of the 15 selected species in addition

to R. glutniosa were aligned using BLASTP (v.2.6.0; parameters: -
evalue 1e-5 -outfmt 6) [45], and the gene family clustering was
performed using OrthoMCL software (v.2.0.9; parameters:
percentMatchCutoff = 30, evalueExponentCutoff = 1e-5, expansion
coefficient 1.5) [57].

2.6.2. b) Phylogenetic tree construction
A single copy gene family shared by the 16 selected species was

screened to construct a phylogenetic tree. First, the protein
sequence of each single copy gene family was subjected to align-
ments in MUSCLE (v.3.8.31) [58] and finally, the maximum likeli-
hood tree was built using RAxML (v.8.2.10) software [59].

2.6.3. c) Gene family contraction and expansion
Gene family contraction and expansion analysis was performed

using CAFÉ (v.2.1; parameter: --filter) software [60] based on gene
family clustering results.

2.6.4. d) Divergence time analysis
Based on the phylogenetic tree result, the mcmctree of PAML

(v.4.9) (parameters: nsample = 1000000; burnin = 200000; seq-
type = 0; model = 4) [61] was used to estimate the differentiation
time of the different species. Published divergence times for Vitis
vinifera-Oryza sativa: 125–150 million years ago (Mya) and Sola-
num lycopersicum-Helianthus annuus: 95–106 Mya were used to
calibrate the divergence time.

2.6.5. e) Whole gene duplication analysis
Whole genome duplication analysis was performed based on

five species: Solanum lycopersicum, Cuscuta australis, Ipomoea nil,
Vitis vinifera and R. glutinosa. First, we compared the protein
sequences of different species using the all-to-all search in BLASTP
(v.2.6.0+; parameters: -evalue 1e-5 -outfmt 6) [45], and then used
MCScanX (https://github.com/wyp1125/MCScanx; parameters: -a
-e 1e-5 -s 5) [62] to analyze the genomic collinear block, and finally
calculate the synonymous mutation frequency (Ks) of the collinear
gene pairs based on the NG method of Yang implemented in PAML
(v.4.9) [61]. The synonymous mutation rate distribution (Ks) was

https://github.com/ruanjue/smartdenovo
https://github.com/ruanjue/smartdenovo
https://github.com/isovic/racon
https://github.com/rmhubley/RepeatModeler
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plotted using ggplot2 (v.2.2.1) package in R v.2.15 (www.r-project.

org). The synonymous substitution rate of 8.25 X 10-9 mutations
per site per year was applied to calculate the ages of the WGDs.

2.7. Investigations of terpene synthase (TPS), UDP-dependent
glycosyltransferase (UGT) and iridoid biosynthetic pathway associated
genes

The Hidden Markov Model profiles of the TPS domains
(PF01397 and PF03936) and UGT domain (PF00201) were obtained
from Pfam v.32.0 database (http://Pfam.sanger.ac.uk/) [63] and
searched against the genomes of R. glutinosa and related species
using HMMER V.3.0 program with ‘‘trusted cutoff” as threshold
[64]. Candidate genes were further confirmed using the SMART
tool [65]. Redundant sequences and sequences without conserved
motifs were removed. TPS genes were grouped into subfamilies
according to Chen et al. [66]. Similarly, UGT genes were assigned
to different families based on the previous work of Yonekura-
Sakakibara and Hanada [67]. The protein sequences of genes were
subjected to alignments in MUSCLE (v.3.8.31) [58] and the maxi-
mum likelihood tree was built using RAxML (v.8.2.10) software
[59].

Iridoids are derived from either the plastidial 2-C-methyl-d-
erythritol-4-phosphate (MEP) pathway or the cytosolic mevalonic
acid (MVA) pathway. Using the KEGG annotation, we searched
for all genes MEP and MVA pathways genes and reconstructed
the iridoids biosynthesis pathway [11,68]. Heatmaps displaying
gene expression profiles were plotted using pheatmap (v.1.0.12)
in R v.2.15 (www.r-project.org) based on various RNA-seq data
(Table S3).
3. Results and discussion

3.1. Genome sequencing and assembly

In order to estimate the genome size and heterozygosity of
Rehmannia glutinosa cultivar ‘Qinhuai’, genome survey sequencing
was performed. A total of 170.32 Gb of Illumina NovaSeq reads was
generated and the estimated genome size was 2.35 Gb according to
the 19-mer depth distribution (Table S4, Figure S1). Compared to
other genome sequenced plant species in the Lamiales order (Sesa-
mum indicum, Erythranthe guttata, Olea europeae subsp. sylvestris,
Olea europaea subsp. europaea, Salvia splendens, Utricularia gibba,
Antirrhinum majus, Scutellaria baicalensis), R. glutinosa features the
largest genome [23–28,69]. High heterozygosity (2%) was esti-
mated in R. glutinosa genome and the 19-mer distribution indi-
cated a large proportion of repeat sequences (Table S4), denoting
a challenging de novo genome assembly of this species [70].

The hybrid sequencing approach combining long reads and
short reads technologies has proven to be efficient for plant species
with large or complex genome [32,69,71,72]. Here, we also
employed a hybrid genome sequencing approach by combining
Oxford Nanopore Technologies (ONT) and Illumina NovaSeq plat-
form (Figure S2). The ONT yielded 297.86 Gb raw data from 3 flow
cells composed of 14 million reads (read N50 length, 28.5 Kb)
(Table S5). After data filtering (remove reads of quality score < 7),
230.82 Gb data were kept for downstream analyses, representing
98-fold genome coverage (Table S5). A total of 157.73 Gb Illumina
clean reads were generated (Table S1), representing 67-fold gen-
ome coverage. The genome assembly was conducted on a com-
puter with 250 G CPU memory and 80 threads (Table S6). We
assembled and corrected the Nanopore long reads prior using Illu-
mina reads for polishing. In addition, Hi-C data were used for scaf-
fold extension and chromosome mount. Globally, the final
assembled genome had a total length of 2.49 Gb and a contig
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N50 of 658 Kb (Table 1). The assembled genome size is slightly lar-
ger than the estimated size of 2.35 Gb, probably due to the high
heterozygosity. Similar observations were previously reported in
Olea europaea subsp. europaea and Carya illinoinensis [25,73]. In
de novo genome sequencing, the application of Hi-C scaffolding
facilitates sequence continuity to reach a chromosome scale [74].
Since R. glutinosa is an autotetraploid (4n = 56) [75], the difference
between each set of chromosomes is very small, and it is difficult to
distinguish the two sets of chromosomes using Hi-C. Hence, only
one set of the genome size was assembled to the chromosome
level. Herein, Hi-C assisted assembly helped to anchor a total of
52.61% of R. glutinosa genome on 14 pseudochromosomes named
as chr1 ~ chr14 (Fig. 2A, Figure S3, Table S6, Table S7, Table S8),
which is consistent with the karyotype (4n = 56) previously
reported by Xu [75]. We aligned the Illumina short reads to the
assembled genome using BWA, resulting in a mapping rate of
93.7%.
3.2. Gene annotation

Analysis of the repeat sequences in Qinhuai genome revealed
over 67% repetitive sequences, with the dominant type (>75%)
being transposable elements (TE) (Table S9). This is higher than
the 29, 43, 55, 58% of repeat sequences reported in genomes of
sesame, Olea europeae subsp. sylvestris, Antirrhinum majus and Sal-
via splendens [24,26–28]. TEs could be roughly classified into four
types: long terminal repeat (LTR), long interspersed nuclear ele-
ment, short interspersed nuclear element and DNA transposons.
We found that LTRs represent the major repetitive sequences
(45%). It has been evidenced that abundance of LTRs contributes
to genome size expansion in plants with varying proportions of
LTR superfamilies’ [76]. For instance, higher Gypsy than Copia ele-
ments was observed in cowpea, Salvia splendens, walnut, Poly-
gonum cuspidatum and Helianthus annus [27,72,77–79]. On the
opposite, in plant species such as tomato, Chrysanthemum nankin-
gense and sesame, Copia elements are more dominant than Gypsy
elements [24,32,80]. In the present study, we noticed that Gypsy
elements and Copia elements contribute to 13% and 31% in the gen-
ome, respectively (Table S9), implying that the large genome size
of R. glutinosa is mainly attributable to the amount of Copia
retrotransposons.

An integrated gene prediction protocol was employed based on
a combination of de novo assembly of transcriptomes from various
cultivars, tissues and stress conditions (whole seedlings (Qinhuai,
Wen85-5 and Huaifeng cultivars), young leaves, mature leaves, jas-
monic acid-treated leaves and roots, salicylic acid-treated leaves
and roots (Table S3)), ab initio prediction and homology search
with protein sequences from 16 related species. In total, 48,475
protein-coding genes were obtained in R. glutinosa genome with
an average mRNA length, coding sequence length and exon num-
ber of 5.01 Kb, 1,291.21 bp and 5.89 per gene, respectively
(Table S10). The predicted gene was evaluated based on the embry-
ophyta database using the BUSCO software [47], which delivered a
score of completeness of 97.83% including complete and frag-
mented BUSCOs (Table S11). This result suggests that a near com-
pletion genome sequence has been generated for R. glutinosa in this
study, similar to published genomes of Arabidopsis and rice
[81,82]. A total of 48,475 protein-coding genes were obtained in
R. glutinosa genome, ranking this species as the most gene-
enriched in the Lamiales order. Nonetheless, it is worth mentioning
that the number of predicted genes can enormously vary depend-
ing on the tools and parameters used in gene prediction. We
obtained 99% of the predicted protein-coding genes matching
entries in seven publicly available databases (Table S12). With
regard to non-coding genes, we identified 351 miRNA, 1,800 tRNA,

http://Pfam.sanger.ac.uk/


Table 1
Summary of R. glutinosa genome assembly.

Genome features Contig Scaffold

Total_length (bp) 2,498,530,510 2,498,814,810
Number of contigs 5,290 3,733
GC_content (%) 36.52 36.52
N50 (bp) 658,887 70,280,146
N90 (bp) 244,881 262,126
Average (bp) 472,312.01 669,385.16
Median (bp) 363,729 239,898
Min (bp) 30,576 25,000
Max (bp) 2,924,441 166,779,478
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1,199 rRNA and 2,945 snRNA fragments from the total assembly
(Table S13).

3.3. Gene family and phylogenetic analysis

The genome assembly for R. glutinosa was compared with 15
genome-sequenced plant species, including five Solanales species
(Cuscuta australis, Convolvulaceae; Ipomea nil Convolvulaceae;
Capsicum annuum, Solanaceae; Solanum melongena, Solanaceae;
Fig. 2. De novo genome assembly of R. glutinosa and comparative analysis with related s
glutinosa cultivar Qinhuai (from outside to inside: 1. pseudochromosome number; 2. gen
tRNA density). (B) Venn diagram showing the shared and unique gene families among
species. The red star marks the position of the sequenced species in this study. (For interp
web version of this article.)

3958
Solanum lycopersicum, Solanaceae), two Asterales species (Chrysan-
thenum nankingense, Asteraceae; Helianthus annuus, Asteraceae),
five Lamiales species (Sesamum indicum, Pedaliaceae; Erythranthe
guttata, Prhymaceae; Olea europeae subsp. sylvestris, Oleaceae;
Utricularia gibba, Lentibulariaceae; Antirrhinum majus, Plantagi-
naceae), one Brassicales species (Arabidopsis thaliana, Brassi-
caceae), one Poales species (Oryza sativa, Poaceae), and one
Vitales species (Vitis vinifera, Vitaceae) (Table S2). Based on gene
family clustering analysis, 44,335 gene families (689,787 genes)
were detected, including 5,309 core gene families (126,451 genes)
shared by all the 16 species and 12,380 gene families shared by the
four Lamiales species (Fig. 2B; Table S14). Specific genes found in R.
glutinosa genome were enriched in various gene ontology (GO)
functional categories with the most enriched being the general
GO term GO:0016799 (hydrolase activity) and specific GO terms
GO:0047938 (glucose-6-phosphate 1-epimerase activity),
GO:0016114 (terpenoid biosynthetic process), GO:0047924
(geraniol dehydrogenase activity), GO:0046029 (mannitol dehy-
drogenase activity), suggesting a high enzymatic activity in R. gluti-
nosa (Table S15).

We constructed a phylogenetic tree based on 266 gene families
shared by all species as single-copy orthologous gene families
pecies. (A) Summary of the de novo genome assembly and sequencing analysis of R.
e density; 3. repeat density; 4. miRNA density; 5. rRNA density; 6. snRNA density; 7.
four Lamiales species. (C) Distribution of genes and gene families across 16 plant
retation of the references to colour in this figure legend, the reader is referred to the
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(Fig. 2C). Our goal was to clarify whether R. glutinosa belongs to
Scrophulariaceae or Orobanchaceae. Based on previous phyloge-
netic analyses, Scrophulariaceae and Plantaginaceae are closely
related while Orobanchaceae is very close to Prhymaceae
[16,28,83]. Therefore, we integrated A. majus (Plantaginaceae)
and E. guttata (Prhymaceae) in our analysis. We found that R. gluti-
nosawas clustered together with Lamiales species, which is consis-
tent with its phylogenetic placement (Fig. 3). Remarkably, E.
guttata was the closest species to R. glutinosa. Since Phrymaceae
is close to Orobanchaceae, we deduce that R. glutinosa belongs well
to the family of Orobanchaceae. The Orobanchaceae family is
essentially composed of parasitic plant species [84,85]. Therefore,
the integration of some non-parasitic plant species such as R. gluti-
nosa in this family still needs further clarification. Recent pro-
gresses on genome sequencing of parasitic plants in
Orobanchaceae family such as Striga asiatica [86] will be helpful
to elucidate the genome evolution and systematics of this family.

R. glutinosa was estimated to have diverged from E. guttata 21.1
million years ago (Mya) and from the Solanales approximately
86.3 Mya (Fig. 3), which is in accordance with estimations that
the Lamiales order has diverged from the Solanales order between
89.8 and 185.8 Mya [24]. Evolutionary driven modifications of
gene family size are a natural phenomenon providing selective
advantages and contributing to organizational and regulatory
diversity in a variety of organisms [87,88]. In this study, we inves-
tigated the gene family expansion and contraction in R. glutinosa
lineage. The analysis revealed that 6,237 gene families underwent
expansion, while a significant number of gene families (848)
underwent contraction (Fig. 3). Interestingly, the expanded gene
families were mainly enriched in GO:0008299 (isoprenoid biosyn-
thetic process) (Table S16), which may have contributed to the
high content of bioactive metabolites in this important medicinal
plant [4,89].

3.4. Whole genome duplication event

Whole-genome duplication (WGD) is a main causal agent in
diversification, phenotypic and developmental innovation in
organisms [90]. Novel lineage-specific WGD events have been
reported and dated in all Lamiales species with published gen-
omes. For example, sesame, A. majus and E. europea subsp. sylves-
tris experienced an independent WGD at 71, 46 and 28 Mya,
respectively [24,26,28]. WGD event was examined in R. glutinosa
in comparison with four other species (Solanum lycopersicum, Cus-
cuta australis, Ipomoea nil and Vitis vinifera). We identified the syn-
tenic blocks within genomes through intragenome comparisons
(Fig. 4A). There was a prominent peak for calculated synonymous
substitution rates (Ks) of gene pairs at 0.06 in the R. glutinosa lin-
eage (Fig. 4B), indicative of a very recent independent WGD event
which occurred 3.64 Mya after splitting from E. guttatus (21.1 Mya)
[91].

3.5. Molecular biosynthetic pathway of iridoids

The major bioactive molecule in R. glutinosa is iridoid [4,9]. It
has been well documented that iridoids possess beneficial antitu-
mor, antioxidant, diuretic, neuroprotective and anti-inflammatory
effects on human health [5,92–94]. >30 kinds of iridoids have been
isolated from R. glutinosa including, catalpol, aucubin, rehman-
nioside A, B, C and D [4]. Iridoids are monoterpenes and two gen-
eral synthetic pathways of terpenoids biosynthesis have been
recognized in plants: mevalonate pathway (MVP) and 2C-methyl-
D-erythritol-4-phosphate pathway (MEP) [95]. Based on the exten-
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sive investigations on Catharanthus roseus and R. glutinosa, two
main routes for iridoids biosynthesis have been proposed
(Fig. 5A) [68,96,97], however structural genes catalyzing steps of
this complex pathways have not yet been fully identified [11,98].

In this study, we searched for all genes involved in the iridoid
biosynthesis pathway and identified a total of 313 candidate genes
belonging to 25 enzyme families (Table S17). We employed tran-
scriptome data from root and leaf tissues in order to identify key
genes differentially expressed genes (DEG) between tissues and
growth stages that could be target of further functional analyses.
In total, 137 DEGs were detected and our analysis showed that
most of them were up-regulated in older root samples (SP2:
1 month and SP3: 2 months after sprouting) as compared to young
root samples (SP1: 15–20 days after sprouting). Duan et al. [98]
reported that the content of iridoid in R. glutinosa root increased
continuously during growth stages up to 2 months and this corre-
lates well with the expression patterns of the identified DEGs in
this study. Furthermore, by comparing expression patterns in root
and leaf tissues, we observed that most of the DEGs were down-
expressed in the leaf tissues, confirming the fact that iridoids are
mainly enriched in R. glutinosa root [99]. Further studies aiming
at identifying the transcription factors regulating these DEGs
through gene co-expression network analysis [100], will provide
important tools for increasing iridoid content not only in root but
also in leaf.

3.6. Prediction and expression analysis of terpene synthase gene family

Terpene synthase (TPS) gene family members are key enzymes
generating the huge variety of terpene structures [101]. We
searched for all annotated TPS genes within R. glutinosa genome
and compared with six other species (A. thaliana, A. majus, C. aus-
tralis, I. nil, S. lycopersicum and V. vinifera). In total, 87 TPS genes
were identified, largely surpassing the number of TPS members
in other species (Table S18). This indicates an expansion of TPS
gene family in R. glutinosa mainly the TPS-a and TPS-b sub-
families. Furthermore, a comparison with A. thaliana revealed sev-
eral clusters of TPS genes unique to R. glutinosa (Fig. 5B), which
may play preponderant role in iridoid biosynthesis. We analyzed
the expression of TPS genes in various cultivars (Qinghuai,
Wen85 and Huaifeng), growth periods (15–20 days, 1 month and
2 months after sprouting root), tissues (root and seedling), root
parts (radial striation and non-radial striation) and salicylic acid
(SA) treatments (Table S3). Overall, most of TPS genes were prefer-
entially expressed in root tissues than in seedling, which correlates
well with the higher content of iridoids in R. glutinosa root [99]
(Figure S4). In addition, we found that SA treatment stimulates
TPS gene expression and could contribute to high accumulation
of iridoids [13]. Finally, we observed a variation of TPS gene
expression among cultivars and growth periods (Figure S4), which
may provide prospects for increasing iridoid content in R. glutinosa
root [13,14].

3.7. Prediction and expression analysis of UDP-dependent
glycosyltransferase gene family

Glycosylation represents the last step in the biosynthesis of
numerous natural compounds, including terpenes [102,103]. In R.
glutinosa, glycosylation plays a crucial role in iridoids biosynthesis
since most of the iridoids are mainly present as glycosides [4,104].
UDP-dependent glycosyltransferases (UGTs) belong to the largest
family of the glycosyltransferase superfamily and catalyzes glyco-
sylation process [105]. We examined the UGT gene family in



Fig. 3. Phylogenetic analysis and divergence time estimations among 16 plant species including R. glutinosa. The tree was constructed based on all single-copy orthologous
genes using Oryza sativa as outgroup. A total of 500 bootstrap replicates was performed and bootstrap values lower than 100 are not presented. The star marks the species
used for genome sequencing in this study. Divergence times estimated in million years ago are indicated by the blue lines over the nodes. The span of the blue lines shows 95%
confidence interval of the divergence time. The divergence time was estimated for each node in million years (MY). The number of gene-family contraction and expansion
events is indicated by green and red numbers, respectively. The number at the root (11,726) denotes the total number of gene families predicted in the most recent common
ancestor (MRCA). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Comparative genomic and evolutionary analysis. (A) Intragenome comparison showing syntenic relationship between R. glutinosa pseudochromosomes. (B)
Distribution of synonymous substitution rates (Ks) for pairs of syntenic paralogs in R. glutinosa and four other species (Rglu: Rhemannia glutinosa, Slyc: Solanum lycopersicum,
Caus: Cuscuta australis, Inil: Ipomoea nil and Vvin: Vitis vinifera).
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R. glutinosa genome in comparison with A. thaliana and V. vinifera.
In total, 333 UGT genes were detected in R. glutinosawith members
of the groups A and G being the most dominant. Similar to TPS, we
observed that UGT gene family has been expanded in R. glutinosa as
its members were higher than V. vinifera and A. thaliana (Table S18;
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Table S19; Fig. 5C). Gene expression profiling in root and seedling
showed globally a tissue-preferential activity of UGTs in R. gluti-
nosa (Figure S5). The UGTs highly active in root tissues represent
important candidate gene resources for further functional analyses
to uncover their specific roles in iridoid decoration.



Fig. 5. Genes involved in iridoids biosynthesis and glycosylation. (A) Biosynthesis pathways of iridoids in R. glutinosa. Log2 fold change of the differentially expressed genes
involved in the biosynthesis of iridoids between root samples at various growth stages (SP2/SP1; SP3/SP1) and between leaf and root samples (HF/SP). HF: leaf samples from
Huaifeng cultivar; SP3: 2 months after sprouting root (root samples); SP2: 1 month after sprouting root (root samples); SP1: 15–20 days after sprouting root (root samples).
(B) The phylogenetic tree showing a total of 116 terpene synthase (TPS) with the different TPS subfamilies labeled. TPSs are highlighted in orange while A. thaliana TPSs are
highlighted in black. (C) The phylogenetic tree showing a total of 191 UDP-dependent glycosyltransferases (UGTs) with the different UGT subfamilies labeled. R. glutinosa
UGTs are highlighted in red while A. thaliana UGTs are highlighted in black. DMAPP: dimethylally diphosphate; DXP: 1-deoxy-d-xylulose 5-phosphate; GGPP: geranylgeranyl
diphosphate; FPP: farnesyl diphosphate; GPP: geranyl diphosphate; HMBPP: 1-Hydroxy-2-methyl-2-butenyl-4 diphosphate; IPP: ispentenyl diphosphate; MEP: 2-C-methyl-
d-erythritol 4-phosphate; MVA: mevalonic acid; G10H: geraniol 8-hydroxylase; 10HGO: 10-hydroxygeraniol oxidoreductase; IS: iridoid synthase; 7-DLS/CYP76A26: 7-
deoxyloganetic acid synthase; 7-DLH:7-deoxyloganic acid hydroxylase; 7-DLGT: 7-deoxyloganetic acid glucosyltransferase; LAMT: loganic acid methyltransferase; SLS:
secologanin synthase; STR: strictosidine synthase; DXS: 1-deoxy-D-xylulose-5-phosphate synthase; IDI: isopentenyl diphosphate isomerase; DXR: 1-deoxy-D-xylulose 5-
phosphate reductoisomerase; GES: geraniol synthase; UGD: UDP-glucuronic acid decarboxylase; HMGR: 3-hydroxy-3-methylglutaryl-CoA synthase; GPS: geranyl
diphosphate synthase; GGPS: geranylgeranyl pyrophosphate synthase; FPPS: farnesyl diphosphate synthase; HDR: 4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase;
CPR: cytochrome P450 reductase; CPM: cytochrome P-450 monooxygenase; ALDH: aldehyde dehydrogenase; UPD: uroporphyrinogen decarboxylase; F3H: flavanone 3-
dioxygenase; SQLE: squalene monooxygenase. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4. Conclusions

We employed a hybrid sequencing approach to resolve the large
and highly complex genome of the potent medicinal plant R. gluti-
nosa. The newly generated reference genome sequence of R. gluti-
nosa increases the genomic resources in the Lamiales order. With
the diversity of plant species with special medicinal attributes in
the Lamiales order, we anticipate that our results will be cardinal
for comparative genomics studies to improve our understanding
of the metabolic pathways of specialized bioactive molecules. We
provide a strong molecular evidence for the placement of R. gluti-
nosa in the Orobanchaceae, a family dominated by parasitic plants.
Lineage specific expansion of gene families involved in terpenoid
biosynthesis and their preferential expression in root tissue may
have contributed to the diversity and enrichment of iridoids in R.
glutinosa root. Altogether, the released genomic resources of R.
glutinosa will be essential for gene functional characterization
and molecular breeding of high-yielding cultivars.
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