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Decoding the regulatory landscape of melanoma
reveals TEADS as regulators of the invasive cell
state
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Transcriptional reprogramming of proliferative melanoma cells into a phenotypically distinct

invasive cell subpopulation is a critical event at the origin of metastatic spreading. Here

we generate transcriptome, open chromatin and histone modification maps of melanoma

cultures; and integrate this data with existing transcriptome and DNA methylation profiles

from tumour biopsies to gain insight into the mechanisms underlying this key reprogramming

event. This shows thousands of genomic regulatory regions underlying the proliferative and

invasive states, identifying SOX10/MITF and AP-1/TEAD as regulators, respectively.

Knockdown of TEADs shows a previously unrecognized role in the invasive gene network and

establishes a causative link between these transcription factors, cell invasion and sensitivity

to MAPK inhibitors. Using regulatory landscapes and in silico analysis, we show that

transcriptional reprogramming underlies the distinct cellular states present in melanoma.

Furthermore, it reveals an essential role for the TEADs, linking it to clinically relevant

mechanisms such as invasion and resistance.
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M
elanoma is one of the most aggressive cancers and,
although investigation into the genetic underpinnings
of melanoma have led to promising therapeutics,

clinical outcome remains poor, with most patients rapidly
acquiring resistance1. The difficulty in eradicating melanoma
lies in its high degree of heterogeneity and plasticity. Melanoma
comprises multiple phenotypically distinct subpopulations of
cancer cells, all with a potentially variable sensitivity to therapy2.
However, the mechanisms evoking this heterogeneity are largely
uncharacterized.

Gene expression profiling of cultured melanoma cell lines3–5

identified two types of cultures characterized by very distinct
transcriptomes. Samples of the ‘proliferative’ type express high
levels of the melanocyte-lineage-specific transcription factor (TF)
MITF6 as well as SOX10 and PAX3 (ref. 7,8). In contrast, samples
of the ‘invasive’ type express low levels of MITF, high levels of the
epithelial-to-mesenchymal transition (EMT)-related TF ZEB1
(ref. 5,9) and genes involved in TGF-� signalling. It has been
proposed that melanoma invasion is triggered by the appearance
of clusters of MITF-low/ZEB1-high cells at the edge of the
primary lesions5. These cells acquire migratory properties
allowing them to invade the dermis, enter the blood stream and
eventually contribute to metastatic dissemination. Interestingly,
MITF-positive cells are also found at metastatic sites, suggesting
an ability of melanoma cells to switch back and forth between
these transcriptional states. While several models have been
proposed to explain these observations, the initial event always
involves a transition in the primary tumour from a proliferative
to an invasive cell state. This (reversible) transition is likely
caused by dynamic transcriptional changes driven by differential
chromatin architecture, and changes in the activity of
master regulators and gene regulatory networks4,10. In support
of this, no ‘metastasis-driving’ mutations have thus far
been found in primary and metastatic tumours from the same
patient.

Importantly, it has been proposed that distinct
transcriptional cell states characterized by variable MITF
or SOX10 activity influence resistance to MAPK pathway
inhibitors1,11. Interestingly, enforcing MITF expression
‘pushes’ cells towards a different cell state12, which could then
be exploited therapeutically. This illustrates how a better
understanding of the molecular processes underlying the
proliferative-to-invasive transition can be used to overcome
drug resistance and improve current therapies. As these
processes are largely driven by changes in gene-regulatory
networks, new insight may be gained by genome-wide mapping
and decoding of the chromatin landscapes and the master
regulators that control the distinct transcriptomic states in
melanoma.

In this study, we first provide evidence that the cell
states described in vitro are also recapitulated in microarray
and RNA-seq data sets across tumour biopsies. Next,
we map the transcriptome and chromatin landscape of
10 short-term melanoma cultures and find thousands of
genomic regulatory regions underlying the proliferative and
invasive states. Using an integrated approach for motif and
track discovery, we confirm SOX10/MITF as master regulators
of the proliferative gene network and identify AP-1/TEAD as
new master regulators of the invasive gene network. We
experimentally validate chromatin interactions upstream of
SOX9 by 4C-seq, and we test the TEAD-predicted network
using knockdown (KD) experiments. These experiments
establish a previously unrecognized role for the TEADs
in the invasive gene network and reveal a causative link
between these TFs, cell invasion and sensitivity to MAPK
inhibitors.

Results
Proliferative and invasive gene signatures in tumour samples.
The invasive and proliferative transcriptional cell states have thus
far only been described in vitro. We asked whether the tran-
scriptome of these two distinct cell populations could be observed
in clinical samples. To this end, we assembled three compendia
of publicly available melanoma gene expression data
(Supplementary Table 1). Unsupervised clustering revealed that
each of the three compendia clustered into three similar-sized
clusters, two exhibiting features reminiscent of the proliferative
and invasive cell states and a third exhibiting an immune-related
signature presumably due to the presence of a high number of
tumour-infiltrating lymphocytes (Fig. 1a,b and Supplementary
Figs 1 and 2). Accordingly, the gene signatures derived for both
the proliferative and invasive clusters show very significant
overlap with the Hoek3 gene signatures representing curated gene
lists for proliferative and invasive melanoma states in culture
(Supplementary Fig. 3a). As expected, samples in the invasive
cluster have high expression of genes identified as miR-200
targets or implicated in TGF-� and JNK signalling, cell migration,
stemness and EMT (Fig. 1b). Genes that are upregulated in this
cluster include ZEB1, SNAI1 and TGFB2. In contrast, genes
with high expression in the proliferative sample cluster are
significantly enriched for cell cycle, proliferation and melanocytic
processes. Genes upregulated in this cluster include known
markers of the melanocyte lineage and melanoma such as SOX10,
MITF and PAX3 (Supplementary Fig. 3b). Consistently, when the
entire gene expression pattern of a sample is visualized using self-
organizing maps (SOMs)13 some of the invasive and proliferative
samples show remarkable similarities (Fig. 1c and Supplementary
Note 2). In addition, these transcriptomes are highly similar to
the transcriptomes of the previously defined invasive and
proliferative melanoma cultures. These observations indicate
that the clinical samples cluster into distinct groups and that these
represent cellular subpopulations in either the proliferative or the
invasive cell state. However, whether mutations or transcriptional
reprogramming forms the driver of these subpopulations is a
matter of debate. Our analysis of the exome re-sequencing data
from the same TCGA cohort did not identify specific
enrichments for mutations in BRAF, NRAS or any of the other
well-established melanoma driver genes (n¼ 116) in either of the
clusters (Supplementary Note 1). This observation favours the
possibility that these very distinct cell states are driven largely by
transcriptional reprogramming rather than by common genetic
mutations.

Together, these data indicate that, despite the fact that all of
these samples originate from different human patients with very
divergent mutational profiles, most tumours fall into one of these
two dominant states. Note that when analysing the immune-
infiltrated cluster separately, the samples also show a tendency
towards either of these two states, suggesting that the immune
signature may, at least partly, represent a layer that confounds the
underlying melanoma states (Supplementary Fig. 4).

Changes in the chromatin landscape underlie cellular states.
The above findings support in vitro short-term cultures as a valid
model system that can be exploited to decipher the chromatin
landscapes and regulatory networks underlying these two tran-
scriptional cell states. Therefore, we profiled the transcriptome
and chromatin landscape of 10 short-passage melanoma cultures
previously described14 and one classical melanoma cell line
(SK-MEL-5; see accession code for data availability15). The
transcriptome of all 11 samples was compared with publicly
available gene expression data from melanoma cultures and with
the clusters of tumour biopsies described above using SOMs
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(Fig. 1c). This comparison indicated that cultures MM047
and MM099 are in an invasive transcriptional state, while
the remaining harbour a transcriptome reminiscent of
the proliferative state (Supplementary Table 2). This
correspondence was further supported by a significant
enrichment of the invasive and proliferative gene signatures
from Hoek et al.3, and by the high expression of invasive marker
genes such as ZEB1, SOX9 and WNT5A (Supplementary Figs 3, 5
and6). In contrast, these samples have undetectable SOX10 and
MITF, while the other nine samples express high SOX10 and
MITF levels (Fig. 2, Supplementary Figs 3a and 7). Using these
data we established a new gene signature for each state, consisting
of 772 and 643 genes for the proliferative and invasive
phenotypes, respectively (Supplementary Data 1). Comparing

our data with the Hoek gene signatures3,16 identified 100% of
Hoek’s proliferative genes upregulated in our proliferative
samples, while 100% of Hoek’s invasive genes are upregulated
in our invasive samples (Supplementary Fig. 3a). Importantly, the
cells with an invasive transcriptional profile do exhibit enhanced
capabilities to invade in a Matrigel assay compared with the cell
lines with a transcriptional proliferative state (Supplementary
Fig. 8). In addition, similar to the results obtained using the
TCGA cohort, the proliferative versus invasive split is not
correlated with any specific mutations in known melanoma driver
genes, such as BRAF (Supplementary Fig. 9). Again, this is
consistent with the view that acquisition of the invasive cell state
is likely to be a consequence of transcriptional reprogramming
rather than being driven by any specific genetic alterations.
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Figure 1 | Proliferative and invasive cellular states in melanoma biopsies and cultures. (a) Non-negative matrix factorization on TCGA-SKCM RNA-seq

data results in three sample clusters. (b) Functional characteristics of two states revealed by GSEA on the invasive and the proliferative meta-rankings

integrated across SKCM RNA-seq and two microarray compendia, using various sources of functional data (L) Literature; (R) Reactome; (KEGG) KEGG

pathways; (GO) Gene Ontology; (T) TargetScan. (c) Expression heatmap for TCGA samples showing a core subset of invasive and proliferative gene

signatures (the GSEA overlap between the Hoek signatures and our ranking). The samples are ranked according to MITF expression, and the expression

levels of both MITF and ZEB1 are indicated on top of the heatmap. Below the heatmap are mosaic plots of several samples. Each mosaic shows the

expression of all variable genes in a 25� 26 grid, whereby each field contains one or more genes. Genes and clusters with similar expression profiles across

the cohort are placed close to each other in the grid. The mosaics show a high similarity among the invasive samples, and a strong difference between

invasive and proliferative samples. SKCM is RNA-seq data from TCGA; Hoek et al.16, is microarray data from melanoma cultures; Compendium A and B are

melanoma microarray data from GEO (see Supplementary Table 1 for accession numbers used).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7683 ARTICLE

NATURE COMMUNICATIONS | 6:6683 | DOI: 10.1038/ncomms7683 | www.nature.com/naturecommunications 3

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


The two expression profiles we identified likely arise through
gene regulation by cis-regulatory modules. Therefore, we next
investigated active cis-regulatory regions underlying the invasive
and proliferative transcriptional states using open chromatin
profiling (FAIRE-seq17) and ChIP-seq against two important
histone modifications representing activated (H3K27ac) and
repressed (H3K27me3) chromatin marks. Interestingly, the
invasive samples are clustered separately on the basis of their
chromatin activity profiles, similarly to the clustering on the basis

of RNA-seq data. For example, the H3K27ac and FAIRE-seq
tracks indicate an active and open SOX10 promoter, respectively,
in the nine proliferative samples with high SOX10 expression. In
contrast, the SOX10 promoter lacks activating marks, but carries
repressing H3K27me3 marks in the two invasive cultures (Fig. 2).
This reciprocity is a genome-wide property since the two invasive
samples clearly segregate from the other samples in a
multidimensional scaling unsupervised analysis of the H3K27ac
or FAIRE-seq peaks (but not H3K27me3; Fig. 3a). An overview of
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Figure 2 | Transcriptome and epigenome profiling in 11 melanoma cell cultures. RNA-seq, FAIRE-seq and ChIP-seq against H3K27Ac and H3K27me3

across 10 short-passage melanoma cultures and one melanoma cell line SK-MEL-5. The SOX10 gene shows high expression and its upstream regions

contain high H3K27ac and FAIRE but low H3K27me3 signal in the nine proliferative (blue) samples. In the two invasive (orange) samples, there is no SOX10

expression, no H3K27Ac and FAIRE peaks but high H3K27me3 peaks. Upper panel shows one invasive sample (MM047) and one proliferative sample

(MM011). Lower panels showing zoom in around the promoter region of SOX10 with tracks for all 11 samples for each of the four data types. Vertical axes

represent normalized coverage for each data track. Arrows indicate regions of interest that are different between proliferative and invasive states. Other

genes are illustrated in Supplementary Figs 4 and 5 and in the UCSC Genome Browser using our Melanoma Track Hub (see Methods).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7683

4 NATURE COMMUNICATIONS | 6:6683 | DOI: 10.1038/ncomms7683 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


the entire chromatin landscape, using SOMs based on 55,919
genomic enhancers and promoters, indicates that the difference
between the two cellular states is widespread and involves
thousands of regulatory regions (Fig. 3b and Supplementary
Note 2). Using two complementary computational approaches we
predicted 13,453 and 6,669 regions to have a regulatory role in the
invasive and proliferative states, respectively (Supplementary
Fig. 10, see Methods). Interestingly, when comparing enhancers
active in the proliferative transcriptional state to 110 different sets
of tissue-specific enhancers identified by the expression of
enhancer-RNA18, melanocyte is identified as the cell type
with the highest overlap of enhancers. In contrast, the invasive
melanoma enhancers overlap most strongly with enhancers
specifically active in skin fibroblasts, which are known to harbour
a mesenchymal regulatory programme (Supplementary Table 3).

Next, we investigated whether there is a global correlation
between active chromatin and gene expression. Although the

assignment of active promoters and enhancers to candidate target
genes is not a trivial task, an analysis of (differential) H3K27ac,
FAIRE and H3K27me3 peaks around the transcription start site
(TSS) of their nearest differentially expressed genes (o20 kb
around TSS) indicates a strong correlation between both layers
(Fig. 3c,d and Supplementary Fig. 11). Particularly, the TSS of
invasive genes shows strong regulatory activity in the invasive
samples, but low activity in the proliferative samples, while the
repressive H3K27me3 mark shows the opposite (Fig. 3e and
Supplementary Fig. 12). These data confirm that these specific
chromatin marks are robust predictors of the transcriptional
activity in a specific cellular state.

We then asked whether the invasive and proliferative
chromatin landscapes are also reflected in in vivo tumour
biopsies. Hence, we used both the RNA-seq and DNA
methylation data from TCGA. The TSSs of the differentially
expressed genes between invasive and proliferative sample
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Figure 3 | Global changes in the chromatin landscape between proliferative and invasive states. (a) Multidimensional scaling using RNA-seq, H3K27ac
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clusters are correlated with active chromatin in the corresponding
in-house samples (Supplementary Fig. 13). Remarkably, differ-
entially methylated regions between the invasive and proliferative
clinical samples are correlated as well with both gene expression
and active and repressed chromatin in the melanoma in-house
samples (Supplementary Figs 14 and 15). Particularly, regions
that are significantly hypomethylated in the proliferative group
(that is, likely active in the tumour) are also activated (H3K27ac
and FAIRE) in the proliferative cultures, but not in the invasive
cultures (Fig. 3f). Likewise, enhancers that are only active in the
invasive cultures are significantly hypomethylated in the invasive
clinical samples (Supplementary Fig. 16). These findings show
that the regulatory landscape can reflect transcriptional pro-
gramme changes, thus forming an interesting basis to search for
causal TFs driving these distinct regulatory programmes.

Sequence analysis and ChIP reveal regulators for each state.
Having identified differentially active regulatory regions and
differentially expressed genes between the invasive and pro-
liferative states, we searched for TFs contributing to the chro-
matin and transcriptional cell state distinction. We employed a
large collection of public data sets to search for TFs, of which the
DNA-binding motif and/or ChIP-seq tracks significantly overlap
with active regulatory regions (see Methods). Within the 6,669
regulatory regions activated in the proliferative cell state, the
SOX10 motif is the most significantly enriched and is predicted to

target 2,437 of these regions (36.5%; Fig. 4a and Supplementary
Fig. 17a). Moreover, one of its highest scoring target enhancers
(position 292 out of 1,223,024 regions in the genome) is located
immediately upstream of the SOX10 gene itself, confirming earlier
observations that SOX10 is autoregulatory19. Another SOX10
candidate target region (ranked 4,089) is located upstream of the
MITF locus, confirming the possibility that SOX10 directly
regulates MITF20.

The second most enriched motif is an E-box motif with 1,520
predicted target regions (22.8%). Since MITF binds DNA through
E-boxes, we assessed whether these enhancers represent bona fide
MITF target sites. The first ranked ChIP-seq track found is the one
against an overexpressed haemagglutinin (HA)-tagged MITF21,
indicating a highly significant correlation between the E-box/MITF
predictions and the ChIP-seq data (hypergeometric adjusted P-
valueo1.0e� 05, Normalized Enrichment Score¼ 31.2). This
analysis enabled us to define an optimal set of direct MITF
targets having both the motif and a ChIP-seq peak, and contains
776 regulatory regions (Fig. 4b and Supplementary Fig. 17).
Interestingly, one of the predicted MITF-binding sites is located
upstream of the SOX10 gene, indicating the existence of a direct
cross-activation between MITF and SOX10. In addition, we
performed a ChIP-seq experiment against endogenous MITF in
two of the proliferative cell lines (MM011 and MM031),
confirming that MITF ChIP peaks are enriched among the
predicted E-box enhancers, and that the SOX10 gene is likely a
direct target of MITF (Fig. 4c and Supplementary Fig. 17).
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The above results confirm that our approach for inferring
master regulators using the regulatory landscape is valid as it
identified the known master regulators of the proliferative state.
Therefore, we repeated this analysis for the 13,453 regulatory
regions activated in the invasive cell state, since no pronounced
master regulators have been postulated for this state.
Interestingly, the AP-1 motif is most significantly enriched, being
present in 4,354 (32%) active regulatory regions (Fig. 4d and
Supplementary Fig. 18). To validate these predictions we
performed track discovery and found as first ranked track the
ChIP-seq of FOSL2, an AP-1 family member, obtained from the
neuroblastoma SK-N-SH cell line, strongly indicating that
the predicted regions are bona fide AP-1-binding sites (Fig. 4e).
Even more intriguing is the detection of the DNA-binding motifs
of the TEAD factors, known effectors of the Hippo signalling
pathway22, as the second most enriched motif cluster in the
invasive cell state (Supplementary Fig. 18). Eleven variants of the
TEAD motifs are enriched, together yielding 1,501 (11%)
predicted TEAD target regions transcriptionally active in the
invasive state (Fig. 4d and Supplementary Fig. 18). Importantly,
we confirmed that these regulatory regions are likely direct TEAD
targets as they are strongly enriched for TEAD ChIP peaks; in
particular, TEAD4 ChIP-seq tracks from SK-N-SH and A549 cell
lines ranked first (Fig. 4f).

In conclusion, these analyses allowed the identification of TFs
that regulate a large number of promoters and enhancers, thereby
shedding light on how transcriptional reprogramming can
distinguish two distinct melanoma cell states. Most intriguing is
the fact that our data allow us to concretely put forward two
putative candidate master regulators for the invasive state.

Mapping and validating the proliferative and invasive networks.
Deciphering functional gene regulatory networks underlying
cellular states requires an integration, or ‘projection’ of the cis-
regulatory landscape on the differentially expressed genes of each
state to identify potential target genes of the enhancers. By con-
necting the master regulators to functional target genes, via the
active regulatory regions, a functional network can be inferred.
Consequently, we predicted genome-wide enhancer-target gene
interactions for MITF, SOX10, TEAD and AP-1. Most studies
limit enhancer-to-gene mappings to a relatively small intergenic
space around each gene. By limiting this analysis to 20 kb around
the TSS, only 1,404 (7%) enhancers can be assigned to genes. This
is because enhancer–promoter interactions can occur over dis-
tances of upto a few mega base pairs by looping23. To associate
distal enhancers to their candidate target genes, we tested various
parameter settings (Fig. 5a, see Methods) linking 4,599 enhancers
(23%) to 1,477 target genes and thus yielding a large gene
regulatory network for each state (Fig. 5b and Supplementary
Data 2). To assess the quality of the target gene predictions, and
to compare different assignment procedures, we used two rounds
of validation with public data. In the primary validation round,
we tested whether the assigned target genes are overall co-
expressed with their respective regulator across the TCGA data
set, whereby co-expression values were calculated using GENIE3
(ref. 24; Fig. 5c and Supplementary Fig. 19). Particularly, this
network inference method yielded a ranked list of downstream
targets of SOX10 and JUND on the basis of (linear and nonlinear)
co-expression in the TCGA data. As shown in Fig. 5c, the
predicted direct targets of SOX10 and AP-1 in the network are
significantly enriched in the top of this co-expression ranking
(False Discovery Rate o1E� 5 by gene set enrichment analysis
(GSEA)). Therefore, this analysis demonstrates the usefulness of
including distal assignments in addition to the proximal
assignments, and that assignments to the closest correlated gene

are better than assignments to the closest gene without using any
information on the expression of that gene.

In a secondary validation round, we used publicly available
genetic perturbation data for each of the predicted master
regulators to examine whether the predicted targets are
functionally dependent or downstream of their regulator8,21,25,26.
For each of the four TFs, we found a significant overlap between
the target gene predictions and the genes expressed downstream
of the corresponding TF after perturbation, again using ranked
gene lists and GSEA analysis (Fig. 5c). These results validate our
predictions and indicate that these targets are likely to be
functionally important. Interestingly, the invasive network shows
a very high and significant overlap between the TEAD and AP-1
target genes (Fig. 5b), indicating that the regulatory function of
TEAD is strongly related to AP-1 function in this particular
context. This finding is corroborated by a high degree of overlap
(r¼ 0.38 with P-valueo2.2e� 16) between JUND and TEAD4
ChIP-seq peaks in the SK-N-SH neuroblastoma cell line (Fig. 6a).
Together, these data indicate that TEAD may bind cooperatively
with AP-1 to regulate its target genes.

In conclusion, in silico exploitation of epigenomic data allowed
us to infer master regulators for each melanoma cellular state and
identify many downstream targets, without discarding distal
regulatory regions. The networks thus created are likely to
represent an important part of the global gene regulatory network
underlying melanoma cell state distinction.

4C-seq shows long-range interactions at the SOX9 locus. The
inferred gene regulatory networks are on the basis of predictions
of long-range enhancer–promoter interactions to associate distal
enhancers to candidate target genes. These predictions are
derived from correlations between enhancer activity profiles and
gene expression profiles. To test whether such associations indeed
reflect true three-dimensional (3D) chromatin interactions, we
focused on one particularly relevant target gene of the invasive
network, SOX9 (Fig. 6) and performed Circularized Chromosome
Conformation Capture sequencing (4C-seq)27. SOX9 is a TF
specifically expressed in the invasive state and is mostly known
for its involvement in early neural crest development28. In
addition, SOX9 has previously been implicated in invasive growth
in other cancer types such as prostate cancer29. The SOX9 locus
contains a very large intergenic region of B2 Mb upstream of the
promoter region. We identified 31 significantly active regulatory
regions—clustered into eight subregions—within 1.4 Mb around
SOX9 (Fig. 6a). Each of these distal enhancers is positively
correlated with both the activity of the SOX9 promoter and its
expression levels across the 11 melanoma in-house samples
indicating that the distal elements may indeed interact with the
SOX9 promoter and regulate SOX9 transcription. To further test
this we performed 4C-seq on both MM047 and MM011 using the
promoter as well as a 1-Mb upstream enhancer as viewpoints
(Fig. 6b,c). A large number of interactions can be observed in the
SOX9-positive and invasive MM047, but not in the SOX9-
negative MM011. Interestingly, 35/44 (79.5%) of all interactions
identified are found upstream, showing a strong bias towards the
upstream region. Remarkably, no specific interactions between
distal enhancers and the promoter can be observed in MM011, a
strong indicator that these interactions can drive SOX9 activation.
Thus, these results indicate that multiple distal enhancers can
interact with a single promoter, and that (long-range) chromatin
interactions can differ between melanoma cellular states.
This also shows that correlations between enhancers and genes
can be used to predict enhancer–promoter interactions,
as previously shown for DNAseI hypersensitivity sites and
chromatin marks30,31.
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TEADs are the key regulators of the invasive state and phenotype.
The four TEADs in the human genome have all been implicated
as the key effectors of the Hippo pathway, a pathway previously

shown to confer invasive properties to various cancers including
breast32, oesophageal33 and more recently melanoma34. Note,
however, that the implication of the Hippo pathway in melanoma
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was linked to the Hippo transducers YAP and TAZ, which exhibit
multiple TEAD-independent functions among which modifying
TGF-� and WNT signalling35,36. In contrast, by using in silico
tools and public data sets we raise the possibility that the TEADs
are directly involved—as master regulators—in the invasive
melanoma cell state. For example, we find multiple invasive-
specific H3K27ac peaks with predicted TEAD motifs that overlap
with TEAD ChIP-seq data from ENCODE, in the neighbourhood
of invasive genes (Supplementary Fig. 20). To test whether these
predictions indeed point to functional targets we KD all TEADs
simultaneously and asked whether our predicted TEAD target

genes are affected by this perturbation. The transcriptome of
MM047 on TEADs’ KD was established by RNA-seq and showed
significantly decreased levels of all TEADs (3.8- to 7.1-fold;
Supplementary Fig. 21). Importantly, a significant subset of all
predicted TEAD target genes were downregulated including
SOX9, SERPINE, EHPA2 and several Hippo pathway genes
(Fig. 7a,b,d and Supplementary Fig. 22). Interestingly, many of
the TEAD-regulated genes have already been linked to cell
migration, invasion or metastasis, where their involvement
in these processes are often experimentally validated either
in melanoma or in other cancer types37–39 (Fig. 7b and
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NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7683 ARTICLE

NATURE COMMUNICATIONS | 6:6683 | DOI: 10.1038/ncomms7683 | www.nature.com/naturecommunications 9

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Supplementary Data 3 and 4). Accordingly, ‘locomotion’ is the
most over-represented Gene Ontology term among the set of
predicted TEAD targets (GO:0040011, adj. P-value 8.05e� 26).

After screening a new series of short-term melanoma cultures
by assessing 18 selected genes, we identified an additional invasive
culture (MM029) and confirmed that it also exhibits a high

invasive propensity (Supplementary Fig. 23). Importantly, the
expression of SOX9, SERPINE1 and EPHA2 was also decreased on
TEADs’ KD in these cells (Fig. 7a). Interestingly, KD of individual
TEAD members indicates that TEADs function in a redundant
manner and that the complete TEAD transcriptional network
shown in Fig. 5 likely depends on the joint activity of several or
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Figure 7 | TEAD as a master regulator for the invasive phenotype. (a) Simultaneous knockdown of all four TEADs causes downregulation of SOX9,
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using Student’s t-test. Dark orange bars¼ 72 h after transfection; lighter orange bars¼96 h after Transfection. (b) Selection of genes highly expressed in

the invasive state and downregulated on TEAD knockdown categorized into several functional groups relevant to the invasive phenotype (see

Supplementary Data 3 for the entire list of annotated TEAD targets). In addition, expression information of TCGA and CCLE data for each gene is provided.

(c) Significant overlap of genes predicted as TEAD targets (grey) with genes assigned to the invasive signature (yellow; hypergeometric P-

value¼ 5.83E� 11) or with genes downregulated on TEAD knockdown (pink; hypergeometric P-value¼ 1.37E� 23). (d) GSEA with genes ranked according

to their differential expression on TEAD knockdown show a strong enrichment of predicted TEAD targets among the downregulated genes. (e) Images

showing the reduced invasive capacity of MM029, MM047 and MM099 on knockdown of the TEADs (all images were made at magnification � 20, scale

bar, 0.2 mm). (f) Knockdown of all four TEADs using a siRNA pool leads to a significant (P-valueo0.05) reduction of the invasive capacity compared with a

non-target control siRNA for all three invasive cultures. Results are averaged across at least three biological replicates. (g) Cell viability on knockdown of all

four TEADs decreases significantly. P-values were determined using Student’s t-test and the error bars represent s.e.m.
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possibly all four TEAD members (Fig. 7a and Supplementary
Figs 24 and 25).

To establish a functional link between TEADs and melanoma
cell invasion, we KD all TEADs simultaneously in eight
melanoma cell cultures and measured invasive capacity and cell
viability. Strikingly, a significant decrease in all three invasive
cultures (MM047, MM099 and MM029) was observed on
TEADs’ KD (Fig. 7e–g).

Collectively, these experiments indicate that the TEADs
contribute to the establishment of the invasive transcriptional
cell state and its associated cellular phenotype. These data also
underline the ability of the TEADs to promote a survival
advantage to the melanoma-invasive cells.

TEADs sensitize invasive cells to MAPK-targeted therapy. The
therapeutic relevance of the two-class distinction in melanoma
was recently highlighted by the observation that the two cell states
are associated with differential susceptibility to MAPK pathway
inhibition11,40. To test whether this drug resistance likewise
correlates with high expression of the TEAD targets, we examined
the Cancer Cell Line Encyclopedia (CCLE)41. Interestingly, there
is a significant positive correlation (0.82 with P-valueo1e� 5)
between expression of the TEAD target gene signature and BRAF
inhibitor (PLX4032) response in 29 BRAFV600E-mutant cell lines.
A similar trend, albeit with a lower correlation coefficient of 0.60
(P-valueo1e-5), is also observed for resistance to the MEK
inhibitor AZD6244 (n¼ 39; Fig. 8a and Supplementary Fig. 26).
These results suggest that TEAD-mediated transcription is one of
the determinants that contribute to the increased resistance of the
invasive melanoma cells to MAPK pathway inhibition.

To further confirm such a correlation experimentally, we
established the IC50 values for both a BRAF and a MEK inhibitor
(PLX4032 and Pimasertib) in several of the short-term cultures.
Strikingly, invasive cultures are significantly more resistant to
these inhibitors than proliferative cultures (Fig. 8b). Furthermore,
simultaneous KD of all four TEADs significantly (re)sensitizes
the invasive cultures to the MEK inhibitor (Fig. 8c and
Supplementary Fig. 27).

Together, these results indicate that the TEADs’ transcriptional
network—selectively induced in melanoma cells adopting
an invasive cell state—confers intrinsic resistance to MAPK
therapeutics.

Discussion
Cell state transition in vivo is likely to be driven by changes in
the microenvironment, ultimately leading to transcriptional
reprogramming42. The plasticity and reversibility of phenotype
switching indeed favours a model in which cell state transition is
dependent on reprogramming of the transcriptome rather than
being dictated by the acquisition of specific DNA mutations. In
agreement, we found no enrichment for specific gene mutations
in the invasive or proliferative clinical samples (TCGA).
Unexpectedly, when analysing copy number alterations in the
TCGA cohort a 7q34 duplication was found to be enriched in the
invasive samples. This region harbours 89 genes and includes the
BRAF gene (Supplementary Note 1). Interestingly, overexpression
of BRAF was recently shown to drive a rapid and reversible
switch in a specific subset of invasive-related TFs5. Together,
these data raise the possibility that, although melanoma
phenotype switching is, by and large, governed through
transcriptional reprogramming, specific genetic lesions may
render melanoma cells susceptible to such reprogramming.

The gene expression patterns that define this transcriptional
reprogramming have been defined to some extent in ref. 3 as a
gene signature of 97 genes; 45 specifically expressed in invasive

and 52 in proliferative cells. We have extended this gene signature
to better capture the entire repertoire of genes involved in both
states and identified 643 and 772 genes that are upregulated in
invasive and proliferative cells, respectively. In addition, we have
included (poly-adenylated) lncRNAs in the analysis by using the
GENCODE annotation, classifying 17 into the invasive and 49
into the proliferative signature (Supplementary Data 1).

At a first level, our data allowed us to generate a more extended
view of the transcriptional reprogramming underlying melanoma
cell state transition. However, incorporating regulatory profiling
and performing profound in silico analyses allowed us to go a step
further and identify potential regulators behind this reprogram-
ming. Particularly, by decoding the sequences of the differentially
active regulatory regions, we identified SOX10 and MITF as
master regulators of the melanoma-proliferative cell state. MITF
has been extensively studied in the context of normal melanocyte
development, where it is expressed downstream of PAX3 and
SOX10 (ref. 7). In addition, it has been shown that MITF is often
amplified and overexpressed in melanomas43. The MITF target
prediction we present herein combines information on active
genomic regions based on H3K27ac profiles with active gene
expression, and includes distal enhancer–promoter interactions.
Comparing our results to MITF KD data indicated that our MITF
target gene prediction is more accurate than those based on
ChIP-seq or microarray data alone, and includes hundreds of
previously unknown MITF targets (Supplementary Fig. 28). The
second proliferative master regulator is SOX10, a key regulator of
neural crest cell development and melanocytic differentiation.
It is expressed in nearly all primary melanomas and its
overexpression causes the formation of giant congenital naevi
in mice8. Interestingly, many genes that are part of our invasive
gene signature, including EGFR and TGF-�, are upregulated 48 h
after SOX10 KD (Supplementary Fig. 29). This observation
indicates that the gene regulatory network can be steered into a
different attractor state simply by perturbing one of the master
regulators and is consistent with the ability in melanoma to
switch from a proliferative to an invasive state through
transcriptional reprogramming. Moreover, although no SOX10
ChIP-seq data are available for melanoma to date, our integrative
genomics approach identified a high-confidence set of direct
SOX10 candidate target genes, including known targets MITF and
DCT and showing a large overlap with direct MITF target genes,
thus indicating a SOX10 MITF feed-forward loop.

Contrary to the proliferative state, the analysis of the invasive
transcriptome puts forward AP-1 and TEAD as strong candidates
for key regulators, neither of which have been directly implicated
in the melanoma-invasive gene network before. However, both
AP-1 and TEAD have been implicated in EMT, either separately
or together, as illustrated by recent evidence supporting a direct
interaction between YAP and the AP-1 family member FOS
during EMT44. Notably, in support of our findings on TEAD, two
recent studies have attributed pro-invasive roles for YAP and
TAZ in melanoma34. We find that AP-1 and TEAD share many
of their targets, indicating that these factors may act cooperatively
to regulate gene expression. Consistently, independent public data
from ENCODE, as well as our own predicted invasive enhancers,
support the hypothesis that AP-1- and TEAD-binding sites often
overlap at the same regulatory region. Note, however, that many
of these predicted target regions are located at a considerable
distance from potential target genes. This fact poses a challenge to
associate differentially active regulatory regions with differentially
expressed candidate target genes. Distal enhancers have been
shown to be able to regulate their target genes even when located
thousands of bp from the TSS, and with intermittent ‘bystander
genes’ present. By establishing correlations between enhancer and
gene activity and performing 4C-seq, we have predicted and
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confirmed that for SOX9 these enhancers indeed interact at a long
distance by enhancer–enhancer and/or enhancer–promoter
looping. Notably, the observed architecture of loops differs
strongly between invasive and proliferative samples, elegantly
explaining the differential expression of this target gene. This
indicates that long-range chromatin interactions are dynamic and
play a role in activating transcription. These results form
compelling evidence for the role of the chromatin landscape in
shaping the transcriptome underlying different cellular states.

One of the consequences of this complex regulatory system is
that upregulation of genes involved in invasion seems to correlate
with an increased therapy resistance in patients. For instance, an
increase in EGFR and a concomitant decrease in SOX10
expression have been linked to the development of resistance
against BRAF inhibitors1. Here we show for the first time that the
invasive melanoma state is functionally dependent on TEADs,
and that blocking the activity of this family of TFs increases the
sensitivity of invasive cells to MAPK-targeted drugs. On the basis
of these observations we propose that the intrinsic sensitivity of

melanomas to MAPK pathway inhibitors is dictated by their
transcriptional cell states, which are in turn controlled by specific
master regulators.

In conclusion, our study shows that integrating existing data
sets with carefully designed in vitro experiments is a valid
approach to tackle a clinically relevant cancer issue. By
investigating the information flow from the genome sequence,
via the chromatin landscape to the transcriptome output, we
indeed gained insights into how gene regulatory networks instruct
cells to adopt the phenotypically distinct invasive and prolif-
erative melanoma states. Our results raise the possibility that
intratumour heterogeneity and therapeutic sensitivity can be
under the control of the cancer cell regulatory genome.

Methods
Analysis of publicly available microarray data. Two microarray platform gene
expression compendia (Compendium A and Compendium B) were created from
the publicly available gene expression data sets. Compendium A consisted of two
data sets generated with Affymetrix Human Genome U133A Arrays totalling to
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Figure 8 | The role of the TEADs in drug resistance of the invasive melanoma state. (a) Analysis of CCLE data (n¼ 39) shows a significant difference

of IC50 values for both the BRAF and MEK inhibitors (PXL4032 and AZD6244), where cell lines with a high TEAD signature (top 25%) are more resistant

compared with the other cell lines. (b) IC50 curves showing a strong resistance of invasive cultures (MM029, MM047 and MM099, orange shades)

for both BRAF and MEK inhibitors (PLX4032 and Pimasertib) compared with two proliferative cultures (MM074 and MM034, blue shades) both at

48 and 72 h of exposure. MM047 data were not incorporated in BRAF-related plots since this culture does not harbour the V600E BRAF mutation.

(c) IC50 shifts indicating a sensitization of the invasive lines for the MEK inhibitor measured at 48 and 72 h of treatment when treated with siRNAs against

all four TEADs. All error bars represent s.e.m. and are the result of at least three biological replicates. P-values were determined using Student’s t-test.
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135 samples, while Compendium B consisted of 7 data sets generated with
Affymetrix U133 PLUS 2.0 arrays and totalling to 263 samples (Supplementary
Table 1). Raw intensities were downloaded from GEO, normalized with limma45

package and merged (per platform) with the COMBAT batch effect removal
procedure using the inSilicoDB46 package. For both of the data sets, non-negative
matrix factorization (NMF) was performed in TIGR MultipleExperiment Viewer
(TMEV)47 using all genes with an expression s.d. above 1 (572 and 1,868 genes,
respectively) across all samples. Cluster-specific gene rankings were obtained by
contrasting the samples with the rest of the samples and signed � log10(adjusted
P-values) were used for ranking the genes. Differential expression analysis was
performed with limma package in R/Bioconductor. The rankings were analysed
with GSEA48 using the pre-ranked analysis option. The gene signatures that are
used in the GSEA included known pathways from KEGG and REACTOME;
functional terms from GO; curated gene signatures from msigdb (v4); and
literature mined signatures (Widmer3, Cheng49, Hoek4, Messina50), in total
comprising 10,302 signatures.

Analysis of TCGA/SKCM data. The raw count matrix composed of 375 samples
was downloaded from the Firehose (stddata, timestamp: 16_03_2014, cohort:
SKCM). NMF was performed using 501 genes that have expression s.d. above 1
across all samples. Once the sample clusters were identified, the same procedures as
above were implemented for generating cluster-specific gene rankings and
performing functional enrichment analysis. Differential expression analysis was
carried out using R/Bioconductor DESeq2 (ref. 51) package. Somatic mutation calls
for 345 samples and significantly mutated genes list (Mutation Analysis (MutSig
v2.0 and MutSigCV v0.9 merged result) were downloaded from Firehose (SKCM
analyses, timestamp: 2014_06_12, doi:10.7908/C1668BVC). There were 343
samples that had both a cluster assignment in the NMF analysis and a somatic
mutation called. These 343 samples were used to analyse whether there was an
association between mutation frequency and NMF cluster assignment using a
Kruskal–Wallis rank-sum test. In addition, Fisher’s exact test was used to test the
association between mutation status of significantly mutated genes with the NMF
clusters. Bonferroni’s method was used to correct for multiple hypothesis testing.
Illumina Infinium Human DNA Methylation 450 data file (platform code:
HumanMethylation450) was downloaded from Firehose (SKCM, timestamp
16_03_2014). Two-sample t-test between the proliferative and invasive groups was
performed to assess statistical significance of the methylated CpGs. This test
yielded 1,813 significantly methylated CpGs between the groups (a¼ 1e� 10).
Predicted regulatory regions from the invasive and proliferative groups were
intersected with the 450-K array probes. The median methylation values were
computed for the regulatory regions with at least two CpG probes. Differentially
methylated cis-regulatory modules were defined using a t-test with a¼ 0.05.

GENIE3. Co-expression networks from the expression data sets were generated
using Genie3 (ref. 24) on the same data sets as the NMF analysis. The input list of
TFs we used for GENIE3 (2,245 factors) was compiled from the factor list from the
TRANSFAC Professional database combined with a list of factors from the
Molecular Signatures Database (MSigDB) collection (v4). A threshold of 0.007 was
used to generate the final co-expression network.

Meta-analysis. Within each data set (TCGA, Compendium A, Compendium B
and in-house RNA-seq) invasive and proliferative gene rankings were generated by
comparing invasive and proliferative samples to the rest of the samples. The
rankings were then combined with order statistics, used previously for gene
prioritization52,53. The gene meta-ranking for each state was subsequently analysed
with GSEA.

Mosaic plots. To generate mosaic plots we used GEDI13 (Gene Expression
Dynamics Inspector) v2.1 on our gene expression and regulatory data to generate
SOMs for each sample, which allowed to visualize the high number of genes/regions
in maps of size 26� 25 tiles, where each tile can include no or several similar genes/
regions. Static analysis was used with default settings. For Fig. 1d, row-median
normalized expression values across 829 samples (135 Compendia A, 263
Compendia B, 375 SKCM, 11 in-house and 45 short-term melanoma cultures6) were
combined, and genes with expression s.d. above 0.5 (1,135 genes) were plotted with
GEDI. For Fig. 3b, the regulatory regions having s.d.Z1 for H3K27ac and any signal
for both H3K27me3 and FAIRE after data normalization were selected (the regions
with H3K27m3 and FAIRE do not necessarily have s.d.41). This yielded a set of
55,919 regulatory regions with signal across three different regulatory data layers. The
values were row-median-centred within a data set, then scaled across the data sets.

Cell culture. Cells were all kept at 37 �C, with 5% CO2. The 10 primary melanoma
cultures are all short-term cultures derived from patient biopsies and were
described before14. In addition, MM029 is a novel acquired short-term culture
obtained under the conditions as the other cultures. All cultures were obtained with
written consent from each subject and as part of a study for which ethical approval
was granted. These cultures were maintained in Ham’s F10 nutrient mix
(Invitrogen) supplemented with 10% fetal bovine serum (FBS; Invitrogen),

4.8 mM Ala-Gln (Sigma) and 100mg ml� 1 penicillin/streptomycin (Invitrogen).
When performing KD experiments, antibiotics were omitted from the medium.
SK-MEL-5 cells were purchased from ATCC and cultured in EMEM (Gibco)
supplemented with 10% FBS (Invitrogen) and 100 mg ml� 1 penicillin/streptomycin
(Invitrogen).

RNA-seq. All 11 melanoma cultures were plated on 15-cm plates and grown to
B85% confluence. Similarly, when performing KD experiments cells were plated
into six-well plates and grown to B85% confluence. Cells were then collected and
prepared for RNA extraction according to the RNeasy protocol (Qiagen), yielding
between 2 and 40mg of total RNA per cell line. Quality checks were performed
using the Bioanalyzer 1,000 DNA chip (Agilent) after which libraries were con-
structed according to the Illumina TruSeq RNA Sample preparation guide. Final
libraries were pooled and sequenced on the HISeq 2000 (Illumina), generating
between 15 and 30 million paired-end or single-end reads (TEAD KD).

RNA-seq reads were mapped to the genome (Gencode v18) using TopHat2
2.0.9 with Bowtie2 2.1.0 applying the --read-realign-edit-dist 0 option to enable
combined mapping54. The sensitive-local setting for Bowtie2 was used to correct for
a high percentage of mismatches at the start of a read, prompting the removal of
the first base pair for each read. Read counts per gene were obtained from the
aligned reads using htseq-count command from the HTSeq framework55. The
Bioconductor/R packages EDASeq, edgeR and DESeq2 (ref. 51) were used
for normalization and differential gene expression analysis (Supplementary
Data 1 and 5).

Gene signatures. Using a cutoff of log2 fold change Z|1| and adjusted P-value
r0.05 (R/Bioconductor package DESeq2_1.4.5), gene signatures of 643 and 772
genes were defined as invasive and proliferative signatures, respectively. These
cutoffs were confirmed using GSEA analyses using a ranking of all genes based on
the signed � log10 (adjusted P-value) of the differential expression contrasting
invasive and proliferative cultures. Input sets used are the Hoek signatures
(45 invasive and 52 proliferative genes). Significant correlations (FDRo0.001) and
a signature-derived leading edge provided a set of 660 proliferative and 499
invasive genes. These signatures are very comparable to the ones obtained using
the aforementioned arbitrary cutoffs, and thus justify their usage.

Variant/mutation calling. Single-nucleotide variations and small insertion/
deletions (INDELs) were called from the RNA-seq data with SAMTools v0.1.19þ
(ref. 56). Variants observed in regions with less than 20 reads and INDELs located
in homopolymer stretches of 44 bp were filtered out, as were polymorphisms
matching the dbSNP138-common variants. The remaining variants were
annotated with Variant Effect Predictor v2.7 (ref. 57). The following terms
were used for selecting the protein-altering mutations: splice_donor_variant,
splice_acceptor_variant, stop_gained, initiator_codon_variant, missense_variant,
splice_region_variant, inframe_insertion, inframe_deletion, frameshift_variant.

ChIP-Seq. All 11 melanoma samples were grown to B85% confluence per 15-cm
dish. A total of 20 million cells per sample were collected, yielding B20 fractions of
chromatin. ChIP samples were prepared following the Magna ChIP-Seq prepara-
tion kit using at least two chromatin fractions and 2–2.5 mg of antibody per frac-
tion. Following antibodies were used for each ChIP: anti-histone H3 acetyl K27
antibody (ab4729, Abcam); anti-trimethyl-Histone H3 (Lys27) antibody
(07-499, Millipore); anti-MITF antibody (ab12039, Abcam); anti-SOX10 antibody
(sc-17342, Santa Cruz). Per sample, 5–30 ng of precipitated DNA or input was used
to perform library preparation according to the Illumina TruSeq DNA Sample
preparation guide. In brief, the immunoprecipitated DNA was end-repaired,
A-tailed and ligated to diluted sequencing adapters (1/100). After PCR amplifi-
cation (15–18 cycles) and bead purification (Agencourt AmpureXp, Analis),
the libraries with fragment size of 300–500 bp were sequenced using the HiSeq
2000 (Illumina).

FAIRE-seq. Eleven melanoma cultures were grown to B85% confluence per
15-cm dish. A total of 10 million cells were collected per cell line, after which cells
were fixed for 10 min with 4% formaldehyde and quenched (125 mM Glycine;
0.01% Triton X-100 in PBS) for 10 min. Cells were then washed twice with PBS and
pelleted in 2 ml PBS with protease inhibitor cocktail. Chromatin was collected,
subjecting the cells to three lysis steps, starting with 1 ml of lysis buffer 1 (50 mM
Hepes-KOH pH 7.5; 140 mM NaCl; 1 mM EDTA; and 10% glycerol) at 4 �C for
10 min and spun down at 1,300g for 5 min. Second, 1 ml of lysis buffer 2 was
applied (10 mM Tris-HCl pH 8.0; 200 mM NaCl; 1 mM EDTA; and 0.5 mM
EGTA) and left to incubate for 10 min. After another spin down, 300 ml of buffer 3
(10 mM Tris-HCl pH 8.0; 100 mM NaCl; 1 mM EDTA; 0.5 mM EGTA; and 0.1%
Na-deoxycholate) was added and cells were sonicated (Bioruptor UCD-200,
Diagenode) for 12 cycles of 30-s pulses. Phenol/chloroform extraction was per-
formed using Maxtract high-density tubes (Qiagen) to separate the aqueous and
organic phases. DNA was precipitated using sodium acetate (0.3 M, pH 5.2), 20 mg
glycogen and 95% ethanol. The pellet was resuspended in 50 ml TE buffer and
incubated at 37 �C for 1 h with 1 ml RNaseA (10 mg ml� 1). DNA was purified using
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the QiaQuick MinElute kit (Qiagen). Final libraries were prepared identical to
ChIP-Seq libraries.

Candidate regulatory regions. Candidate regulatory regions in human were
defined using publicly available regulatory data: DHS from ENCODE58, General
Binding Preference models59, CpG islands, proximal promoters, conserved non-
coding sequences, ultraconserved elements, regulatory elements from OregAnno60,
VistaEnhancers61 and predicted cis-regulatory modules62 (Supplementary Table 4).
The UCSC liftover tool was used to convert genome coordinates to hg19 if needed.
All these features were merged. In a first step, regions having an overlap of at least
20 or 80% with insulator elements in the genome or coding exons, respectively,
were removed. Next, regions with an overlap smaller then 20 or 80% with
insulators or exons are split and the regions containing the insulator or coding
exons were removed. Remaining regions are then filtered on the basis of size and
regions o30 bp are removed. Finally, any resulting regions shorter than 1,000 bp
were extended if possible to 1,000 bp in a direction that prevents overlap with an
insulator or exon. The complete procedure of creating candidate regulatory regions
yielded 1,223,024 regions (representing B35% of the genome) with average size
818 bp, which can be found as a track in the Melanoma Track Hub (see Accession
codes).

Motif and track discovery. We previously developed a tool for the Drosophila
genome called i-cisTarget63 allowing the identification of the most enriched/
correlated NGS tracks and motifs for a given set of genes or loci by an enrichment
detection method. Here we ported this framework to the human genome, starting
from a set of predefined candidate regulatory regions. These regions were scored
and ranked in the same way as described for the Drosophila version of
i-cisTarget63, now using 1,121 human regulatory tracks with ChIP-seq data for 247
sequence-specific TFs across 43 different cell types and conditions. These data sets
were mainly obtained from ENCODE database (999 tracks) but also include
ChIP-seq data published by the Taipale lab (117 tracks64; coordinates of peaks
converted from hg18 to hg19 using the UCSC liftover tool), MITF ChIP-seq in the
501Mel melanoma cell line21 and four in-house tracks (ChIP-seq against p53 in
MCF7 after Nutlin-3a stimulation and control65 and ChIP-seq against MITF in
MM011 and MM031 from this study). For scoring, the maximum score of the
peaks was used (signalValue or fold_enrichment from encodePeak file format or
MACS2 peaks, respectively).

For motif discovery, all 1.2 Mio regions are scored with a collection of 9,713
PWMs (Position Weight Matrices or motifs) from different resources65. PWM
scoring is performed with Hidden Markov Models, one PWM at a time, across all
1.2 Mio regions, and across all orthologous regions in 10 other vertebrate species
(orthologous regions determined by the UCSC liftover tool). Rankings across
species are integrated using order statistics. A set of co-regulated input peaks is first
mapped to the 1.2 Mio regions, and for each feature (motif or track), the area under
the cumulative recovery of these ‘foreground’ regions is calculated (at 0.25%
cutoff). The areas for all features are normalized using a Normalized Enrichment
Score (AUC-m/s). Similar enriched motifs are clustered together using STAMP.
The significance was computed using the hypergeometric test and Bonferroni’s
method was used to correct for multiple hypothesis testing.

Analysis of ChIP-seq and FAIRE-seq data. ChIP-seq and FAIRE-seq reads were
mapped to the genome (hg19-Gencode v18) using Bowtie2 2.1.0. The sensitive-local
setting for Bowtie2 was used to correct for a high percentage of mismatches at the
start of a read, prompting the removal of the first five base pairs of each read. The
coverage of candidate regulatory regions (described above) was computed using
BEDTools. Subsequently, regularized log transformation and DESeq function from
R/Bioconductor package DESeq2 (ref. 51; DESeq2_1.4.5) were used to detect
differentially active regions between the two invasive and nine proliferative
samples. On the H3K27ac signal, applying threshold adjP r0.05 and log2FC Z|1|
lead to 13,671 regions more active in invasive samples and 7,146 regions more
active in proliferative samples. These regions were then filtered using differential
peaks called by MACS2 (ref. 66) algorithm (qo0.05, nomodel), with the
proliferative samples as treatment and invasive samples as control. This supported
differentially called regions resulting in final sets of 13,453 invasive and 6,669
proliferative regions.

MITF ChIP-seq peaks were called using MACS2 (ref. 66) algorithm with default
options. Peaks were called for each replicate independently, and only those with
q-value below 0.05 were selected for further analysis (3,907 for MM011 and 810 for
MM031) and visualized in the Melanoma Track Hub (see Accession codes). Signal
enrichment at each genomic locus was detected using the F-seq software67 (version
1.84) with default options, and identified peaks were visualized (with the exception
of MITF ChIP-seq) in the Melanoma Track Hub.

Region-to-gene assignment. To assign the differentially active regions to genes
we tested several approaches. The most common is the assignment to the closest
gene without considering gene expression. For this basic approach were used two
different gene annotations, namely RefSeq and Gencode v18 annotations. To
obtain more accurate assignment, we also applied more sophisticated approach
considering differential gene expression between proliferative and invasive samples.

The assignment was performed to the genes with log2FCZ|1| without considering
significance (which corresponds to the gene set of 1,936 proliferative and 1,437
invasive genes). The genes that are not differentially expressed are ignored. We
tested different parameters, namely distance (proximal and intronic with distance
r10 kb from the gene, and then the closest or all the genes in the distance of 10 kb,
20 kb, 100 kb, 1 Mb or 2 Mb from the region), adjusted P-value of differential gene
expression (0.05, 0.1 and 1), correlation between H3K27ac peak and gene
expression (positive or absolute values of 0, 0.1, 0.3, 0.5 and 0.7). In order to
construct the gene regulatory network depicted in Fig. 5b, candidate target regions
of the four TFs were assigned to genes:

� that are within 1 Mb distance from the region
� that are expressed differentially in the invasive–proliferative contrast at the

adjusted P-value level of 0.1 and log2FC4¼ |1|
� for which the expression correlates with the H3K27ac peak of the region with

absolute correlation coefficient of 0.3 or more.

For Fig. 5c, the optimal parameters were selected on the basis of the GSEA
enrichment results for genes ranked according to GENIE3 scores of the
corresponding factor (for SOX10, MITF and AP-1 targets). For TEAD target
predictions, TAZ perturbation data25 were used (with gene ranking based on
log2FC on TAZ activation), since TEAD-based GENIE3 ranking did not result in
significant enrichment.

Analysis of the publicly available perturbation data. The raw data for SOX10
(GSE37059)8 and JUN and FRA1 (GSE46440)26 perturbations were downloaded
from GEO. For the SOX10 (GSE37059) data analysis, the limma45 package was
used for normalization and differential expression, while JUN and FRA
perturbation data were normalized with the aroma.affymetrix package and
differential gene expression analysis were subsequently performed with the limma
package in R/Bioconductor. TAZ perturbation data25 were kindly provided by
Krishna Bhat and Brian Vaillant. Genes were ranked on the basis of the log-fold
change and this ranking was used for enrichment analysis using GSEA. MITF
perturbation data were obtained from Supplementary Table 5 in ref. 21. The genes
were ranked on the basis of the � log10 (P-value) for enrichment analysis.

Circularized chromosome conformation capture (4C). The protocol was
adapted from ref. 68. In brief, 10 million cells were collected for MM047 or
MM011, treated with formaldehyde and cross-linked chromatin was digested with
a primary 6-bp restriction enzyme, diluted and re-ligated to fuse the ends of DNA
fragments. After cross-link removal by heating a second round of digestion, using a
4-bp restriction enzyme, was followed by ligation. Inverse PCR primers specific for
the viewpoint were then used for amplifying captures ligated to that viewpoint.
A total of 600 ng of template was used over five PCR reactions, pooled and then
purified for next-generation sequencing using two columns per sample of the High
Pure PCR Product Purification kit (Roche). The primers were designed as
described previously68. Viewpoints selected are as follows: viewpoint 2 in the
promoter region of SOX9 and viewpoint 1, located in a distal enhancer region 1 Mb
upstream of SOX9. The following restriction enzymes were selected for each
viewpoint: EcoRI and DpnII for the Sox9 promoter and HindIII and DpnII for the
distal enhancer region. The primers used during the protocol can be found in
Supplementary Table 6. Sequenced reads were cleaned and mapped as described
for RNA-seq with an additional removal of the primer sequences from each read.
A publicly available bioinformatics software package r3Cseq (ref. 69) was used to
identify interaction-enriched regions per restriction enzyme fragment. Each 4C-seq
sample was processed independently. Interactions with P-valueo0.05 were
considered significant. Interactions within 1 Mb around the viewpoint were
visualized as domainogram plots. Note that the overlap of predicted interactions
with the H3K27ac peaks (Fig. 6a) is not always exact because of the predefined
restriction sites required for 4C-seq.

Quantitative PCR. The invasive melanoma cell lines were transfected with
scramble short interfering RNA (siRNA), a pool of siRNAs against the four known
TEADs or against one specific TEAD. Total RNA was harvested 72 or 96 h after
transfection and extracted according to the RNeasy protocol. Reverse transcription
was performed using the GoScript reverse transcription system (Promega). Alter-
natively, RNA was collected for qPCR on SOX10, MITF and EGFR by washing cells
in ice-cold PBS, scraped and pelleted at 1,500 r.m.p. for 5 min at 4 �C. Supernatant
was discarded and the pellet resuspended in Qiazol (Qiagen). RNA was extracted
with the miRNeasy mini kit (Qiagen). Overall, 500 ng of mRNA was converted
to cDNA with the AB High Capacity cDNA Reverse Transcription Kit (Life
Technologies). Real-time quantitative PCR reactions were run on LightCycler480
(Roche) in 384-well format, using SYBR-Green Fast Universal PCR Master Mix
(Applied Biosystems). Melting curve analysis confirmed the amplification of a
single product while normalization was carried out with the most stable of three
reference genes, assessed using the GeNorm analysis. Normalized relative fold
changes of at least three biological replicates were averaged before performing a
Student’s t-test to determine significance levels. RT–qPCR primer sequences can be
found in Supplementary Table 6.
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KD experiments. Cells were seeded at a density of 1 million cells per 6-cm plate or
100,000 cells per well of a 12-well plate. Transfections using Lipofectamine
RNAimax transfection reagents (Life Technologies) were performed for two
consecutive days with 10 nM of a pool of siRNAs against all four TEAD mRNAs or
a nontargeting siControl pool (Dharmacon, D-001810-10). Alternatively, KD of
single TEAD was achieved similarly by dual transfection using 10 nM of a pool of
siRNAs against TEAD1 (Dharmacon, L-012603-00-0005) or a specific siRNA
against TEAD2. Analysis of the KD efficiency and other assays were conducted
between 72 and 120 h after the first transfection.

Matrigel invasion assay. Matrigel basement membrane matrix gel (corning) was
plated at 12.5 mg in 24-well transwell inserts (Corning) 1 day in advance and was let
to solidify. Cells were collected, washed once with PBS and resuspended in serum-
free medium. Overall, 100,000 cells were plated per well and left to invade for 24 h.
The medium was removed and cells were stained using crystal violet (90%
methanol (80%); 10% formaldehyde; and 5 g l� 1 crystal violet) for 10–20 min.
After washing 3� with water, inserts were left to dry and any excess gel was
removed from the inside of the inserts using a Q-tip. Each condition was per-
formed in duplicate. Five pictures per transwell were taken and analysed for the
presence of cells using imageJ. The average number of cells across at least three
biological replicates was normalized and the significance was calculated using a
Student’s t-test.

Cell viability assay. Cells were plated at 10,000 cells per well in a 96-well plate.
After 24 h, cell viability was measured using the cellTiter-Glo luminescent cell
viability assay (Promega). Each condition was performed in triplicates. Averages
across three biological replicates were normalized and subjected to a Student’s
t-test for significance.

IC50 determination. Cells were plated at 10,000 or 3,000 cells per well in a 96-well
plate depending on the length of the experiment. After 24 h, a dilution series for
BRAF (PLX4032, Selleck Chemicals) or MEK inhibitor (Pimasertib, Selleck
Chemicals) was created ranging between 20 and 0.05 mM. Forty-eight or seventy-
eight hours after stimulation, cell viability was measured. Measurements were
normalized using cells treated with dimethylsulphoxide (DMSO) control as
maximal viability. Each condition was performed in triplicates and final data points
are the average of at least duplicate biological replicates. Curves were fitted and
IC50 calculated using a nonlinear regression analysis in Graphpad Prism (version
6.0 for mac OS X, GraphPad Software, San Diego, CA, USA, www.graphpad.com).

Western blot analysis. Cells were washed with ice-cold PBS and lysed in lysis
buffer (50 mM HEPES; 150 mM NaCl; 1 mM EGTA; 10 mM sodium pyropho-
sphate (pH 7.4)) containing 100 mM NaF, 10% glycerol, 1.5 mM MgCl2, 1% Triton
X-100, protease and phosphatase inhibitor (Roche). Extracts were incubated on ice
for 20 min and spun down at 20,800g for 20 min. Protein concentration was
determined using the BCA protein assay reagent (Pierce). Equal amounts of pro-
tein from each sample were separated with electrophoresis through SDS–PAGE
and transferred to a polyvinylidene difluoride membrane (Applichem). Membranes
were blocked for 1 h at room temperature in Tris-buffered saline containing 0.1%
Tween-20 (T-BST) and 5% nonfat dry milk. Membranes were incubated overnight
at 4 �C with primary antibody diluted in 5% nonfat dry milk in TBS-T. Proteins
were detected using antibodies against TEAD1 (1/2,000, BD Biosciences, 610922),
b-actin (1/50,000, Sigma, A2066), MITF (1/1,000, Abcam, ab12039), SOX10
(1/1,000, Santa Cruz, sc-17342) and EGFR (1/1,000, Cell Signaling Technology, no.
4267S). Membranes were then washed and incubated for 1 h at room temperature
with peroxidase-conjugated secondary antibody (Thermo Scientific) or 2 h with
horseradish peroxidase-labelled secondary antibodies (Cell Signaling Technology).
Protein bands were visualized using enhanced chemiluminescence as described by
the manufacturer (GE Healthcare, Amersham).

Analysis of the melanoma cell lines from CCLE. Raw expression values for 39
cell lines were downloaded from GEO and processed using the limma45 package in
R/Bioconductor platform. IC50 values for PLX4720 and AZD6244 were obtained
from the Supplementary Table 4 of ref. 41. Pearson’s correlation coefficient was
calculated between the IC50 value of the drug and the average expression of the
TEAD activity signature (which is composed of 112 genes that are predicted as
TEAD targets and also show log2FC4|1| with adjusted P-value threshold of 0.05 in
the TEAD KD experiment ( Supplementary Data 6) using cor.test function in R.

Drug inhibition assays. Overall, 200,000 cells were plated per six wells. Cells were
transfected to KD all TEADs as described above. On day 3, 10,000 or 3,000 cells
were seeded in 96 wells in triplicates. On day 4, variable concentrations ranging
between 60 and 0.05mM of BRAF inhibitor (PLX4032, Selleck Chemicals), MEK
inhibitor (Pimasertib, Selleck Chemicals) were added. Alternatively, BRAF or MEK
inhibitors were added at concentrations approximating the predicted IC50 value
for each individual culture to measure potential additive effect of the TEAD KD.
Cells treated with DMSO were used as a control and they signify maximum cell

viability. Forty-eight or seventy-two hours after stimulation, cell viability was
measured as described above. All measurements were carried out in triplicates.
Final data points are averages of at least three biological replicates. IC50 shift
curves were generated using the appropriate analysis protocol from Graphpad
Prism.
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