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Background: Immunotherapy with checkpoint inhibitors usually has a low

response rate in some cutaneous melanoma (CM) cases due to its cold

nature. Hence, identification of hot tumors is important to improve the

immunotherapeutic efficacy and prognoses of CMs.

Methods: Fatty acid (FA) metabolism-related genes were extracted from the

Gene Set Enrichment Analysis and used in the non-negativematrix factorization

(NMF), copy number variation frequency, tumor mutation burden (TMB), and

immune-related analyses, such as immunophenoscore (IPS). We generate a risk

model and a nomogram for predicting patient prognoses and predicted the

potential drugs for therapies using the Connectivity Map. Moreover, the NMF

and the risk model were validated in a cohort of cases in the GSE65904 and

GSE54467. At last, immunohistochemistry (IHC) was used for further validation.

Results: Based on the NMF of 11 FA metabolism-related DEGs, CM cases were

stratified into two clusters. Cluster 2 cases had the characteristics of a hot tumor

with higher immune infiltration levels, higher immune checkpoint (IC)

molecules expression levels, higher TMB, and more sensitivity to

immunotherapy and more potential immunotherapeutic drugs and were

identified as hot tumors for immunotherapy. The risk model and nomogram

displayed excellent predictor values. In addition, there were more small

potential molecule drugs for therapies of CM patients, such as ambroxol. In

immunohistochemistry (IHC), we could find that expression of PLA2G2D,

ACOXL, and KMO was upregulated in CM tissues, while the expression of

IL4I1, BBOX1, and CIDEA was reversed or not detected.

Conclusion: The transcriptome profiles of FA metabolism-related genes were

effective for distinguishing CM into hot–cold tumors. Our findings may be

valuable for development of effective immunotherapy for CM patients and for

proposing new therapy strategies.
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1 Introduction

Cutaneous melanoma (CM) is the most malignant of all skin

tumors (Bray et al., 2018). Most of the patients with CM are

diagnosed already at clinically detectable stage III with or without

in-transit metastases, which is called high-risk resectable

melanoma, and suffer from a high-risk relapse (up to 70%)

when treated with surgery alone (Gershenwald et al., 2017;

Schadendorf et al., 2018). Conventional surgical procedures

and chemotherapies are difficult to effectively cure CM due to

chemotherapy failure and severe adverse effects (Amaria et al.,

2019). As a result, patients diagnosed at an advanced stage of CM

have an extremely poor prognosis, with a 5-year survival rate of

less than 10% (Schadendorf et al., 2018; Allais et al., 2021). Over

the past decade, immunotherapy, such as immune checkpoint

inhibitors (ICIs), has significantly prolonged CM patients’ overall

survival (Hamid et al., 2019; Eggermont et al., 2021). Moreover,

those ICIs usually have lower toxicity, high life quality, and

treatment compliance in most CM patients. Unfortunately, the

therapeutic efficacy and response rate in CMpatients remain low.

On the other hand, not all CM patients benefit from ICIs,

although immunotherapy had achieved a lot. For example,

programmed cell death protein 1(PD-1) inhibitor therapy

usually has a response rate of one-third in CM (Galon and

Bruni, 2019; Salmon et al., 2019; Tang et al., 2020).

The effectiveness of immunotherapy depends on the levels of

circulating immune components in the body, CD8+ T cell

infiltration, and proliferative ability in the tumors (Galon and

Bruni, 2019; Salmon et al., 2019; Lopez de Rodas and Schalper,

2021). According to the immune infiltration level of tumors, we

could classify tumors into two categories, “hot” and “cold”. The

terms “hot” and “cold” are used to refer to T cell-infiltrated,

inflamed but non-infiltrated, and non-inflamed tumors (Galon

and Bruni, 2019). The hot tumors with high immune infiltration,

particularly for CD8+ T cells, usually are sensitive to

immunotherapy because the pre-stored immune cells can

effectively attack tumor cells following immunotherapy, such

as checkpoint inhibitors (Ochoa de Olza et al., 2020; Too et al.,

2021). Therefore, it is necessary to apply different treatment

strategies for cold and hot tumors. Actually, early transformation

of cold tumors into hot tumors can improve the efficacy of

immunotherapy and prognosis of patients (Ji et al., 2021; Li et al.,

2021).

It is well known that because of hypoxia and aggressive

growth, the TME usually has high oxidation of fatty acid (FA)

metabolism. In CM, lipid metabolism is associated with the

resistance to targeted therapeutic drugs by altered expression

of the FA transporter FATP2 (Alicea et al., 2020). A metabolic

reprogramming to FA oxidation (FAO) can regulate the

adaptation of BRAF-mutated melanoma to MAPK inhibitors

(Aloia et al., 2019). A strong FAO in dendritic cells can attenuate

therapeutic responses to anti-PD-1 treatment in melanoma by

modulating Wnt5a-β-catenin-PPAR-γ signaling (Zhao et al.,

2018). Moreover, the fatty acid receptor GPR120 may be a

new marker for human melanoma (Oh et al., 2010; Kleemann

et al., 2018).

However, the relationship between FA metabolism-related

genes and immunotherapy remains largely unclear in CM.

Moreover, there is little information on reliable biomarkers to

distinguish cold from hot tumors, including CM (Maleki Vareki,

2018; Long et al., 2022). In this study, we analyzed the FA

metabolism-related genes and immune infiltrates in CM and

after determining their prognostic values, we generated and

validated a risk model and nomogram. In addition, we

screened some small-molecule drugs. Our findings indicated

the risk model and clusters were valuable for prognosis and

predicting immunotherapeutic responses in CM patients.

2 Materials and methods

2.1 Date preparation

The RNA-seq profiles of 471 CM and one non-tumor

samples of the cancer genome atlas (TCGA),as well as

555 non-tumor skin specimens of the Genotype-Tissue

Expression Project (GTEx), were obtained from the University

of California Santa Cruz (UCSC). Batch normalization was

performed in the data set by the sva R package. The

differentially expressed genes (DEGs) were analyzed using

Counts format profiles and converted into TPM format

profiles for further analyses using the limma R package

(Stupnikov et al., 2021). Their clinical data, such as overall

survival (OS), and copy number, were also downloaded from

UCSC. Furthermore, RNA-seq profiles, survival status, and OS

time of CM patients were obtained from the GSE65904 and

GSE54467 datasets for external validation from Gene Expression

Omnibus (GEO). To reduce statistical bias, CM samples with

missing OS values or short OS values (< 30 days) were excluded

from all cohorts. As a result, 447 patients in the TCGA cohort

and 278 in the external validation cohort were used for analyses.

In addition, the fatty acid (FA) metabolism-related gene sets,

including M14568, M22474, M34207, M34208, M29237,

M23047, M15179, M16838, M25445, M23048, M13605,

M11966, M15385, M16969, M14401, M34091, M13290,

M11936, M14177, M12558, M16551, M13480, M15568,

M18199, M26370, M26153, M40674, M18978, M26866,

M26251, M5935, M36310, M37191, M11673, M29570,
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M27727, M27719, M14690, M22174, M6999, M13591, M10250,

M15813, M25014, M16181, M12334, M17829,M25044, M15938,

M23782, M22457, M40405, M40498, M699, M6995, M9927,

M15531, M27854, M39440, and M39596, containing 745 fatty

acid metabolism-related genes were extracted. Their intersection

genes were identified in the TCGA, GTEx, and external

validation cohorts using the VennDiagram R package.

Moreover, the tumor mutation burden data of these cohorts

were obtained from the TCGA database.

2.2 FA DEGs and NMF

FA metabolism-related DEGs between the CM and non-

tumor samples were identified, based on the criteria of a false

discovery rate (FDR) < 0.05 and an absolute value Log2 fold

change >1, using the limma R package in the TCGA and GTEx

synthetic Counts matrix (Deng et al., 2021). This synthetic matrix

had been normalized for identifying DEGs. Subsequently, 11 FA

metabolism-related DEGs were identified using univariate Cox

proportional hazard regression, and they had significant

prognostic values (all p < 0.05) using the limma and survival

R packages in the TCGA cohort (Zheng et al., 2021). These 11 FA

metabolism-related DEGs with potent prognostic values were

subjected to non-negative matrix factorization (NMF) analyses

for sample clustering by NMF and survival R packages (Zhuo

et al., 2020). The Kaplan–Meier survival curves of OS,

t-distributed stochastic neighbor embedding (t-SNE), and

Principal Component Analyses (PCA) of the clusters were

analyzed using the survminer, Rtsne, ggplot2, and

scatterplot3d R packages. Similar analyses were performed in

the external validation cohort.

2.3 Copy number alterations

The copy number variation (CNV) frequencies of these FA

metabolism-related prognostic genes were calculated, and their

locations in human chromosomes were identified using the

RCircos R package. For each prognostic gene, we compared

the immune infiltration levels of CM patients with different

somatic copy number alterations, such as deep deletion, arm-

level deletion, and diploid/normal, using the Tumor Immune

Estimation Resource (TIMER) (Kang et al., 2020).

2.4 Functional analysis

The potential functions and pathways of each set of genes in the

cluster were analyzed using the Gene Set Enrichment Analyses

(GSEA) software (https://www.gsea-msigdb.org/gsea/login jsp) and

Curated gene set (kegg. v7. 4. symbols. gmt). Multi-GSEA diagrams

were drawn using the plyr, grid, and gridExtra R packages.

2.5 Evaluation of immune infiltration

The immune infiltration of individual patients was analyzed

using the CIBERSORT (R scrip v 1.03), and their immune scores,

stromal scores, ESTIMATE (microenvironment) scores, and

tumor purity were compared using the estimate R package,

followed by visualizing them as the pheatmap using the ggtext

packages (Gui et al., 2021). Subsequently, the immune cell

infiltration, immune functions, and expression of genes for

checkpoints were compared using the GSVA, GSEABase,

ggpubr, reshape2, and limma R packages.

2.6 Tumor mutation burden analysis

The tumor mutation burden (TMB) data in the “Masked

Somatic Mutation” type were processed by VarScan2 and

analyzed in clusters using the maftools package (Koboldt

et al., 2012). Furthermore, their overall survival was estimated

by K–M survival analysis, and a box plot was made using the

survminer, survival, ggplot2, ggpubr, and ggExtra R packages.

2.7 Immunotherapy-related exploration

According to the results of comprehensive immunogenomic

analyses in The Cancer Immunome Atlas (TCIA), the response

of each patient to immunotherapy was predicted and compared

using the ggpubr R package (Charoentong et al., 2017).

Additionally, the potential immunotherapeutic function of

some drugs and their half-maximal inhibitory concentration

(IC50) in CM patients were predicted based on the data from

Genomics of Drug Sensitivity in Cancer (GDSC) using the

pRRophetic R package (Gui et al., 2021).

2.8 Construction and assessment of the
risk model and nomogram

CM patients were randomly divided into training and testing

sets. A risk model was generated using the least absolute

shrinkage and selection operator (LASSO) in the glmnet R

package. The risk score formula (Zheng et al., 2021):

Riskscore � ∑
n

k�1
coef (gene k) * expr (gene k)

The coef (gene) meant the coefficient of the gene in the risk

model, and expr (gene) was the expression of the gene in the risk

model. The status, survival time, heatmaps, Kaplan–Meier

survival analyses, and receiver operating characteristic (ROC)

curves of individual patients in the training, testing, and entire

sets were also analyzed using the pheatmap, survival, and

timeROC R packages. For validation, a risk score of each
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patient in the external validation cohort was calculated, and their

survival was estimated by the Kaplan–Meier survival analysis.

The specificity and sensitivity of this risk model were evaluated

by ROC analysis.

According to patient’s clinical data and risk scores, the

independent prognostic factors for worse survival were

identified using univariate Cox and multivariate Cox

regression analyses and used for the generation of a

nomogram using the nomogramEx and nomogramFormula R

packages. The concordance of the nomogram was analyzed by

the ROC curves using the timeROC and rms R packages.

2.9 Connectivity Map

For predicting potential small-molecule drugs that might

reverse high risk in CM, the whole overlapping genes, including

the upregulated and downregulated genes, were submitted into

the CMap database (https://portals.broadinstitute.org/cmap/).

The drugs with enrichment scores between −1 and 0 were

considered candidate drugs for CM (all p < 0.05) (Gui et al.,

2021).

2.10 Validation of protein expressions of
FA metabolism-related genes by the
Human Protein Atlas

2.10.1 Database
The protein expression of the FA metabolism-related genes

between CM and normal tissues was determined using

immunohistochemistry (IHC) from the Human Protein Atlas

database (HPA) as well as our own preserved patients’ tissue

paraffin slides (Thul and Lindskog, 2018).

2.11 Histopathology

The tumor tissues were fixed in 10% formalin overnight and

paraffin-embedded. The tissue sections (5 µm) were regularly

stained with immunohistochemistry (IHC) staining. The stained

tissue sections were photo-imaged and observed under a light

microscope. The primary antibodies were used at 1:200 for

CIDEA (Abcam, ab191193), ACOXL (Proteintech, 23366-1-

AP), PLA2G2D (Abcam, ab47118), and 1:400 for KMO

(Abcam, ab233529).

2.12 Statistical analysis

We made analyses with R version 3.6.3 (http://www.R-

project.org) and its appropriate packages. All involved

packages were described in MATERIALS AND METHODS.

Data were analyzed with standard statistical tests as

appropriate, while multiple testing was adjusted by the FDR

method by R (Gui et al., 2021). Statistical significance was

observed when p < 0.05.

3 Result

3.1 FA metabolism-related differentially
expressed genes and NMF clusters

A total of 745 FAmetabolism-related genes were identified in

CM from the GSEA (Supplementary Table S1). Similarly, 533 of

them were identified in CM from the GTEx, TCGA, GSE65904,

and GSE54467 (Figure 1A). There were 51 DEGs in the TCGA

cohort. Of them, 17 were upregulated and the others were

downregulated (Figure 1B). Further analyses indicated that

11 DEGs were associated with the prognosis of CM (all p <
0.05, Figure 1C). Of them, ALOX12B, CYP4F3, ALDH3A1,

CIDEA, and BBOX1 were upregulated in CM, while the others

were downregulated.

Based on comprehensive correlation coefficients and all

heatmaps, we found the optimal total cluster number was set

to k = 2 (Figures 1D,E). The heatmap (k = 2) indicated a clear

boundary (Figure 1F). Compared with cluster 2, patients in

cluster 1 had a worse OS (Figure 1G). To further verify the

cluster distribution, the t-SNE, 2D PCA, and 3D PCA analyses

clearly separated these prognostic genes (Figures 1H–J).

3.2 External verification of NMF clusters
and analyses of copy number in CM

In the external verification cohort, the optimal total cluster

number was k = 2 in NMF. The difference between the two

clusters and their NMF ranks are displayed (Figure 2A,

Supplementary Figures S1A,B). In addition, the t-SNE, PCA,

and Kaplan–Meier survival curves of OS analyses revealed their

distribution, and patients in cluster B had a worse OS in this

population (Figures 2B–E).

Next, we calculated the CNV frequency of 11 prognostic

genes and located them in human chromosomes. The

percentages of gain CNV of KMO, KCNJ10, CYP4F3, and

BBOX1 were higher than those of the loss, while the

frequency of gain CNV of PLA2G2D, GPR31, IL4I1, ACOXL,

ALDH3A1, ALOX12B, and CIDEA was lower than that of loss

(Figure 2F). As a result, the KMO, KCNJ10, CYP4F3, and BBOX1

genes were marked in red, and the PLA2G2D, GPR31, IL4I1,

ACOXL, ALDH3A1, ALOX12B, and CIDEA were marked in blue

on RCircos 2D track plots (Figure 2G). Furthermore, we explored

the changes in immune cell infiltration with a copy number

alteration of prognostic genes in CM. Alterations of these genes

were associated with infiltration levels of CD8+ T cells or other
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FIGURE 1
Identification of fatty acid metabolism-related genes in four gene subsets and clusters in the TCGA CM cohort. (A) Venn diagram displayed FA
metabolism-related genes in CM cases from TCGA, GTEx, GSE65904, and GSE54467. (B) Volcano plot of 51 FAmetabolism-related DEGs. (C) Forest
plot of prognostic FA metabolism-related DEGs. (D) All the heatmaps of NMF consensus clustering. (E) NMF rank survey of cophenetic, dispersion,
evar, residuals, rss, silhouette, and sparseness coefficients. (F) Heatmap of two clusters of CM. (G) Kaplan–Meier survival curves of OS in these
clusters of CM cases. (H–J) t-SNE, PCA, and 3D PCA separated two clusters of CM. A p value of <0.05 was considered to indicate a statistically
significant difference.
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FIGURE 2
External validation and copy number analyses. (A)Heatmap of two clusters of cases in the external validation cohort. (B–D) t-SNE, PCA, and 3D
PCA separated two clusters of CM cases in the external validation cohort. (E) Kaplan–Meier survival curves of OS in two clusters of CM cases in the
external validation cohort. (F) CNV frequency of 11 FA metabolism-related genes. (G) CNV of prognostic genes on RCircos 2D track plot with the
human genome. (H) Different types of immune infiltrates among samples with copy number of the indicated genes. Ns means no significant
difference, *p < 0.05, **p < 0.01 and ***p < 0.001. A p value of <0.05 was considered to indicate a statistically significant difference.
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FIGURE 3
Analyses of tumor immune characteristics and TMB in these two clusters of CM cases. (A)Multi-GSEA analyses of cluster 2 CM cases. (B)multi-
GSEA analyses of cluster 1 CM cases. (C) Heatmap of immune infiltrates between two clusters of CM cases. (D) Correlation coefficient of immune
infiltrates in two clusters of CM cases. (E,F) Single-sample GSEA scores of immune cells and immune functions in two clusters of CM cases. (G)
Comparisons of genes for expression of 40 checkpoints between two clusters of CM cases. (H) Comparisons of immune-related scores in two
clusters of CM cases. (I,J)Waterfall plot of TMB of individual patients in cluster 1 and cluster 2. (K) Kaplan–Meier analysis of OS between the low- and
high-TMB groups of CM cases. (L) Kaplan–Meier analysis of OS among four groups of CM cases. *p < 0.05, **p < 0.01, and ***p < 0.001. A p value
of <0.05 was considered to indicate a statistically significant difference.
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immune cells (Figure 2H). These indicated that clusters of CM

with varying prognostic genes had different immune

microenvironments, leading to different responses to

immunotherapy (O’Sullivan et al., 2019).

3.3 Analyses of the immune
microenvironment and TMB in CM

We performed GSEA to explore the biological functions of

these clusters. Cluster 2 and cluster 1 of genes were involved in

the top 15 pathways (all p < 0.05, FDR <0.05, |NES|>1.8,
Supplementary Figures S1C,D). In cluster 2, almost all of the

enriched pathways were associated with immunity, such as

chemokine signaling, and natural killer cell-mediated

cytotoxicity (Figure 3A) (Chow and Luster, 2014; Taniguchi

and Karin, 2018). On the contrary, six out of the top

15 pathways enriched by the genes in cluster 1 were

associated with FA metabolism, such as arachidonic acid

metabolism, four pathways were related to tumor growth, and

two were related to drug metabolism (Figure 3B). According to

the heatmap of immune cell infiltration, we felt that the cluster

2 had a higher immune cell infiltration level, lower tumor purity,

and more active immunity (Figure 3C). In the immune cell

bubble chart, cluster 2 of CM had more immune cell

infiltrates (Figure 3D, Supplementary Data Sheet S1). Based

on the single-sample GSEA scores for immune cells and

immune functions, 13 types of immune cells, such as CD8+

T cells, and 12 immune functions, such as inflammation-

promoting and check-point, had a higher score in cluster 2 of

CM (ns means no significant difference, *p < 0.05, **p < 0.01, and

***p < 0.001, Figures 3E,F). Of course, almost all immune

checkpoint genes, such as CD274 (PD-L1), CTLA4, HAVCR2

(TIME3),and LAG3, displayed a higher activation in cluster 2

(Figure 3G) (Galon and Bruni, 2019). Cluster 2 had a high

immune score, stromal score, and ESTIMATE score

(microenvironment score, Figure 3H). Therefore, cluster 2 of

CM was considered the hot tumor to respond to immunotherapy

because cluster 2 of CM displayed the characteristics of hot

immune tumors, such as a high degree of CD8+ T cells, high

immune score, more active immune functions, and higher

expression of CTLA4, TIM3, and LAG3 (Galon and Bruni,

2019; Zheng et al., 2021). Previous studies have shown that a

high TMB is significantly associated with improved OS and

benefits from immunotherapy, such as CTLA-4 blockade, and

the TMB has been considered a potential immunotherapy

parameter (Snyder et al., 2014; Mahoney et al., 2015; Chan

et al., 2019). Hence, we analyzed the TMB of CM in the

TCGA cohort to explore the responses of these clusters of

CM to immunotherapy. The TMB frequency in cluster 2 of

CM (92.74%) was higher than that of cluster 1 (85.88%) (Figures

3I,J). Consistently, the high-TMB group (H-TMB) of CM

patients had better OS than those in the low-TMB group

(L-TMB) (Figure 3K). Stratification analysis revealed that CM

patients with high TMB displayed a better OS than those with

low-TMB in both clusters (Figure 3L).

3.4 Investigation in immunotherapy

Compared with cluster 1, CM in cluster 2 possessed

significantly higher TMB (Figure 4A). Accordingly, we

investigated immune checkpoint-related scores in these

clusters of CM. Compared with cluster 1 CM, cluster 2 CMs

had significantly higher both PD-1 and CTLA4

immunophenoscore (IPS, Figure 4B). In addition, CM patients

in cluster 2 were likely to be more sensitive to 12 potential

immunotherapy-related drugs with lower IC50 than those in

cluster 1 (Figure 4C) (Haikala et al., 2019; Song et al., 2019).

3.5 Risk model and external verification

With the LASSO regression analyses, a risk model of seven

genes was established after control of the first-rank value of

Log(λ) at the minimum likelihood of deviance (Figures 5A,B).

The risk score formula was Risk score = KMO × (−0.0032) +

CYP4F3 × (−0.0054) + ACOXL × (−0.0220) + CIDEA × 0.0135 +

IL4I1 × (−0.0039) + PLA2G2D × (−0.0033) + BBOX1 × 0.0048.

In addition, analyses of the survival status, survival time,

expression of seven genes, and OS of patients clearly

separated between low- and high-risk groups of CM patients

in the training, testing, and entire sets of cases (Figures 5C–N).

Hence, CM patients in the low-risk group displayed a better

prognosis. The AUC for 1-, 2- and 3-year OS in the training set of

cases was 0.671, 0.703, and 0.701, that of the testing set of cases

was 0.664, 0.665, and 0.654, and that of the entire sets of cases was

0.663, 0.682, 0.676, respectively (Figures 5O–Q). After analyzing

the clinical characteristic of the patients, we found our risk model

was also available in age, gender, tumor stage, T stage. and N

stage (Supplementary Figure S2A). Furthermore, stratification of

CM patients was carried out into low- and high-risk groups, and

the t-SNE, 2D PCA, and 3D PCA clearly separated them

(Supplementary Figures S3A). Further validation revealed that

CM patients in the low-risk group exhibited significantly better

OS than those in the high-risk group (p = 0.002, Figure 5R). The

AUC for 1-, 2-, and 3-year OS in the external validation cohort

were 0.668, 0.684, and 0.690, respectively (Figure 5S).

3.6 Construction and assessment of a
nomogram

The univariate Cox (uni-Cox) and multivariate Cox (multi-

Cox) regression analyses indicated that patient’s age, tumor T

stage, tumor N stage, and risk score were independent risk factors
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for prognosis of CM patients. Their independent risk factors were

associated with a worse prognosis for CM patients with hazard

ratios and a 95% confidence interval (CI) (Figures 6A,B). With

these four independent prognostic indexes, a nomogram was

generated (Figure 6C). The AUC of a nomogram for 1-, 2-, and 3-

year OS of CM patients was 0.766, 0.816, and 0.816, respectively

(Figure 6D). The calibration plots of the nomogram for 1-, 2-,

and 3-year OS of CM patients had a good concordance with the

prediction (Figure 6E).

3.7 The potential value of the risk model in
clinical application

Among the top 15 signaling pathways, 11 signaling pathways

were associated with immunity, such as the T cell receptor

signaling (all p < 0.05, FDR <0.05, |NES|>2.3) (Supplementary

Figure S3B) (Courtney et al., 2018). The immune heatmap

exhibited that CM in the low-risk group had more types of

immune cells (Supplementary Figure S3C, Supplementary Data

Sheet S2). The levels of CD8+ T, B cell infiltrates, and other types

of immune cells were also correlated with lower risk scores

(Supplementary Figures S3D). Furthermore, CM in the low-

risk group had higher immune scores (Supplementary Figures

S3E). Thus, we tried to explore potential immunotherapy-related

drugs for these risk groups of CM. As a result, we found that four

drugs, such as metformin, had significantly different IC50

between both risk groups of CM (Figure 7A) (O’Sullivan

et al., 2019; Cha et al., 2018). A total of five most related

small-molecule drugs, ambroxol, tiletamine, mimosine,

esculetin, and pizotifen, were identified (all p < 0.05), based

on upregulated and downregulated gene expression between the

low- and high-risk groups of CM (Supplementary Data Sheet S3)

(Gui et al., 2021). Their 2D and 3D structure tomography are is in

Figures 7B,C.

3.8 Verification of the protein expression
of FA metabolism-related genes in normal
skin and CM tissue

Finally, we further validated the expression of these key genes

in normal skin and CM tissues. Melanoma arises from

melanocytes in the epidermal layer of the skin, so we focused

on the expression of these proteins in the epidermis. First, we

searched the immunohistochemical slide information through

the public database on the HPA website and found that the

expression of IL4I1 in normal skin epidermis was higher than

that in CM tissue, while BBOX1 protein was not detected in

normal skin (Figures 8A,B). Next, our own

FIGURE 4
Comparisons of TMB, immune checkpoint gene expression, and drug sensitivity between two clusters of CM cases. (A) Levels of TMB in two
clusters of CM cases. (B) PD-1 and/orCTLA4 in two clusters of CM cases. (C) Prediction of potential therapeutic drugs IC50 in two clusters of cases. A
p value of <0.05 was considered to indicate a statistically significant difference.

Frontiers in Genetics frontiersin.org09

Dong et al. 10.3389/fgene.2022.860067

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.860067


FIGURE 5
Construction and validation of the risk model. (A,B) Constructing a risk model of seven genes by LASSO regression. (C–E) Risk scores of the
training, testing, and entire sets, respectively. (F–H) Survival status of individual cases between the low- and high-risk groups in the training, testing,
and entire sets. (I–K) Heatmap of seven gene expression in the training, testing, and entire sets of CM cases. (L–N) Kaplan–Meier analysis of OS
between the low- and high-risk groups of CM cases in the training, testing, and entire sets. (O–Q) ROC curves for 1-, 2- and 3-year OS of CM
cases in the training, testing, and entire sets. (R) External validation of the risk model. (S) ROC curves for 1-, 2- and 3-year OS of CM case in the
external validation cohort. A p value of <0.05 was considered to indicate a statistically significant difference.
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immunohistochemical results showed that the expression of

PLA2G2D, ACOXL, and KMO was higher in normal

epidermal tissue than in CM tissue; however, the expression

of CIDEA was reversed (Figures 8C–F).

4 Discussion

Currently, immunotherapy has been widely used in CM and

achieved a good therapeutic effect in some CM patients. However,

the therapeutic response rate of immunotherapies, particularly

checkpoint inhibitors for CM patients remains low. It has been

demonstrated that hot tumors usually respond to immunotherapies

because they contain a lot of CD8+ T cell infiltrates with a higher

immune score, high expression of immune checkpoints (e.g., PD-1

and CTLA4), and active inflammatory response. On the other hand,

cold tumors generally do not respond well to immunotherapy

although switching cold tumors into hot tumors by promoting

immune cell infiltration into the tumor environment is feasible

(Herrera et al., 2021). Therefore, the discovery of biomarkers to

distinguish between cold and hot tumors is particularly important

for immunotherapy.

A recent study has reported that tumor cell metabolism is

crucial for shaping the tumor microenvironment and its

FIGURE 6
Construction and assessment of a nomogram. (A,B) Univariate and multivariate Cox analyses of clinical characteristics to identify independent
risk factors for worse OS. (C) A nomogram based on age, T, N stage, and risk scores. (D) ROC curves for 1-, 2- and 3-year OS of CM cases using the
nomogram. (E) Calibration ROS curves for 1-, 2- and 3-year OS.
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dysregulation is not only associated with the growth of

tumors, but also with the therapeutic responses to

immunotherapies (O’Sullivan et al., 2019). In addition,

cancer cells can undergo metabolic reprogramming to

support their survival when carcinogenic signals are

blocked (DeBerardinis, 2020). FA, as a kind of important

lipid molecule and energy source, is important for the growth

of tumors and their therapeutic responses. The accumulation

of FAs in the tumor microenvironment can affect the function

and phenotype of immune cell infiltrates and FAO is crucial

for CM metastasis and immune evasion (Li et al., 2018;

Pascual et al., 2021). The accumulated FAs can limit anti-

CTLA-4 activity and inhibit tumor-specific and memory T cell

infiltration into the tumors (Coutzac et al., 2020). In this

study, we screened the FA metabolism-related DEGs in CM

and found several DEGs had prognostic values in CM patients.

Based on unique DEGs, we stratified CM patients into two

clusters. In addition, we found that the frequency of CNV was

critical for immune infiltrates in tumors and associated with

the immunotherapeutic responses in CM patients, consistent

with a previous report (Yang et al., 2021). Further analyses

revealed that CM patients in Cluster 2 not only had more

immune cell infiltrates (e.g., CD8+ T and B), higher immune

infiltration score, and more active immune function (e.g.,

Inflammatory promotion) but also displayed a higher

immune checkpoint activity, such as CTLA4, CD274 (PD-

FIGURE 7
Clinical prediction of drug sensitivity in CM cases between two clusters or two risk groups. (A) Four potential drugs solely had significant IC50

differences between these two risk groups. (B,C) 2D structure illustrations and the 3D structure tomography of five candidate small-molecule drugs
for CM. A p value of <0.05 was considered to indicate a statistically significant difference.
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L1), HAVCR2 (TIME3), and LAG3. Hence, the CM patients in

cluster 2 had most of the characteristics of a hot tumor and

might respond better to immunotherapy.

It is well known that a high TMB is associated with better

immunotherapeutic responses in tumor patients. Tumor with

a high TMB usually has a higher level of neoantigens, which

can promote immune cell infiltration, enhancing the effect of

immunotherapy (Maleki Vareki, 2018). We found that the

TMB in the cluster 2 CM was significantly higher than that of

the cluster 1 and was expected to have better survival.

Similarly, CM in cluster 2 displayed higher levels of PD-1

and CTLA4 expression and a lower IC50 for many potential

immunotherapeutic agents. Therefore, cluster analysis of the

FA metabolism-related genes in CM effectively stratified

patients for rational immunotherapy.

To predict patients’ prognoses and explore the clinical

application of FA metabolism-related genes in CM, we

constructed a risk model using several FA metabolism-

related DEGs, and validation revealed that this risk model

had excellent sensitivity and specificity in separating CM

patients for prognosis of OS in CM patients and their

potential systemic therapy. Subsequently, we generated a

nomogram using several independent risk factors, such as

risk scores, age, tumor N stage, and T stage, and found that

this nomogram had good validity and credibility for prognosis

of CM patients.

FIGURE 8
Expression of FAmetabolism-related genes in normal skin and CM tissues. (A,B) IHC of the IL4I1 and BBOX1 in CM and normal skin tissues from
HPA. (C–F) IHC of the PLA2G2D, ACOXL, KMO, and CIDEA in normal skin and CM tissues (n = 3), Scale bar = 100 µm. (G) Quantitative studies of
PLA2G2D, ACOXL, KMO, and CIDEA were analyzed by counting the integrated optical density, respectively.
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Furthermore, five small-molecule drugs with potential

therapeutic value were screened out through Cmap

analysis, and they included ambroxol, tiletamine,

mimosine, esculetin, and pizotifen. Previous studies have

shown that tiletamine has potent cytotoxicity against

melanoma cells by promoting ROS production and

inducing cell cycle arrest, leading to melanoma cell

apoptosis (Kyriakou et al., 2020). A combination of

paclitaxel and ambroxol can synergistically kill lung cancer

cells (He et al., 2020). Esculetin can inhibit the proliferation of

pancreatic cancer cells to modulate their apoptosis by

enhancing KEAP1 activity (Arora et al., 2016). Pizotifen

has antitumor activity and is commonly used in

gastrointestinal cancers. These small-molecule drugs may

also have a potential therapeutic effect on CM (Jiang et al.,

2020). Therefore, the FA metabolism can not only be used as a

liquid biopsy method to quickly and effectively separate the

cold from hot tumors to assist in rational immunotherapy but

also predict patients’ prognosis and potential treatment drugs.

The DEGs for separating clusters in our study are

associated with development and progression of several

types of malignancies. ALDH3A1 over-expression can

enhance the secretion of PD-L1 in melanoma cells in vitro,

and the levels of ALDH3A1 expression are consistently

correlated with those of PD-L1 and COX-2 in clinical

melanoma and lung cancer samples (Terzuoli et al., 2019).

ALOX12B, an immunosuppressive factor, can inhibit

immunity and promote tumor progression (Uderhardt

et al., 2012; Rooney et al., 2015). BBOX1 inhibitors can

restrain the progression of triple-negative breast cancer

(Liao et al., 2020). CYP4F3 has been identified as a cancer

promoter of lung cancer (Yin et al., 2017). PLA2G2D has been

found to have potential as a potential biomarker of adaptive

resistance to immune checkpoint inhibitors (Cindy Yang

et al., 2021). However, PLA2G2D expression is associated

with delayed tumor growth by enhancing anti-tumor

immunity in a mouse model of skin cancer (Miki et al.,

2013). The IL-1β expression is significantly upregulated in

glioblastoma and negatively correlated with the expression

levels of KCNJ10, suggesting that KCNJ10 may promote

inflammation in the TME (Brandalise et al., 2020). Except

for ALDH3A1, the precise roles of other factors we studied in

CM remain to be determined. Our findings may provide new

insights into the mechanisms underlying the immune

regulation of CM.

We recognized that our studies had limitations. First, we

only obtained data from TCGA and other public databases,

but we did not explore real clinical samples to validate our

findings. Second, although several independent data sets

were used for validation of our findings, the retrospective

study in nature might have potential bias. Therefore, the

reliability and values of this model need to be further

validated by well-designed prospective, multi-center,

large-scale studies. However, our findings may provide a

reliable reference for the specific interpretation of metabolic

reprogramming in CM. It is worth mentioning that the risk

model and nomogram have good clinical prognostic value,

and the cluster analysis may help improve the current

predicament in predicting immunotherapeutic responses

of CM patients. Furthermore, our cluster analyses and

model may be valuable for development of new

therapeutic strategies for precision medicine and

personalized immunotherapy and may contribute to

improving the prognoses of CM patients.

5 Conclusion

Our data indicated that the FA metabolism-related DEGs

were effective for identification of hot tumors and improving

immunotherapeutic responses and prognosis of CM.

Exploring the mechanism underlying disordered FA

metabolism may help not only for precision medicine but

also for developing immunotherapy strategies for CM.
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SUPPLEMENTARY FIGURE S1
NMF of the external validation cohort and GSEA of clusters in the
TCGA cohort. (A,B) All the heatmaps and NMF rank surveys of the
external validation cohort. (C) GSEA of cluster 2 CM in the TCGA
cohort. (D) GSEA of cluster 1 CM in the TCGA cohort.

SUPPLEMENTARY FIGURE S2
Prognosis value of the risk model.

SUPPLEMENTARY FIGURE S3
Clinical analyses of risk group CM patients. (A) t-SNE, PCA, and 3D
PCA of risk groups. (B) GSEA of the low-risk group. (C) Immune
heatmap of risk groups. (D) Correlation between risk scores and
immune infiltrates. (E) Comparisons of immune-related scores in risk
groups. *p<0.05, **p<0.01, and ***p<0.001. A p value of < 0.05 was
considered to indicate a statistically significant difference.
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