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Introduction: Patients with advanced non–dialysis-dependent chronic kidney disease (NDD-CKD) are

prone to potassium (K) imbalances due to reduced kidney function. Both hypo- and hyperkalemia are

associated with increased mortality; however, it is unclear if K variability before dialysis initiation is

associated with outcomes after dialysis initiation.

Methods: We identified 34,167 US veterans with advanced NDD-CKD transitioning to dialysis between

October 1, 2007, through March 31, 2015, who had at least 1 K measurement each year over a 3-year

period before transition (3-year prelude). For each patient, a linear mixed-effects model was used to

regress K over time (in years) over the 3-year prelude to derive K variability (square root of the average

squared distance between the observed and estimated K). The main outcomes of interest were 6-month

all-cause and cardiovascular mortality after dialysis initiation. Multivariable Cox and Fine-Gray

competing risk regression adjusted for 3-year prelude K intercept, K slope (per year), demographics,

smoking status, comorbidities, length of hospitalizations, body mass index, vascular access type, medi-

cations, average estimated glomerular filtration rate, and number of K measurements over the 3-year

prelude were used to assess the association of K variability (expressed as quartiles) with all-cause and

cardiovascular mortality, respectively.

Results: Higher prelude K variability was associated with higher multivariable-adjusted risk of all-cause

mortality but not cardiovascular mortality (adjusted hazard/subhazard ratios [95% confidence interval]

for highest quartile [vs. lowest] of K variability, 1.14 [1.03–1.25] and 0.99 [0.85–1.16] for all-cause and

cardiovascular mortality, respectively).

Conclusion: Higher K variability is associated with higher all-cause mortality after dialysis initiation.
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P
otassium (K) is an important body electrolyte, and
plasma K levels are maintained in normal range

primarily by the kidneys.1 Thus, patients with
advanced NDD-CKD are prone to plasma K variability
and dyskalemias (hypo- and hyperkalemia, especially
the latter) because of the reduced homeostatic potential
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of the kidney.1,2 Additionally, the use of medications
such as renin-angiotensin-aldosterone system in-
hibitors (RAASi) and diuretics to manage highly
prevalent comorbid conditions like hypertension and
cardiovascular diseases and dietary K intake in NDD-
CKD patients may further contribute to increased
plasma K variability.1–4 Both hyperkalemia and hypo-
kalemia are associated with an increased risk of mor-
tality, adverse clinical outcomes, and increased
economic burden in patients with NDD-CKD.5–9

Although the association of dyskalemias with mor-
tality has been well studied in NDD-CKD, the
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relationship of plasma K variability with mortality is
unclear. In 2 separate cohorts of patients undergoing
peritoneal dialysis, higher K variability was associated
with an increased risk of mortality,10,11 whereas in
settings such as RAASi initiators with stage 3 to 5
CKD,12 intensive care unit patients,13,14 hospitalized
patients with heart failure,15 and hospitalized patients
with acute myocardial infarction,16 the association of K
variability with mortality varied. Patients with
advanced NDD-CKD transitioning to dialysis repre-
sent a unique population that might face frequent and
major changes in plasma K because of reduced kidney
function, a high prevalence of comorbidities, and the
use of medications that affect plasma K levels; thus,
they experience high mortality rates after dialysis
initiation.17 Given the lack of studies in this popu-
lation, we sought to assess the association between K
variability before dialysis initiation with mortality
after dialysis initiation. We hypothesized that higher
K variability before dialysis initiation would be
associated with a greater risk of mortality after
initiation.

METHODS

Study Population

We assessed longitudinal data from the Transition of
Care in Chronic Kidney Disease, a nationally repre-
sentative historic cohort of US veterans with incident
end-stage renal disease transitioning to dialysis from 1
October 2007 (first dialysis transition date) through 31
March 2015 (last dialysis transition date).18–22 A total of
102,477 US veterans were identified from the United
States Renal Data System as a source population, with a
median (interquartile range) of 6.2 (2.8–9.3) years and
1.6 (0.6–2.3) years of data availability before and after
dialysis initiation, respectively. An initial sample of
60,128 US veterans with nonmissing predialysis plasma
K measurements recorded at any Veterans Affairs (VA)
facility was identified. The final study sample included
34,167 patients with K measured at least once each year
in a 3-year period before dialysis initiation (3-year
prelude). The study selection criteria are shown in
Supplementary Figure S1.

Exposure

The main exposure of interest was K variability. A
single mixed-effects model with a random intercept
and slope was estimated of K over time (years) over
the 3-year prelude period for all of the patients with
patient serving as the random effect. K variability
was derived as the square root of the average
squared distance between observed K values of each
patient and the estimated (model-based) K values
(expected values for each individual at the
Kidney International Reports (2021) 6, 366–380
respective time points) (Supplementary Figure S2).
Mixed-effects models were used to derive K vari-
ability because they account for intraindividual
correlations of repeated measurements, heterogenous
variability of measurements over time, and unbal-
anced design (i.e., repeated measurements collected
at different times for each patient).23,24

Supplementary Figure S3 compares the distribution
of K variability estimated from a mixed-effects
regression (Supplementary Figure S3A) versus an
ordinary least squares regression (as used in previ-
ous studies for estimating variability19,25;
Supplementary Figure S3B) and shows the difference
between K variability estimated from a mixed-effects
regression and ordinary least squares regression
(i.e., K variability [mixed effects] � K variability
[ordinary least squares regression]; Supplementary
Figure S3C). The distributions in Supplementary
Figure S3 show that the estimates produced by
mixed-effects regression were similar to those pro-
duced by ordinary least squares regression. K vari-
ability was categorized into quartiles as <0.31, 0.31
to <0.41, 0.41 to <0.52, and $0.52 mEq/l. K vari-
ability was expressed as quartiles because previous
studies observed worse outcomes associated with
higher K variability quartiles.10,11,13,14 Similarly, liter-
ature on the association of clinical parameter (e.g..
hemoglobin and systolic blood pressure) variability
with outcomes in CKD suggests worse outcomes
associated with higher variability expressed as
quartiles.19,20,26

Covariates

Patient demographic characteristics and the type of
vascular access at dialysis initiation was extracted from
the United States Renal Data System Patient and Med-
ical Evidence file. Data on marital and smoking status
were obtained from VA records.27,28 Preexisting
comorbidities at the time of dialysis initiation were
identified from the VA Inpatient and Outpatient
Medical SAS and the VA/Centers for Medicare and
Medicaid Services databases using the International
Classification of Diseases, Ninth Revision, Clinical
Modification diagnostic and procedure codes and Cur-
rent Procedural Terminology codes. The Charlson Co-
morbidity Index score was calculated using the Deyo
modification for administrative data sets as a measure of
comorbidity burden, and kidney disease was excluded
from the algorithm.29 Data on prescribed medications
were collected from both VA pharmacy dispensation
records and Centers for Medicare and Medicaid Ser-
vices Medicare Part D, and patients with at least 1
prescription over the 3-year prelude period were
recorded as having been treated with the medication.
367
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Laboratory data over the 3-year prelude period were
obtained from VA research databases as previously
described.30,31 The estimated glomerular filtration rate
(eGFR) was calculated by the Chronic Kidney Disease
Epidemiology Collaboration using outpatient serum
creatinine values.32

Outcomes

The main outcomes of interest were time to all-cause
and cardiovascular mortality after dialysis initiation.
The main follow-up period for mortality assessment
was 6 months after dialysis initiation. Additionally, we
assessed mortality over a follow-up of 1 month after
dialysis initiation and during 2 to 6 months after
dialysis initiation among those who survived the initial
1 month to assess whether the relationship between K
variability and mortality differed among those sur-
viving longer. Follow-up for mortality analyses started
at dialysis initiation (or at 1 month after dialysis initi-
ation for those surviving the first month), and patients
were censored at loss of follow-up, the end of the
respective follow-up periods (6 months or 1 month),
kidney transplantation, or the last date of available
follow-up (1 September 2015 and 30 July 2015 for all-
cause and cardiovascular mortality, respectively),
whichever occurred first. Information on all-cause
mortality data, censoring events, and associated dates
was obtained from VA and United States Renal Data
System data sources. Cardiovascular mortality data
were obtained from the United States Renal Data
System.

Statistical Analysis

Patient characteristics were summarized for the entire
sample and by K variability quartiles and presented
as counts (percentages) for categorical variables and
mean (SD) for continuous normally distributed vari-
ables or median (interquartile range [25th–75th
percentile]) for continuous skewed variables.
Normality was checked by visual inspection of the
histogram, normal probability plot, and the quantile-
quantile plot. Differences across K variability quar-
tiles were assessed using c2 tests for categorical data,
1-way analysis of variance for continuous normal
data, and the Kruskal-Wallis test for continuous
skewed data. The association between K variability
and mortality was assessed using Cox proportional
hazard models for all-cause mortality and Fine-Gray
competing risk regression for cardiovascular mortal-
ity by treating mortality by all other causes as
competing events. Models were incrementally
adjusted for the following confounders based on
theoretical considerations: model 1 adjusted for K
intercept and K slope over the 3-year prelude
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estimated using the linear mixed-effects model; model
2 adjusted for model 1 plus age, sex, race, marital
status, and smoking status; model 3 adjusted for
model 2 plus comorbidities (diabetes, congestive heart
failure [CHF], hypertension, peripheral vascular dis-
ease, cerebrovascular disease, lung disease, peptic
ulcer disease, paraplegia/hemiplegia, anemia, atrial
fibrillation, ischemic heart disease, liver disease, and
malignancies), Charlson Comorbidity Index , cumu-
lative length of hospitalizations, 3-year prelude
average body mass index (BMI), and vascular access
type; model 4 adjusted for model 3 plus medications
(RAASi, Na-polystyrene sulphonate, loop diuretics,
potassium-sparing diuretics, digoxin, beta blockers,
calcium channel blockers, insulin, oral hypoglyce-
mics, calcineurin inhibitors, trimethoprim, and azole
antifungals); and model 5 adjusted for model 4 plus
the average eGFR and the number of K measurements
over the 3-year prelude period. Univariable associa-
tions of exposure/confounders with mortality were
assessed in univariable survival models. However, all
the confounders listed previously were used in the
multivariable-adjusted models, irrespective of statis-
tical significance in univariable analyses. We con-
ducted subgroup analyses after categorizing patients
by age, race, prevalent diabetes and CHF, the use
of Na-polystyrene sulphonate and RAASi, eGFR,
and the number of K measurements. Potential in-
teractions between K variability quartiles and the
selected subgroups were tested by including
interaction terms. Restricted cubic spline models
with 2 degrees of freedom were used to investigate
nonlinearity in fully adjusted associations between
log-transformed K variability and mortality. Miss-
ingness was low (race [<0.01%], marital status
[0.05%], smoking status [0.07%], eGFR [0.5%],
BMI [0.9%], and vascular access [8.6%]), and
hence missing values were not imputed. Complete
data were available for 30,703 (89.9%) patients for
the main multivariable-adjusted survival model
(model 5); thus, all survival models (models 1–5)
were conducted using 30,703 patients. Similarly,
all univariable associations were tested using the
30,703 patients.

As a sensitivity analysis, we identified a subsample
of patients (n ¼ 25,152) with at least 3 K measure-
ments in the last year before dialysis initiation (1-
year prelude). Methods similar to the main analysis
were used for defining K variability quartiles (cate-
gorized as <0.30, 0.30 to <0.40, 0.40 to <0.52,
and $0.52 mEq/l), covariates, outcomes, statistical
models, and subgroup analyses; however, covariates
such as K intercept and slope, cumulative length of
hospitalizations, BMI, medication use, average eGFR,
Kidney International Reports (2021) 6, 366–380
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and K measurements were measured over the 1-year
prelude period. A 2-sided P value <0.05 was used
as a threshold of statistical significance for all sta-
tistical analyses. All analyses were conducted in SAS
Table 1. Patient characteristics overall and by potassium variability quar

Characteristic All (n [ 34,167) <0.31 (n [ 8421) 0.31--<

Age (yr) 67 (10.8) 70.4 (10.7)

Sex (male) 33,495 (98) 8304 (98.6) 8

Race

White 23,309 (68.2) 6251 (74.2) 5

Black 9885 (28.9) 1983 (23.6) 2

Other 971 (2.8) 186 (2.2)

Marital status (married) 18,846 (55.1) 5473 (64.9) 4

Smoking status

Current 12,247 (35.8) 2789 (33.1) 2

Past 11,351 (33.2) 2440 (28.9) 3

Never 10,544 (30.8) 3188 (37.8) 2

Comorbidities

Congestive heart failure 21,722 (63.6) 5283 (62.7) 5

Diabetes mellitus 26,488 (77.5) 6231 (73.9) 6

Peripheral vascular disease 18,099 (52.9) 4703 (55.8) 4

Cerebrovascular disease 15,011 (43.9) 3986 (47.3) 3

Lung disease 19,135 (56) 4770 (56.6) 4

Peptic ulcer disease 3702 (10.8) 986 (11.7)

Hypertension 33,848 (99.1) 8325 (98.8) 8

Ischemic heart disease 22,790 (66.7) 5803 (68.9) 5

Malignancies 10,651 (31.2) 3046 (36.2) 2

Liver disease 6736 (19.7) 1553 (18.4) 1

Paraplegia/hemiplegia 1981 (5.8) 447 (5.3)

Anemia 28,743 (84.1) 6958 (82.6) 7

Atrial fibrillation 8318 (24.3) 2332 (27.7) 2

Charlson Comorbidity Index 5 (3, 7) 5 (3, 7)

Cumulative length of hospitalization 9 (1, 24) 4 (0, 14)

Body mass index (kg/m2) 29.6 (6.2) 29.9 (6.1)

Vascular access type

Arteriovenous fistula 6949 (20.3) 1659 (19.7) 1

Arteriovenous graft 805 (2.4) 186 (2.2)

Catheter 23,313 (68.2) 5704 (67.7) 5

Other 165 (0.5) 35 (0.4)

Missing 2935 (8.6) 837 (9.9)

Medications

RAAS inhibitors 26,898 (78.7) 5945 (70.6) 6

SPS 9003 (26.3) 419 (4.9) 1

Loop diuretics 27,320 (79.9) 5592 (66.4) 7

K-sparing diuretics 5620 (16.4) 874 (10.4) 1

Digoxin 2447 (7.2) 531 (6.3)

Beta blockers 28,321 (82.9) 6208 (73.7) 7

Calcium channel blockers 27,020 (79.1) 6050 (71.8) 7

Insulin 18,220 (53.3) 3217 (38.2) 4

Oral hypoglycemics 13,224 (38.7) 3067 (36.4) 3

Trimethoprim 1859 (5.4) 391 (4.6)

Azole antifungals 8113 (23.7) 1427 (16.9) 1

Calcineurin inhibitors 694 (2.0) 129 (1.5)

Mannitol 160 (0.5) 11 (0.1)

Suxamethonium 30 (0.1) 1 (0.01)

NSAID 249 (0.7) 42 (0.5)

Pentamidine 19 (0.1) 2 (0.02)

Kidney International Reports (2021) 6, 366–380
Enterprise guide v7.1 (SAS Institute, Cary, NC) and
STATA/MP Version 15 (STATA Corporation, College
Station, TX). The study was approved by the Insti-
tutional Review Boards of the Memphis and Long
tiles over the 3-year prelude
Potassium variability quartiles (mEq/l)

P value0.41 (n [ 8757) 0.41--<0.52 (n [ 8695) ‡0.52 (n [ 8294)

67.1 (10.7) 65.7 (10.6) 64.8 (10.4) <0.0001c

591 (98.1) 8489 (97.6) 8111 (97.8) <0.0001d

<0.0001d

869 (67.0) 5743 (66.1) 5446 (65.7)

637 (30.1) 2700 (31.1) 2565 (30.9)

251 (2.9) 251 (2.9) 283 (3.4)

832 (55.2) 4520 (51.9) 4021 (48.4) <0.0001d

<0.0001d

733 (31.2) 2647 (30.4) 2375 (28.6)

078 (35.1) 3288 (37.8) 3441 (41.5)

938 (33.5) 2753 (31.7) 2472 (29.8)

466 (62.4) 5542 (63.7) 5431 (65.5) 0.0001d

795 (77.6) 6825 (78.5) 6637 (80.0) <0.0001d

483 (51.2) 4505 (51.8) 4408 (53.2) <0.0001d

789 (43.3) 3678 (42.3) 3558 (42.9) <0.0001d

791 (54.7) 4855 (55.8) 4719 (56.9) 0.02d

893 (10.2) 910 (10.5) 913 (11.0) 0.008d

702 (99.4) 8616 (99.1) 8205 (98.9) 0.002d

798 (66.2) 5764 (66.3) 5425 (65.4) <0.0001d

711 (30.9) 2538 (29.2) 2356 (28.4) <0.0001d

644 (18.8) 1730 (19.9) 1809 (21.8) <0.0001d

464 (5.3) 507 (5.8) 563 (6.8) <0.0001d

323 (83.6) 7390 (84.9) 7072 (85.3) <0.0001d

073 (23.7) 2015 (23.2) 1898 (22.9) <0.0001d

5 (3, 7) 5 (3, 7) 5 (3, 7) <0.0001e

7 (1, 20) 11 (3, 28) 16 (4, 38) <0.0001e

29.8 (6.1) 29.4 (6.2) 29.1 (6.6) <0.0001d

<0.0001d

946 (22.2) 1823 (20.9) 1521 (18.3)

207 (2.4) 224 (2.6) 188 (2.3)

802 (66.3) 5920 (68.1) 5887 (70.9)

39 (0.5) 40 (0.5) 51 (0.6)

763 (8.7) 688 (7.9) 647 (7.8)

905 (78.9) 7132 (82.0) 6916 (83.4) <0.0001d

307 (14.9) 2784 (32.0) 4493 (54.2) <0.0001d

070 (80.7) 7446 (85.6) 7212 (86.9) <0.0001d

261 (14.4) 1587 (18.3) 1898 (22.9) <0.0001d

543 (6.2) 672 (7.7) 701 (8.5) <0.0001d

254 (82.8) 7526 (86.6) 7333 (88.4) <0.0001d

001 (79.9) 7096 (81.6) 6873 (82.9) <0.0001d

478 (51.1) 5206 (59.9) 5319 (64.1) <0.0001d

344 (38.2) 3406 (39.2) 3407 (41.1) <0.0001d

423 (4.8) 489 (5.6) 556 (6.7) <0.0001d

957 (22.4) 2308 (26.5) 2421 (29.2) <0.0001d

174 (1.9) 202 (2.3) 189 (2.3) 0.0007d

35 (0.4) 57 (0.7) 57 (0.7) <0.0001d

3 (0.03) 10 (0.1) 16 (0.2) 0.0002d

56 (0.6) 75 (0.9) 76 (0.9) 0.004d

0 8 (0.09) 9 (0.1) 0.005d

(Continued on following page)
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Table 1. (Continued) Patient characteristics overall and by potassium variability quartiles over the 3-year prelude

Characteristic All (n [ 34,167)

Potassium variability quartiles (mEq/l)

P value<0.31 (n [ 8421) 0.31--<0.41 (n [ 8757) 0.41--<0.52 (n [ 8695) ‡0.52 (n [ 8294)

Penicillin G 87 (0.2) 6 (0.07) 18 (0.2) 29 (0.3) 34 (0.4) <0.0001d

Laboratory parametersa

K intercept (mEq/l) 4.47 (0.42) 4.38 (0.37) 4.43 (0.40) 4.50 (0.43) 4.58 (0.46) <0.0001d

K slope (mEq/l/yr) 0.008 (0.14) 0.01 (0.07) 0.01 (0.12) 0.005 (0.15) 0.002 (0.18) <0.0001d

Last K valueb (mEq/l) 4.49 (0.66) 4.42 (0.52) 4.47 (0.59) 4.52 (0.69) 4.58 (0.82) <0.0001d

K variability (mEq/l) 0.41 (0.31–0.52) 0.25 (0.19–0.28) 0.36 (0.34–0.39) 0.46 (0.44–0.49) 0.60 (0.56–0.68) <0.0001e

eGFR (ml/min per 1.73 m2) 22.9 (17.2–32.9) 23.9 (17.5–37) 22.1 (16.6–31.6) 22.4 (17.1–31.2) 23.2 (17.5–32.3) <0.0001e

Number of K measurements 19 (8, 35) 8 (5, 16) 19 (9, 31) 26 (13, 44) 30 (16, 56) <0.0001e

eGFR, estimated glomerular filtration rate; K, potassium; NSAID, nonsteroidal anti-inflammatory drugs; RAASi, renin angiotensin-aldosterone system inhibitor; SPS, Na-polystyrene
sulphonate.
aMeasured over the 3-year prelude period.
bPotassium value closest to dialysis.
cP value for 1-way analysis of variance.
dP value for the c2 test.
eP value for the Kruskal-Wallis test.
Data presented as n (%), mean (SD), or median (25th–75th) unless otherwise noted.
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Beach VA medical centers, with exemption from
informed consent.

RESULTS

Patient Characteristics

The mean (SD) age of the sample was 67.0 (10.8) years;
98% were men, 29% were black, 77% were diabetic,
and 64% had CHF. The median (25th–75th) 3-year
prelude eGFR was 22.9 (17.2–32.9) ml/min/1.73 m2.
Patients had a median number (25th–75th) of K mea-
surements of 19 (8–35), with a mean (SD) 3-year prelude
K intercept of 4.47 (0.42) mEq/l, K slope of 0.008 (0.14)
mEq/l/yr, and median (25th–75th) K variability of 0.41
(0.31–0.52). Overall and K variability quartile-wise
patient characteristics are presented in Table 1.
Compared with the lowest K variability quartile (<0.31
mEq/l), those in the higher K variability quartiles were
more likely to be younger, black, and current smokers;
have a higher prevalence of some comorbidities (CHF,
diabetes, hypertension, liver diseases, paraplegia/
hemiplegia, and anemia); have longer cumulative
length of hospitalization, a higher 3-year prelude mean
K intercept, and more frequent K measurements but
lower 3-year prelude median eGFR levels; and were
more likely to be treated by medications that affect K
levels (all P values <0.05).

Association of K Variability Before Dialysis

Initiation With All-Cause Mortality

There were a total of 5362 (15.7%) all-cause deaths
during the 6-month period after dialysis initiation
(crude mortality rate ¼ 345.9/1000 patient-years; 95%
confidence interval [CI], 336.6–355.4). In the uni-
variable analyses, a significantly lower all-cause mor-
tality risk was observed for quartiles 2 and 3 versus
quartile 1 (hazard ratios [HRs] [95% CI; P value] for
quartiles 2 through 4 [vs. quartile 1], 0.88 (0.81-0.95;
370
0.001), 0.87 (0.80-0.94; 0.0007), and 0.94 (0.87-1.02;
0.15); Supplementary Table S1). Figure 1a shows the
multivariable-adjusted HRs of all-cause mortality
associated with each K variability quartile. In the fully
adjusted multivariable model (model 5), an incremen-
tally higher risk of death with each higher K variability
quartile was observed with a significantly higher risk
associated with quartile 3 and quartile 4 of K variability
(adjusted HRs [95% CI, P value] for quartiles 2 through
4 [vs. quartile 1], 1.08 [0.99–1.17, 0.07], 1.09 [1.01–1.19,
0.04], and 1.14 [1.03–1.25, 0.008] in model 5; Figure 1a,
Supplementary Table S2). In subgroup analyses, higher
K variability was associated with higher all-cause
mortality across the subgroups, with significantly
greater contributions of K variability to all-cause
mortality among those <65 years (vs. $65 years;
Figure 2a, Supplementary Table S3). Higher levels of K
variability appeared to be monotonically associated
with higher all-cause mortality within 6 months after
dialysis initiation in spline analyses (Supplementary
Figure S4). K variability was not associated with mor-
tality within 1 month after dialysis initiation; however,
among those surviving the first month after dialysis
initiation, the association between K variability and
mortality was qualitatively similar to results observed
for the total 6-month follow-up period (Supplementary
Tables S4 and S5).

For the sensitivity analysis (K variability over 1-
year prelude) in the univariable survival analyses, a
significantly higher all-cause mortality risk was
observed for quartiles 3 and 4 versus quartile 1 (HRs
[95% CI, P value] for quartiles 2 through 4 [vs.
quartile 1], 1.01 [0.91–1.12, 0.89], 1.22 [1.10–1.35,
0.0001], and 1.34 [1.21–1.48, <0.0001];
Supplementary Table S6). Multivariable-adjusted re-
sults (model 5) for the sensitivity analysis were
qualitatively similar to the main analysis for the
Kidney International Reports (2021) 6, 366–380



Figure 1. The association of potassium variability quartiles over the 3-year prelude with 6-month (a) all-cause mortality and (b) cardiovascular
mortality after dialysis initiation. The models are as follows: model 1, adjusted for potassium intercept and slope over the 3-year prelude; model
2, adjusted for variables in model 1 plus demographics (age, sex, race, marital status, and smoking status); model 3, adjusted for variables in
model 2 plus comorbidities (congestive heart failure, peripheral vascular disease, cerebrovascular disease, lung disease, peptic ulcer disease,
paraplegia/hemiplegia, anemia, atrial fibrillation, hypertension, ischemic heart disease, diabetes, liver disease, and malignancies), Charlson
Comorbidity Index, cumulative length of hospitalizations, body mass index over the 3-year prelude period, and vascular access type; model 4,
adjusted for variables in model 3 plus medications (renal-angiotensin-aldosterone system inhibitors, Na-polystyrene sulphonate, loop diuretics,
potassium-sparing diuretics, digoxin, beta blockers, calcium channel blockers, insulin, oral hypoglycemics, calcineurin inhibitors, trimethoprim,
and azole antifungals); and model 5, adjusted for variables in model 4 plus the average eGFR and number of potassium measurements over the
3-year prelude period. CI, confidence interval.
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association of K variability with all-cause mortality for
the 6-month follow-up period (adjusted HRs [95% CI, P
value] for quartiles 2 through 4 [vs. quartile 1], 1.05
[0.94–1.17, 0.39], 1.15 [1.03–1.28, 0.01], and 1.16 [1.04-
1.29; 0.009] in model 5; Figure 3a, Supplementary
Table S7) and for the 1-month and 1- to 6-month
follow-ups (Supplementary Tables S8 and S9). Sub-
group analyses showed similar patterns of association as
the main analysis, with significantly greater contribu-
tions of K variability quartiles to all-cause mortality
within 6 months after dialysis initiation among
those <65 years (Figure 4a, Supplementary Table S10).
Higher levels of K variability appeared to be
Kidney International Reports (2021) 6, 366–380
monotonically associated with higher all-cause mortality
within 6 months after dialysis initiation in the spline
analyses (Supplementary Figure S5).

Association of K Variability Before Dialysis

Initiation With Cardiovascular Mortality

A total of 1915 (5.6%) cardiovascular deaths were observed
during the6-month follow-upperiodafterdialysis initiation
(crude mortality rate 124.6/1000 patient-years; 95% CI,
119.1–130.4). In the univariable analyses, a significantly
lower cardiovascular mortality risk was observed for
quartile 3 versus quartile 1 (subhazard ratios [SHRs] [95%
CI, P value] for quartiles 2 through 4 [vs. quartile 1], 0.90
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Figure 2. Adjusted hazard/subhazard ratios (95% confidence interval) of 6-month (a) all-cause mortality and (b) cardiovascular mortality after
dialysis initiation with potassium variability quartiles over the 3-year prelude in selected subgroups. The model adjusted for potassium intercept and
slope over the 3-year prelude, demographics (age, sex, race, marital status, and smoking status), comorbidities (congestive heart failure, peripheral
vascular disease, cerebrovascular disease, lung disease, peptic ulcer disease, paraplegia/hemiplegia, anemia, atrial fibrillation, hypertension,
ischemic heart disease, diabetes, liver disease, and malignancies), Charlson Comorbidity Index, cumulative length of hospitalizations, body mass
index over the 3-year prelude period, vascular access type, medications (renal-angiotensin-aldosterone system inhibitor [RAASi], Na-polystyrene
sulphonate, loop diuretics, potassium sparing diuretics, digoxin, beta blockers, calcium channel blockers, insulin, oral hypoglycemics, calcineurin
inhibitors, trimethoprim, azole antifungals), average estimated glomerular filtration rate (eGFR), and number of potassium measurements over the 3-
year prelude period. CHF, congestive heart failure; DM, diabetes mellitus; K, potassium; SPS; Na-polystyrene sulphonate. (Continued)
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[0.79–1.03, 0.13], 0.84 [0.73–0.95, 0.008], and 0.88 [0.77–
1.00, 0.88], Supplementary Table S11). Figure 1b shows the
multivariable-adjusted SHRs of cardiovascular mortality
associated with each K variability quartile. In the final
multivariable adjusted model (model 5), there was no sig-
nificant difference in the risk of death with each higher K
372
variability quartile (adjusted SHRs [95% CI, P value] for
quartiles 2 through 4 [vs. quartile 1], 1.08 [0.94–1.23, 0.29],
0.99 [0.86–1.14, 0.86], and 0.99 [0.85–1.16, 0.95] in model 5;
Figure 1b, Supplementary Table S12). Subgroup analyses
showed no significant interactions (Figure 2b,
Supplementary Table S13). No significant association was
Kidney International Reports (2021) 6, 366–380



Figure 2. (Continued)
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observed between K variability treated as a continuous
variable and cardiovascular mortality within 6 months
after dialysis initiation in spline analysis (Supplementary
Figure S6). K variability was not associated with cardio-
vascular mortality within 1 month after dialysis initiation
(Supplementary Table S14). Among those surviving the
first month after dialysis initiation, the association be-
tween K variability and mortality was qualitatively
similar to results observed for the total 6-month follow-up
period (Supplementary Table S15).

For the sensitivity analysis (K variability over the
1-year prelude) in the univariable analyses, a
Kidney International Reports (2021) 6, 366–380
significantly higher cardiovascular mortality risk was
observed for quartile 3 and 4 versus quartile 1 (SHRs
[95% CI, P value] for quartiles 2 through 4 [vs.
quartile 1], 1.08 [0.91–1.29, 0.39], 1.28 [1.08–1.52,
0.004], and 1.30 [1.10–1.54, 0.002], Supplementary
Table S16). Multivariable-adjusted results (model 5)
for the sensitivity analysis (K variability over 1-year
prelude) showed a statistically significantly higher
risk of cardiovascular mortality associated with
quartile 3 (vs. quartile 1) and a similar but not sta-
tistically significantly higher risk for quartile 2 and
quartile 4 (adjusted SHRs [95% CI, P value] for
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Figure 3. The association of potassium variability quartiles over the 1-year prelude with 6-month (a) all-cause mortality and (b) cardiovascular
mortality after dialysis initiation. The models are as follows: model 1, adjusted for potassium intercept and slope over a 1-year prelude; model 2,
adjusted for variables in model 1 plus demographics (age, sex, race, marital status, smoking status); model 3, adjusted for variables in model 2
plus comorbidities (congestive heart failure, peripheral vascular disease, cerebrovascular disease, lung disease, peptic ulcer disease, para-
plegia/hemiplegia, anemia, atrial fibrillation, hypertension, ischemic heart disease, diabetes, liver disease, malignancies), Charlson comorbidity
index, cumulative length of hospitalizations, and body mass index over the 1-year prelude period, and vascular access type; model 4, adjusted
for variables in model 3 plus medications (renal-angiotensin-aldosterone system inhibitors, Na-polystyrene sulphonate, loop diuretics, potas-
sium sparing diuretics, digoxin, beta blockers, calcium channel blockers, insulin, oral hypoglycemics, calcineurin inhibitors, trimethoprim, azole
antifungals); and model 5, adjusted for variables in model 4 plus average estimated glomerular filtration rate and number of potassium mea-
surements over the 1-year prelude period. CI, confidence interval.
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quartiles 2 through 4 [vs. quartile 1], 1.13 [0.95–1.36,
0.17], 1,24 [1.03–1.48, 0.02], and 1.18 [0.98–1.42, 0.08]
in model 5; Figure 3b, Supplementary Table S17).
Similar results were observed among those surviving
the first month after dialysis initiation with a signifi-
cantly higher risk of cardiovascular mortality associ-
ated with higher K variability (quartile 3 and 4 [vs.
quartile 1], Supplementary Table S18). K variability
did not have any association with 1-month cardio-
vascular mortality (Supplementary Table S19). Sub-
group analyses showed significantly greater
contributions of K variability to cardiovascular mor-
tality among those with #11 K measurements (vs. >11
K measurements) over the 1-year prelude (Figure 4b,
374
Supplementary Table S20). When treated as a contin-
uous variable in spline analyses, K variability showed
a similar association (compared with quartile assess-
ment) with cardiovascular mortality within 6 months
after dialysis initiation (Supplementary Figure S7).
DISCUSSION

In this large nationally representative cohort of 34,167 US
veterans with advanced NDD-CKD transitioning to dial-
ysis, we observed that higher K variability before dial-
ysis was associated with higher all-cause mortality but
not cardiovascular mortality within 6 months after dial-
ysis initiation. K variability when assessed over a 1-year
Kidney International Reports (2021) 6, 366–380



Figure 4. Adjusted hazard/subhazard ratios (95% confidence interval) of 6-month (a) all-cause mortality and (b) cardiovascular mortality after
dialysis initiation with prelude potassium variability quartiles over the 1-year prelude in selected subgroups. The model adjusted for potassium
intercept and slope over the 1-year prelude, demographics (age, sex, race, marital status, and smoking status), comorbidities (congestive heart
failure, peripheral vascular disease, cerebrovascular disease, lung disease, peptic ulcer disease, paraplegia/hemiplegia, anemia, atrial fibril-
lation, hypertension, ischemic heart disease, diabetes, liver disease, and malignancies), Charlson Comorbidity Index, cumulative length of
hospitalizations, body mass index over the 1-year prelude period, vascular access type, medications (renal-angiotensin-aldosterone system
inhibitor [RAASi], Na-polystyrene sulphonate, loop diuretics, potassium sparing diuretics, digoxin, beta blockers, calcium channel blockers,
insulin, oral hypoglycemics, calcineurin inhibitors, trimethoprim, and azole antifungals), average estimated glomerular filtration rate (eGFR), and
the number of potassium measurements over the 1-year prelude period. CHF, congestive heart failure; DM, diabetes mellitus; K, potassium; SPS,
Na-polystyrene sulphonate. (Continued)

AA Dashputre et al.: Potassium Variability and Mortality CLINICAL RESEARCH
prelude before dialysis initiation showed similar patterns
of association with all-cause mortality. However, higher
K variability quartiles over the 1-year prelude were
associated with a higher risk of cardiovascular mortality
within 6 months after dialysis initiation, possibly
Kidney International Reports (2021) 6, 366–380
because of change in the nature of K variability (e.g.,
higher hyperkalemia risk), a closer follow-up period
before dialysis initiation to assess K variability, and more
interventions to correct dyskalemias. K variability
had no association with all-cause mortality and
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Figure 4. (Continued)
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cardiovascular mortality within 1 month of dialysis
initiation, which might be due to the different causes and
numbers of deaths experienced by patients within this
period. Among those who survived the first month after
dialysis initiation, the association of K variability with
all-cause and cardiovascular mortality was similar to the
associations observed over the complete 6-month follow-
up period for both evaluation periods.
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Our results align with certain aspects of previous
studies that have assessed the association of K vari-
ability with survival outcomes, almost exclusively in
peritoneal dialysis patients.10–12 Studies in peritoneal
dialysis patients (cumulative N ¼ 1243) found a higher
risk of all-cause and cardiovascular mortality with
higher K variability.10,11 In the only study examining
patients with moderate to advanced NDD-CKD who
Kidney International Reports (2021) 6, 366–380
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initiated RAASi, K variability had no association with
all-cause mortality.12 However, in that study, K vari-
ability was measured using only 2 K measurements
(from RAASi initiation to first follow-up) within 90
days of initiation, thus lacking sufficient longitudinal
evaluation. In the present study, we assessed vari-
ability using at least 3 K measurements (median [25th–
75th]: 19 [8–35]), and we studied the association of K
variability and mortality in an advanced NDD-CKD
population transitioning to dialysis, a unique popula-
tion that experiences high rates of mortality immedi-
ately after dialysis initiation.17 Thus, our study extends
the current literature to this unique population and
demonstrates the potential prognostic impact of K
variability before dialysis initiation (especially K vari-
ability measured in the last year before dialysis initia-
tion) on survival after dialysis initiation.

Impaired K handling by progressively impaired kid-
neys1,2; the common use of RAASi (hyperkalemic effect)
and diuretics (hypokalemic effect) in CKD and other
medications affecting plasma K levels33,34; and a high
prevalence of comorbidities such as hypertension, car-
diovascular disease, and diabetes4 can be hypothesized as
some reasons that contribute to a high K variability in
patients with NDD-CKD. Of note, in our study, an
overwhelming majority of patients had hypertension, the
prevalence of diabetes and CHF was higher in the higher
K variability quartiles, and the use of RAASi and di-
uretics was high and increased with higher K variability
quartiles. Plasma K levels are typically maintained within
a narrow range, ensuring the maintenance of resting cell
membrane potential and neuromuscular and car-
diomuscular excitability.35 Given the characteristics
of our population, patients could be expected to
experience more frequent or more sudden plasma K
fluctuations, thus inducing frequent dyskalemias
(hypo-/hyperkalemias) and greater dyskalemia-
associated adverse events like arrhythmias, stroke,
heart attack, hypertension, and sudden cardiac
deaths.6,33,34,36 The association of K variability with
all-cause mortality can be potentially explained by the
development of such cardiovascular events and their
further downstream consequences like hypotension
and myocardial ischemia, eventually increasing the
risk of mortality.6,37 However, the increased all-cause
mortality risk of higher K variability did not translate
to an association with higher cardiovascular mortality
risk in our cohort. This might be observed due to
survivorship bias wherein those with higher K vari-
ability and experiencing associated cardiovascular
mortality might not survive until dialysis initiation,
which could not be assessed because of the nature of
our cohort. Second, cardiovascular events like ar-
rhythmias and sudden cardiac deaths are immediate
Kidney International Reports (2021) 6, 366–380
effects of dyskalemias; therefore, K fluctuations may
not be associated with more distant cardiovascular
deaths. Another potential explanation for the observed
associations is that higher K variability may be a sur-
rogate marker of patient characteristics or processes that
portend poorer prognosis. For example, frequent
changes in dosage or discontinuation of pharmacologic
agents affecting K levels (e.g., RAASi) might increase K
variability and also lead to adverse future outcomes.38

The practical utility of our results is primarily in
helping the prediction of future clinical outcomes in
incident dialysis patients whose predialysis clinical and
laboratory characteristics can be used to prognosticate
their mortality and thus aid in decision making about
best treatment modalities.39,40 K variability is not readily
available/assessed in clinical practice, but the increasing
use of electronic health care systems and the development
of artificial intelligence-based prognostic algorithms will
make its incorporation in prognostic models increasingly
available. The direct clinical utility of these results is less
clear. The quantification of K variability requires a
potentially extended amount of time (e.g., 1–3 years in
our study) with assessment of outcomes after the evalu-
ation period. The pathophysiological effects of dyskale-
mias (such as sudden cardiac death) are expected to
manifest acutely; hence, distant outcomes associated with
higher K variability may not signal mechanistic links, and
it is unclear if the correction or prevention of K fluctua-
tions can result in better outcomes. Nevertheless, it is
possible that the higher K variability detected during the
evaluation period in our study is an early manifestation of
subsequent dyskalemic events, which could potentially
be prevented with early interventions. The plausibility of
this hypothesis will need to be tested in future studies.

Limitations

Our study results need to be interpreted in light of
several limitations. First, we used observational data;
hence, we cannot infer causality but only associations.
Second, the cohort consisted of predominantly male US
veterans (98%); thus, the results may not be general-
izable to women or a broader general population.
Third, we used predialysis assessment of K variability
in a cohort of incident dialysis patients, and, thus,
survivorship bias prevents us from extending any of
our conclusions to patients with advanced CKD who
did not reach end-stage renal disease. Nevertheless,
assessments of variability (of any kind) require the
availability of serial measurements; hence, an evalua-
tion period that is unaffected by deaths or other
dropouts is often specified in studies assessing vari-
ability. Finally, because of the nature of the study, we
cannot eliminate the possibility of unmeasured con-
founders such as a lack of data about dietary K intake.
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In conclusion, a higher K variability before dialysis
initiation (especially K variability measured in the last
year before dialysis initiation) is associated with an
increased risk of mortality in incident dialysis patients.
Thus, higher K variability may serve as a clinically
important prognostic marker for future clinical events.
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