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Abstract: (1) Background: Germline variants in BRCA1/BRCA2 genes explain about 20% of hereditary
breast/ovarian cancer (HBOC) cases. In the present paper, we aim to identify genetic determinants
in BRCA-negative families from the South of Tunisia. (2) Methods: Exome Sequencing (ES) was
performed on the lymphocyte DNA of patients negative for BRCA mutations from each Tunisian
family with a high risk of HBOC. (3) Results: We focus on the canonical genes associated with HBOC
and identified missense variants in DNA damage response genes, such as ATM, RAD52, and RAD54;
however, no variants in PALB2, Chek2, and TP53 genes were found. To identify novel candidate
genes, we selected variants harboring a loss of function and identified 17 stop-gain and 11 frameshift
variants in genes not commonly known to be predisposed to HBOC. Then, we focus on rare and
high-impact genes shared by at least 3 unrelated patients from each family and selected 16 gene
variants. Through combined data analysis from MCODE with gene ontology and KEGG pathways,
a short list of eight candidate genes (ATM, EP300, LAMA1, LAMC2, TNNI3, MYLK, COL11A2, and
LAMB3) was created. The impact of the 24 selected genes on survival was analyzed using the TCGA
data resulting in a selection of five candidate genes (EP300, KMT2C, RHPN2, HSPG2, and CCR3) that
showed a significant association with survival. (4) Conclusions: We identify novel candidate genes
predisposed to HBOC that need to be validated in larger cohorts and investigated by analyzing the
co-segregation of selected variants in affected families and the locus-specific loss of heterozygosity to
highlight their relevance for HBOC risk.

Keywords: BRCA1/BRCA2 genes; hereditary breast/ovarian cancer; exome sequencing; germline
variants; candidate genes; pathogenic variants

1. Introduction

Breast cancer (BC) is the most prevalent cancer worldwide and the second leading
cause of death by cancer in women [1,2]. In Tunisia, the incidence of BC is about 3092 new
cases/year affecting more often young women (<35 years old), and with more aggressive
clinical behavior [3,4]. Ovarian cancer (OC) is less frequent with an incidence of 284 new
cases/year [5].

Hereditary breast and ovarian cancer (HBOC) is an inherited disorder in which the
risk of breast and ovarian cancers is higher compared to the general population. About 5 to
10% of breast cancers and 10 to 15% of ovarian cancers can be attributed to the hereditary
form [6]. Two major predisposition genes, BRCA1 and BRCA2, account for approximately

Genes 2022, 13, 1296. https://doi.org/10.3390/genes13081296 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes13081296
https://doi.org/10.3390/genes13081296
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0002-5744-0328
https://doi.org/10.3390/genes13081296
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes13081296?type=check_update&version=2


Genes 2022, 13, 1296 2 of 17

25% of HBOC cases worldwide [7,8]. Heterozygote individuals for pathogenic variants
in BRCA1 have a 72% and 44% increased risk of BC and OC, respectively, by the age of
80 years. Concerning BRCA2, the risk of BC and OC at the age of 80 years was 69% and
17%, respectively [9]. Individuals harboring pathogenic variants in these genes also have
an increased risk for developing other malignancies, including melanoma, prostate, and
pancreatic cancer, suggesting an important role for these genes in cancer predisposition [10].

It was well documented that the frequency of BRCA mutations varies between popu-
lations [11]. In a recent meta-analysis that included 14 Arab countries, the authors reported
that the prevalences of BRCA1 and BRCA2 germline mutations were 11% and 17%, re-
spectively [12]. In Tunisia, the prevalence of BRCA1/BRCA2 deleterious mutations varies
from 25% to 18% in HBOC patients [13–16]. In our recent study, using NGS, we found
that among 113 patients, 18 (15.9%) harbored germline BRCA mutations [17]. Further-
more, recurrent mutations have been reported in the North African population, such as
BRCA2-c.1310_1313delAAGA [17–20]. However, some mutations are likely to be specific
to the Tunisian population and more precisely to patients from the North-East, such as
BRCA1-c.211dupA [13–15,21], or from the South, such as the BRCA1-c.5030_5033delCTAA
and the BRCA2-c.17_20 delAAGA mutations [17].

Despite the extensive research, the genetic etiology of a high percentage of HBOC cases
(more than 50%) remains unknown [22,23]. Thanks to next-generation sequencing (NGS), in
particular, whole-exome sequencing (WES) or targeted-exome sequencing (ES) approaches,
researchers have managed to identify novel variants predisposed to HBOC [24,25]. How-
ever, only few WES or ES studies have been conducted on Tunisian families. The study
conducted by Hamdi et al. investigated, by WES, two affected sisters from a BRCA-negative
Tunisian family with a high risk of HBOC, and showed that MMS19, DNHA3, POLK, and
KATB6 were interesting breast cancer candidate genes [26]. Furthermore, a novel truncat-
ing mutation in the RCC1 gene was found in Tunisian breast cancer patients using WES
associated with genotyping, suggesting that RCC1 is a novel breast cancer susceptibility
gene [16].

In the present study, we apply ES to Tunisian HBOC families with an unknown genetic
etiology to identify novel candidate genes predisposed to HBOC. The findings are also
explored for cancer patients in The Cancer Genome Atlas (TCGA).

2. Materials and Methods
2.1. Materials

We selected 113 families with a high risk of HBOC between 2016–2019 in the Medical
Oncology Unit of the CHU Habib Bourguiba of Sfax, Tunisia. The criteria used to include
patients in the present study were: (1) the presence of at least three related first- or second-
degree breast cancer cases; (2) breast cancer in young patients aged less than 35 years, (3) the
presence of male breast cancer among first- or second-degree patients, (4) the presence of
at least two cases of breast or ovarian cancer, regardless of age, and at least one case of
prostate cancer in a related first- or second-degree patient. Among the 113 patients, 95 were
negative for germline BRCA mutations, and we selected 8 unrelated patients with a high
risk of HBOC for exome sequencing (ES).

2.2. DNA Extraction and Exome Sequencing

Genomic DNA was isolated from 0.2 mL of peripheral blood obtained from patients
from each selected family using the “QIAamp DNA Blood Mini Kit” (Qiagen), following
the manufacturer’s instructions. Isolated DNA was quantified by Qubit 3.0 fluorometric
quantitation (Thermo Fisher Scientific, USA). An aliquot of 50 ng of DNA was used to
prepare the library according to the manufacturer’s instructions (Illumina, USA). Exome
capture was performed using the Trusight One Sequencing Panel Kit that provides com-
prehensive coverage of 4800 disease-associated genes (Illumina, USA). The samples were
subjected to paired-end sequencing using the Illumina Miseq platform with a 151-bp read
length using a MiSeq Reagent Kit v3 (Illumina, USA).
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Exome DNA sequences were mapped to their location in the building of the human
genome (hg19/b37) using the Burrows–Wheeler Aligner (BWA) package. The total PF read
was 17,979,434 and the Q30 was 90.3%. The mean region coverage depth was 110.9 and the
30X depth of sequencing coverage was 89.5%. Data were analyzed using the BaseSpace
Variant Interpreter (https://basespace.illumina.com (accessed on 6 November 2019).

2.3. Functional Annotation and Variants’ Prioritization

To identify pathogenic variants (PVs), we applied the following criteria: (i) variants
found in a heterozygous state; (ii) variants located in coding region, 5′-3′UTR, splicing;
(iii) rare variants with a minor allele frequency (MAF) ≤ 0.01% in both 1000 genomes
and gnomAD; and (iv) missense variants predicted as damaging by SIFT (scores < 0.05),
PolyPhen-2 (score > 0.9) and CADD tool (score ≥ 25).

Global Network is built from all the mutated genes reported in our study and protein–
protein interaction (PPI) data using Cytoscape software and related plugin “STRING” [27,28].
To detect densely connected regions and clusters in the “Global Network”, a plug-in of
Cytoscape v3.9.0 called Molecular Complex Detection (MCODE) was used. Those mod-
ules/clusters are often expected to be protein complexes and parts of pathways. The criteria
settings were set as follows: node score cutoff = 0.1; K-core = 2; and fluff and degree of
cutoff = 2. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses were realized through another Cytoscape plugin: “ClueGo” [29].

2.4. Survival Analysis

The survival analysis of 8988 breast cancer samples from 13 studies was performed
using the cBioPortal (https://www.cbioportal.org/ platform (accessed on 26 August
2021) [30,31]. The log-rank test of the SPSS 20 version was used to determine the sig-
nificance of the differences in the overall survival (OS) and disease-free survival (DFS)
probabilities between the 2 groups; p < 0.05 was considered as statically significant.

3. Results
3.1. Clinical Characteristics of BRCAness Patients

In our previous work, we screened by NGS all exons of the BRCA1 and BRCA2
genes in 113 Tunisian patients with HBOC. Deleterious BRCA mutations were identified in
18 patients (15.9 %) [17]. Among the 95 BRCA-negative cases, we selected eight patients
from unrelated families with a high risk of HBOC. The selected families had several affected
members with various types of cancers, such as breast, ovarian, prostate, thyroid, and
melanoma. We also mentioned that two families (BCF2 and BCF46) had cases of male breast
cancer (Figure 1, Table 1). The ages of the selected patients were between 24 and 55 years
and two cases presented triple-negative breast cancer (TNBC). The clinical characteristics
of the patients are summarized in Table 1.
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Table 1. Clinico-pathological parameters of patients selected for exome sequencing.

Patients Age at
Diagnosis

Family
History of

BC/OC

Family
History of

Other
Cancers

Histological
Type

SBR
Grade

Tumor
Size TNM ER PR Her-2 Therapy Follow-Up

BC-
F2P10 30

9BC,
2MBC,
3OC

- IDC II 2 I - - - TAM, FEC,
TXT, RT NA

BC-F7P1 37 3BC, 1OC Prostate IDC II 3 IIB + + - MCA, TAM,
FEC, TXT, RT

Metastasis after
3 y of BC. Died

with the disease
progression

BC-
F10P6 27 7BC Endometrial IDC III 4.5 IIA + + - MCA, TAM,

FEC, TXT, RT
Remission with

OS of 1 y

BC-
F11P4 30 4BC, 1OC Prostate IDC III 5.3 IIB - - - FEC, RT Remission with

OS of 16 y

BC-
F12P3 49 4BC, 1OC Prostate

Melanoma IDC II 4.5 IIB + - - MCA, TAM,
RT

Remission with
OS of 6.5 y

BC-
F16P5 24 5BC,

1BC/Thy Thyroid IDC II 2.5 IIA + + - TAM, FEC,
TXT, RT

Remission with
OS of 4.5 y

BC-
F42P5 30 3BC,

2BC/OC Prostate IDC II 4 IIB + + - MCA, TAM,
FEC, C75, RT NA

BC-
F46P5 55 4BC,

1MBC - IDC II 2 IA + + - TAM, FEC,
TXT, RT

Remission with
OS of 1 y

3.2. Exome Sequencing and Data Analysis

Exome sequencing (ES) was performed for eight BRCAness patients to identify can-
didate genes associated with the malignancy. Before applying filters, the total number of
variants varied between 5607 and 7802 and the heterozygous variants varied between 3413
and 5248. A workflow showing the different steps performed during the analysis of the
ES data is presented in Figure 2a. Missenses mutations were the most frequently found
compared to frameshift, stop-gain/loss, or splicing (Figure 2b). Splicing variants included
donor site, acceptor site, as well as splicing region in intron. For example, the BC-F12 family
had the highest number of splicing variants as we identified one splice acceptor variant
(c.197-2A>G) in the AIF gene and one splice variant donor (c.4636+1G>T) in the SLX4 gene;
both are classified as “likely pathogen” in ClinVar. The other splicing variants are located
in the intronic splicing region.

In the first step of our analysis, we focused on the canonical genes predisposed to
HBOC, such as ATM, PALB2, Chek2, CDH1, PTEN, and TP53, but no variants in these
genes were detected except for two missenses in the ATM gene, c.1810C>T; p.Pro604Ser
and c.6115G>A; p.Glu2039Lys, which were identified in two patients from the BC-F15 and
BC-F16 families diagnosed with stage-II BC at the ages of 30 and 27 years, respectively.

Evidently, the c.6115G>A variant has been reported as likely pathogenic in the ClinVar
database and as VUS according to the ACMG classification, while the c.1810C>T variant
has been reported as presenting conflicting interpretations of pathogenicity in ClinVar.
Then, we focused on genes traditionally associated with breast/ovarian cancer or other
malignancies, and identified 23 missenses, 2 splicing, and 2 UTR variants mainly affecting
genes involved in DNA repair, such as RAD51, RAD54B, PMS1, FANCD2, XRCC1, and
BLM (Table 2). The same RAD52 variant (c.661C<G, p.Gln221Glu) was identified in two
unrelated patients (BC-F10P6 and BC-F16P5; Table 2). About 50% of the identified variants
were classified as VUS according to ClinVar and Varsome (Table 2).
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Table 2. List of genes commonly associated with hereditary breast/ovarian cancer identified by
exome sequencing in each patient.

Patients Gene rs Variation MAF Consequence ClinVar

BC-F2P10

PMS1 778185859 c.278G>A; p.Arg93His 0.000062 VUS NR

RAD54B 35973866 c.247A>G; p.(Ser83Gly) 0.0408 VUS NR

ATM 587781352 c.2492A>G; p.(Asp831Gly) 0.000016 VUS R

RAD51D c.413A>G; p.(Asn138Ser) 0.000756 VUS R

EP300 1268191227 c.3976G>A; p.(Val1326Ile) P R

MUTYH 140118273 c.1544C>T; p.(Ser515Phe) 0.0234 B R

BC-F7P1

ATM 2227922 c.1810C>T; p.(Pro604Ser) 0.0317 LB R

RAD52 867412462 c.1048G>A;
p.(Asp350Asn)) 0.000018 VUS NR

RAD54B 116312454 c.2639A>G; p.(Asp880Gly) 0.0043 LB R

BC-F10P6

FANCE 768911543 c.298T>A; p.(Ser100Thr) 0.00072 VUS R

PMS2 c.706-4dup VUS NR

EXO1 4150001 c.2276G>A; p.Gly759Glu 0.0338 LB R

RAD52 4987206 c.661C>G; p.Gln221Glu 0.0325 B R

BC-F11P4 RAD51D NR c.*1056C>T NA LB NR

BC-F12P3

FANCL 770368316 c.288G>T; p.Lys96Asn 0.000416 VUS R

POLL 61757734 c.169C>T; p.Arg57Trp 0.0026 VUS NR

POLH 35675573 c.986C>T; p.Thr329Ile 0.017 LB R

BC-F16P5

ATM 864622251 c.6115G>A; p.Glu2039Lys 0.000033 VUS R

DCC 138724679 c.527A>G; p.Asn176Ser 0.0005 VUS R

BARD1 61754118 c.2212A>G; p.Ile738Val 0.027 LB R

XRCC1 143917286 c.818C>T; p.Pro273Leu 0.00311 LB R

RAD52 4987206 c.661C>G; p.Gln221Glu 0.0325 B R

RAD51D NR c.*106G>A NA LB NR

BC-F42P5
BLM 141503266 c.254G>C; p.Arg85Thr 0.01 LB R

PMS2 63750055 c.1711C>A; p.Leu571Ile 0.02 LB NR

BC-F46P5
EP300 c.227C>G; p.Ser76Cys VUS

RAD54B 2919661 cc.289G>C; p.Asp97His 0.018 VUS NR

VUS: variant of unknown significance, LB: likely benign, B: benign, R: reported, NR: not reported, NA: not
available, MAF: minor allele frequency, *: stop codon.

3.3. Identification of Potential Gene Candidates Predisposed to HBOC

In the next step of our analysis, we selected genes harboring loss-of-function (LoF)
variants (stop-gain, splice site, and frameshift), because these variant types have an impact
on protein function and are commonly linked to disease susceptibility (Richards et al.,
2015). In this step, we identified 17 stop-gain and 11 frameshift variants affecting genes
not commonly known as to be predisposed to HBOC (Table 3). Interestingly, among the
high-risk variants listed, two frameshift variants were recurrent in unrelated patients,
namely, c.1200delA; p.Lys400AsnfsTer15 in BHMT found in BC-F7P1 and BC-F10P6, and
c.2626-2629delTTTG; p.Phe876LysfsTer16 in SH3PXD2B shared by BC-F2P10 and BC-F42P5
patients (Table 3). In addition, several stop-gain variants were identified in different genes,
such as APOBEC3B, CERKL, SUMG1, and PIKFYVE (Table 3).
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Table 3. List of genes with heterozygous rare stop-gain and frameshift variants identified in each
patient. Bold characters indicate common variants in unrelated patients.

Patient Gene rs Variation MAF Consequence ClinVar

BC-F2P10

PCK2 753706965 c.577c>T; p.Arg193* 0.000415 P R

PDE6B NR c.125_126insTGCGA;
p.Asp43Alafs*109 NA LP NR

PDE6B NR c.120_121insGAGGA;
p.Pro41Glufs*111 NA LP NR

IL31RA 144337484 c.700C>T; p.Arg234* 0.000163 LP NR

TTC37 768215813 c.1708C>T; p.Arg570* 0.000054 LP NR

SH3PXD2B 551498843 c.2626_2629del;
p.Phe876Lysfs*16 0.005594 P R

BC-F7P1

ZnHIT6 NR c.1114G>T; p.Glu372* NA LP NR

BHMT 763726268 c.1200del; p.Lys400Asnfs*15 0.000746 LP R

MEGF10 NR c.122C>A; p.Ser41* NA LP NR

BC-F10P6

BHMT 763726268 c.1200del; p.Lys400AsnfsTer15 0.000746 R

Cyp3A5 28383469 c.92dup; p.Leu32Thrfs*3 0.011928 LP NR

ALOX15 781725832 c.316del; p.Leu106* 0.000229 LP NR

SMUG1 2233919 c.7C>T; p.Gln3* 0.054463 LB NR

BC-F11P4 MAN1B1 NR c.383T>G; p.Leu128* NA LP NR

BC-F12P3

PIKFYVE NR c.914C>A; p.Ser305* NA LP NR

IL3 373251020 c.337C>T; p.Arg113* 0.000056 LP NR

TSSK4 200353859 c.895A>T; p.Lys299* 0.002882 LP NR

APOBEC3B 199817842 c.166C>T; p.Arg56* 0.002176 LP NR

BC-F16P5

CERKL 121909398 c.847C>T; p.Arg283* 0.000538 P R

PIKFYVE NR c.573C>A; p.Cys191* NA LP NR

TM4SF19 NR c.273T>A; p.Cys91* NA LP NR

ALG1 NR c.297_298del; p.Val100Phefs*37 NA LP NR

BC-F42P5
SH3PXD2P 551498843 c.2626_2629del;

p.Phe876Lysfs*16 0.00559 R

HMSD 559021231 c.105_120del; p.Asp35Glufs*49 0.013616 LP NR

BC-F46P5 SPG11 NR c.3235G>T; p.Gly1079* NA LP NR

LP: likely pathogen, P: pathogen, LB: likely benign, R: reported, NR: not reported, NA: not available, MAF: minor
allele frequency. *: Stop codon, fs: frameshift.

Furthermore, we performed the global network analysis to identify the protein–protein
interaction (PPI) between proteins deduced from the ES data. Out of a total of 474 can-
didate genes, 336 PPIs were identified (Figure 3). Through a functional analysis based
on MCODE, we selected the five most significant clusters that were involved in protein
complexes and signaling pathways (Figure 4). The list of genes in each cluster is available
in the Supplementary Materials, Table 1. Furthermore, gene ontology (GO) and the Ky-
oto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the selected genes
were performed, and we found that they were mainly involved in extracellular matrix
organization, actin-mediated cell contraction, response to metal ions, cellular response to
nitrogen compounds, and cellular homeostasis (Figure 5a). Additionally, the results of the
KEGG pathway analysis show that gene candidates are distributed in the ECM-receptor
interaction, calcium signaling pathway, PI3K-Akt signaling pathway, ABC transporters,
GnRH secretion, HIF-1 signaling pathway, apoptosis, focal adhesion, glucagon signaling
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pathway, and AMPK signaling pathway (Figure 5b). The combined analyses from MCODE
with gene ontology and KEGG pathways led us to retain a short list of eight candidate genes
(ATM, EP300, LAMA1, LAMC2, TNNI3, MYLK, COL11A2, and LAMB3). The selected genes
were involved in at least 2 among the selected top 10 pathways, and the corresponding
variants displayed significant Sift and PolyPhen scores.
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On the other hand, we selected gene variants that were shared by at least 3 patients
from unrelated families and listed the 16 common genes: KMT5A, PRKRA, VCX3A, RHPN2,
CCR3, CHRNA4, EFHC1, FBN3, KMT2C, PRCD, UMPS ABCC2, FOXP2, HSPG2, TMEM135,
and TTN (Figure 6). It is interesting to note that we found the same variant in the KMT5A
(c.995T>C), RHPN2 (c.1225+5G>A), CCR3 (c.727A>G), and KMT2C (c.2645T>C) genes in at
least three unrelated patients. Based on the TCGA data, the most frequently altered gene in
breast cancer was KMT2C (12%), and the TTN gene (17%) in ovarian cancer. A table listing
the variants identified in the selected gene candidates is available in the Supplementary
Materials (Supplementary Table S2).
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3.4. Survival Analysis

To investigate the impact of the retained genes on the survival rates, we used the
TCGA data including 14 studies conducted between 2012 to 2020 to associate the 25 can-
didate genes with overall survival (OS) and disease-free survival (DFS). Kaplan–Meier
curves showed that only 11 genes among 25 were significantly associated with OS or
DFS (Figure 7). With concerns of genes related to BOC as reported by the literature data,
significant associations were observed between the survival rate and EP300 (P logrank:
0.0205), KMT2C (P logrank: 0.0314), RHPN2 (P logrank: 0.0364), HSPG2 (P logrank: 0.016),
and CCR3 (P logrank: 0.0244).
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4. Discussion

Next-generation sequencing (NGS) technology has revolutionized the clinical ap-
proach for genetic testing in oncology. Whole-exome sequencing (WES) is increasingly
used for screening HBOC patients for clinical applications and precision therapy [25,32,33].
Indeed, WES as well as multi-gene panels are powerful methods for the identification of
pathogenic variants (PVs) in known HBOC-related genes and novel variants that might
be associated with the disease [24,34–38]. Evidently, only few exome sequencing studies
were conducted on BRCAness Tunisian families compared to other populations. As an
example, Riahi et al. identified by WES a novel frameshift mutation in the RCC1 gene
encoding the regulator of chromosome condensation 1. This variant (c.1067_1086del19)
has exclusively been found in Tunisian breast cancer patients [16]. Other candidate genes
(MMS19, DNHA3, POLK, and KATB6) were identified in a BRCAness family from the North
of Tunisia [26]. More recently, and using WES, Mighri et al. identified a rare exonic VUS on
an RAD50 gene (c.3647C>G, p.Ala1216Gly), a breast cancer susceptibility gene in a patient
originating from the North-Eastern Tunisian region [21].

In our previous study, we reported that the contribution of the predisposing BRCA1/
BRCA2 genes was involved in 15.9 % of HBOC patients originating from the South of
Tunisia [17]. To further investigate the genetic landscape of HBOC, we performed ES on
eight BRCA-negative patients from unrelated families. Initially, we focused on the canonical
genes predisposed to HBOC, such as ATM, PALB2, Chek2, CDH1, PTEN, and TP53, but
no PV was found, except for two missense variants in the ATM gene that is involved in
DNA double-strand-break repair mechanisms and considered as a moderate-penetrance
gene [39,40]. Missense variants were identified in DNA repair genes, such as RAD51,
RAD54B, PMS1, XRCC1, and BLM. Moreover, we noticed that the same variant in RAD52
(Gln221Glu) was found in two patients from unrelated families.
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After investigating known breast cancer genes, we extended our analysis to select rare
loss-of-function variants, and we identified 11 frameshift and 17 stop-gain variants affecting
genes involved in various cellular functions but not traditionally associated with HBOC.
Nevertheless, among these 28 genes, 10 have been previously reported as implicated
in breast/ovarian carcinogenesis. Among these variants, the frameshift in SH3PXD2B
(c.2626-2629delTTTG) and BHMT (c.1200delA) genes were found in two unrelated patients.
SH3PXD2B (Tks4) is a scaffold protein that plays a critical role in the invasion and metastasis
of various types of tumors as hepatocarcinoma, melanoma, and breast cancer [41]. In fact,
it was well demonstrated that cancer cells develop invadopodia and podosomes composed
of structural proteins, such as cortactin, Tks4, and Tks5, to facilitate their migration across
the endothelial layer to invade distant tissues [42].

Betaine-homocysteine S-methyltransferase (BHMT) catalyzes the synthesis of methio-
nine from betaine and homocysteine. A previous study showed that choline and betaine
are tightly associated with breast carcinogenesis [43,44].

In addition to frameshift variants, stop-gain variants were also identified in several
genes involved in various cellular functions, such as the APOBEC3B (Apolipoprotein B
mRNA-editing enzyme, catalytic polypeptide-like) belonging to the family of APOBEC
enzymes that are strong mutagenic factors in human cancer [45,46]. APOBEC3B has been
described as a strong driver of breast cancer and associated with aggressive clinical and
pathological features [47–49]. A stop-gain variant (c.1166C>T) in APOBEC3B was identified
in a BC-F12P6 patient, diagnosed with BC at 47 years of age, and with 3 BC cases and 2 OC
cases in this family.

On the other hand, we performed functional analysis based on MCODE and selected
the top five significant clusters that are involved in protein complexes and signaling
pathways. Furthermore, the gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis showed that the selected genes were mainly involved
in extracellular matrix organization, actin-mediated cell contraction, the PI3K-Akt signaling
pathway, ABC transporters, and HIF-1 signaling pathway. Finally, we selected a list of eight
candidate genes (ATM, EP300, LAMA1, LAMC2, TNNI3, MYLK, COL11A2, and LAMB3)
that were involved in at least two among the selected pathways and showing damaging
effects predicted by Sift and PolyPhen tools. LAMA1, LAMC2, and LAMB3 belong to the
laminin family, extracellular glycoproteins that are essential components of membranes
and involved in tissue differentiation, progression, and invasion [50,51].

In this study, we identified LAMA1 missense variants in three unrelated patients
and noted that the BC-F7P1 patients with metastatic BCs harbored missense mutations in
LAMA1, LAMC2, and LAMAC5 genes.

Furthermore, we focused on gene variants that were shared by at least three patients
from unrelated families and listed the following genes: KMT5A, PRKRA, VCX3A, RHPN2,
CCR3, CHRNA4, EFHC1, FBN3, KMT2C, PRCD, UMPS ABCC2, FOXP2, HSPG2, TMEM135,
and TTN. We noticed that only a few of them have been previously described as related to
breast/ovarian cancer, such as KMT2C, FOXP2, RHPN2, and HSPG2.

Regarding genes related to breast/ovarian cancer, we paid particular attention to those
harboring the same variant shared by at least three unrelated patients. For instance, the
variant c.2645T>C; p.Ile882Thr in the KMT2C gene was shared by four unrelated patients;
three were ER+. This variant was not reported in ClinVar and classified as VUS in Varsome.

The H3K4 methyltransferase KMT2C is a critical regulator of hormone-dependent
ERα activity [52]. Additionally, KMT2C is one of the most frequently mutated genes in ER-
positive breast cancer and its loss disrupts proliferation through estrogen and conversely
promotes tumor outgrowth in hormone-depleted conditions [52]. Based on the TCGA data
(https://www.cbioportal.org/ (accessed on 26 August 2021)), we showed that KMT2C
was significantly associated with overall survival in patients with BC. Similarly, Gala et al.
reported that patients with KMT2C mutations had a lower progression-free survival rate
on hormone deprivation therapy than patients with wild-type KMT2C, suggesting the
probable contribution of KMT2C to BC hormone resistance [52].

https://www.cbioportal.org/
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RHPN2, a RhoA-binding protein, promotes malignant cell proliferation in ovarian
cancer by activating the JAK2/STAT3 signaling pathway [53]. Here, we identified in four
unrelated patients the same splicing variant (c.1225+5G>A) that could impact the splicing
as predicted by in silico tools.

FOXP2, a member of the forkhead box transcription factor family, is suggested to
regulate the progression of cancer cells through the epithelial–mesenchymal transition [54].
Keeping in mind that the variation in the 3′UTR region plays an important role in gene
regulation [55,56], we identified in three unrelated patients, a variant in the 3′UTR region
that could affect the expression of FOXP2, but further investigations are needed to better
understand the effect of these variants.

HSPG2, also known as perlecan, is a heavily glycosylated protein component of the
extra-cellular matrix (ECM) that has been previously observed as part of the surface of
malignant cells of various cancers [57]. A strong correlation between HSPG2 expression
and survival of TNBC patients was reported, suggesting that HSPG2 might be a promising
therapeutic target in metastatic TNBC [58].

Cytokines are a protein family of regulatory factors derived from tumors and their
environmental components that contribute to the growth, invasion, and metastasis of
cancer. CCR3, a receptor of the C-C motif chemokine ligand (CCL), is identified to be one
of the major factors that is involved in the progression and metastasis of some human
tumors [59–62]. Recently, Yamaguchi et al. demonstrated that the CCL5–CCR3 interaction
contributed to tumor progression suggesting that this axis may be an important target to
improve the prognosis of breast cancer patients [63].

Finally, we associated the 24 selected genes with patients survival using TCGA data.
Kaplan–Meier curves showed that EP300, KMT2C, RHPN2, HSPG2, and CCR3 genes
correlated significantly with overall or disease-free survival rates.

5. Conclusions

In the present study, we selected 24 candidate genes form Tunisian patients with
HBOC through functional and bioinformatic analyses of exome sequencing data. Regarding
their role in carcinogenesis and their contribution to key signaling pathways, we retained
a short list of five potential new candidate genes associated with HBOC in non-BRCA
mutation carriers, namely, EP300, KMT2C, RHPN2, HSPG2, and CCR3. Nevertheless,
further studies based on co-segregation analyses of affected families and the locus-specific
loss of heterozygosity are needed to highlight the relevance of these candidate genes for
HBOC risk.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13081296/s1, Table S1: List of genes included in each
of the 5 clusters identified by MCODE analysis, Table S2: List of 24 gene variants selected by
integrative analyses (MCODE, GO, and KEGG) and identified in at least 3 unrelated patients from
the selected families.
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P Pathogen
PF Pass Filter
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PVs Pathogenic Variants
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