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Abstract

A central question in evolutionary biology is how interactions between organisms

and the environment shape genetic differentiation. The pathogen Batrachochytri-

um dendrobatidis (Bd) has caused variable population declines in the lowland

leopard frog (Lithobates yavapaiensis); thus, disease has potentially shaped, or

been shaped by, host genetic diversity. Environmental factors can also influence

both amphibian immunity and Bd virulence, confounding our ability to assess

the genetic effects on disease dynamics. Here, we used genetics, pathogen dynam-

ics, and environmental data to characterize L. yavapaiensis populations, estimate

migration, and determine relative contributions of genetic and environmental

factors in predicting Bd dynamics. We found that the two uninfected populations

belonged to a single genetic deme, whereas each infected population was geneti-

cally unique. We detected an outlier locus that deviated from neutral expectations

and was significantly correlated with mortality within populations. Across popu-

lations, only environmental variables predicted infection intensity, whereas envi-

ronment and genetics predicted infection prevalence, and genetic diversity alone

predicted mortality. At one locality with geothermally elevated water tempera-

tures, migration estimates revealed source–sink dynamics that have likely pre-

vented local adaptation. We conclude that integrating genetic and environmental

variation among populations provides a better understanding of Bd spatial epide-

miology, generating more effective conservation management strategies for miti-

gating amphibian declines.

Introduction

Infectious diseases are potent agents of natural selection

(Darwin 1871) that impact population demography and

population genetic variation, even at ecological timescales

(Tishkoff and Verrelli 2003; Campbell et al. 2010). Genetic

mechanisms of host resistance, host tolerance, and patho-

gen virulence are well known in many human (Feng et al.

2004; Barreiro and Quintana-Murci 2010) and plant (Flor

1956; Fineblum and Rausher 1995) disease systems, but far

less is known about the genetic basis for evolving disease

resistance in natural animal populations. Studies of wildlife

populations commonly find a positive correlation between

host genetic diversity and disease resistance (Meagher 1999;

Pearman and Garner 2005), a pattern attributed to higher

adaptive potential in genetically diverse populations or

species (Frankham 2005). In contrast, other studies of

host–pathogen systems detect no relationship between

genetic variability of the host and prevalence of the patho-

gen (Ortego et al. 2007; Hawley et al. 2010). A simple rela-

tionship between host population genetics and pathogen

dynamics may be unlikely, given the multitude of environ-

mental factors that can influence disease in natural popula-

tions (Osnas and Lively 2004). Indeed, epidemiological

researchers highlight the need for studies integrating

genetic, spatial, and environmental processes influencing

pathogen dynamics and host population genetics (Balken-

hol et al. 2009; Biek and Real 2010).

Chytridiomycosis is an emerging infectious disease

caused by the fungus Batrachochytrium dendrobatidis (Bd)

that has caused population declines or extinction in hun-

dreds of amphibian species worldwide (Skerratt et al. 2007;
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Fisher et al. 2012). Regional or population-level differences

in Bd dynamics (Garner et al. 2006; Lips et al. 2006) are

often attributed to climatic factors that affect Bd growth

and/or persistence (Rohr et al. 2008). Although laboratory

and field studies confirm Bd virulence is influenced by

environmental variables such as latitude, elevation, precipi-

tation, and temperature (Carey et al. 2006; Kriger et al.

2007; Brem and Lips 2008; Rohr et al. 2011), few studies

have examined host genetic variability underlying chytridi-

omycosis susceptibility, or how the evolution of genetically

resistant populations may occur across variable landscapes.

To date, genetic studies of host susceptibility have focused

on patterns of gene expression (Rosenblum et al. 2009,

2012; Ellison et al. 2014) and variation in innate or

acquired immune genes (Woodhams et al. 2007; Savage

and Zamudio 2011; Savage et al. 2014), but those data

originated from laboratory experiments and did not explic-

itly consider population genetic composition during or

after outbreaks of chytridiomycosis. To fully understand

disease outcome in natural populations, we need more

information about the distribution of genetic variability in

natural populations, and how it relates to the evolutionary

potential for disease resistance under natural environmen-

tal conditions.

The lowland leopard frog, Lithobates yavapaiensis, is a

stream-dwelling amphibian that inhabits desert regions of

southwestern North America. Historically, L. yavapaiensis

populations expanded from northwestern Arizona into

northern Mexico during the Pleistocene (Ol�ah-Hemmings

et al. 2010). However, in recent decades, L. yavapaiensis

has experienced population declines and range contrac-

tions (Clarkson and Rorabaugh 1989) due in part to chy-

tridiomycosis outbreaks (Bradley et al. 2002; Savage et al.

2011). The persistence of multiple isolated populations

following dramatic chytridiomycosis declines in the 1990s

(Bradley et al. 2002; Schlaepfer et al. 2007; Savage et al.

2011) and Bd infection since at least 1974 (Hale et al.

2005) indicate that Bd resistance may have evolved in

some populations. However, environmental variables are

also important drivers of disease outcomes in this system.

Lithobates yavapaiensis is one of several native southwest-

ern US frog species to inhabit both geothermal and non-

geothermal aquatic habitats (Bradford et al. 2004;

Schlaepfer et al. 2007), and populations inhabiting ponds

or streams with elevated water temperatures due to geo-

thermal activity show significantly lower Bd infection

prevalence than populations from nongeothermal environ-

ments (Forrest and Schlaepfer 2011; Savage et al. 2011).

Thus, L. yavapaiensis is an ideal candidate for quantifying

the evolutionary genetic consequences of an emerging

infectious disease in a complex system with multiple envi-

ronmental and genetic variables potentially influencing

virulence.

Here, we characterize population genetic variation

among L. yavapaiensis populations and look for associa-

tions between genetic polymorphism, environmental varia-

tion, and Bd disease dynamics. Chytridiomycosis varies

spatially and temporally in L. yavapaiensis populations,

causing mortality only in winter and only in some popula-

tions (Bradley et al. 2002; Savage et al. 2011). Thus, we use

winter Bd infection and mortality estimates, multilocus

host genotypes, and a suite of environmental variables to

explore the relationship between host, pathogen, and envi-

ronment in shaping Bd dynamics. We identify whether

each genetic locus has a signature of neutral evolution or

selection and analyze each selective category separately.

Within populations, where individuals face equivalent

environmental regimes, we look for disease associations

between individual genetic markers and Bd mortality.

Among populations, where individuals may face distinct

environmental conditions, we consider the relative roles of

host population genetics and environmental variables in

predicting Bd dynamics. Finally, we hone in on the inter-

play between host, pathogen, and environment in a single

locality where geothermal activity creates a disease selection

gradient that drives population genetics, highlighting the

fine scale of investigation that is necessary to understand

the microevolutionary dynamics of host–pathogen systems.

Together, our analyses provide insight into past and pres-

ent interactions of host population genetics with pathogen

dynamics and environmental variation in a declining

amphibian species, with implications for management and

conservation strategies for this and other species affected

by Bd.

Materials and methods

Pathogen quantification and host genotyping in

geothermal and nongeothermal environments

To quantify Bd dynamics, we collected epidermal swabs

and observational data on Bd-associated morbidity and

mortality from 12 L. yavapaiensis population localities in

Arizona, USA, in January and February of 2007–2010 (win-
ter samples from Savage et al. 2011) and January 2011

(Table S4). We pooled all samples from each locality across

years and used these field demographic surveys and quanti-

tative (q)PCR to quantify (i) Bd infection intensity (the

number of genome equivalents, or GE) per swab (Hyatt

et al. 2007), (ii) Bd infection prevalence (the proportion of

swabbed frogs with a positive Bd qPCR test), and (iii) Bd

mortality prevalence (the proportion of encountered frogs

found dead or dying with visible signs of chytridiomycosis

and a positive Bd qPCR test) (Savage et al. 2011). Most of

our localities are riparian zones along tributaries of major

rivers. One notable exception is the Muleshoe Ranch (MR)

locality, which includes three subpopulations with variable
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environmental conditions: (i) The Hot Spring (MRHS) is a

series of small interconnected pools heated by geothermal

activity that are constantly at >30°C, (ii) the Secret Spring
(MRSS) is a pond fed by another geothermal spring that is

>30°C at the source but below 30°C elsewhere, and (iii)

Bass Canyon (MRBC) is a nearby canyon stream that is not

fed by a thermal spring (Forrest and Schlaepfer 2011;

Savage et al. 2011). Each MR subpopulation was consid-

ered separately in all analyses because geothermal springs

with elevated water temperatures can significantly alter Bd

disease dynamics in Arizona populations of L. yavapaiensis

(Forrest and Schlaepfer 2011).

For population genetic analyses, we collected toe tips in

summer and winter of 2006–2011, preserved them in 95%

ethanol, and genotyped all individuals at 14 unlinked

microsatellite loci (Savage and Jaeger 2009). Many of these

individuals were also swabbed for Bd infection metrics, pre-

sented either in this study or in Savage et al. (2011), but

genetic anlyses are novel to this study. We pooled all sam-

ples from each locality across years for all subsequent

analyses. We extracted genomic DNA using a 5% Chelex

100 solution (Bio-Rad Laboratories, Hercules, CA, USA)

for use as templates in PCRs using previously published

conditions (Savage and Jaeger 2009). Amplified products

were electrophoresed on a 3730 Genetic Analyzer (Applied

Biosystems, Carlsbad, CA, USA), sized using the LIZ-500

standard in the program GeneMapper v. 3.5 (Applied

Biosystems), and tested for scoring errors and null alleles

using MICRO-CHECKER 2.2.3 (van Oosterhout et al.

2004).

Population genetic analyses and identification of outlier

loci

We used STRUCTURE v. 2.1 (Pritchard et al. 2000a) to

identify the most likely number of genetic demes (K) repre-

sented in our sample, allowing for admixture and assuming

uncorrelated gene frequencies. We ran 20 independent runs

for each value of K, each with 3 000 000 Markov chain

Monte Carlo (MCMC) iterations after a burn-in of

1 000 000 iterations; we assessed convergence by examin-

ing summary statistics (Pritchard et al. 2000a) and used

the second-order rate of change to determine the most

likely value of K (Evanno et al. 2005).

We used GENEPOP v. 3.4 (Rousset and Raymond 1995)

to calculate the observed and expected heterozygosity (HO

and HE), inbreeding (FIS), allelic richness (AR), and to test

for deviations from Hardy–Weinberg equilibrium (HWE)

at each locus and population locality using MCMC (1000

dememorizations, 100 batches, 1000 iterations) and Bon-

ferroni correction for multiple tests. We estimated D, a

measure of the fraction of allelic variation among popula-

tions (Jost 2008), for all loci and population pairs using

SMOGD v. 1.2.5 (Crawford 2009) and computed pairwise

FST values and tested for linkage disequilibrium at each

locus over all populations using FSTAT 2.1 (Goudet 1995).

We characterized migration among populations using

BAYESASS v. 1.3 (Wilson and Rannala 2003) with a

1 000 000 burn-in, 9 000 000 iterations, and sampling

every 2000 iterations. We tested for significant differences

in mean population genetic parameters (HO, FIS, and AR)

among populations with distinct Bd disease dynamics. Spe-

cifically, we compared susceptible populations (where both

Bd infection and Bd-associated mortality occur), tolerant

populations (where Bd infection occurs with no Bd-associ-

ated mortality), and uninfected populations (where Bd

infection has not been detected) using Bartlett’s tests, one-

way ANOVAs, and Kruskal–Wallis tests implemented in R (R

Development Core Team 2008).

We used BOTTLENECK version 1.2.02 (Cornuet and

Luikart 1997) to infer recent reductions or expansions of

effective population size in each sampled population,

excluding Upper Hassayampa (UH) due to small sample

size. Specifically, we calculated for each population sample

and for each microsatellite locus the distribution of hetero-

zygosity expected from the observed number of alleles

given the sample size, assuming mutation–drift equilibrium.

Coalescent simulations were performed for three possible

mutation models (infinite alleles model, stepwise mutation

model, and the two-phase model, which allows multiple-

step mutations), and resulting distributions were used to

calculate average expected heterozygosity. For TPM, we set

multistep mutation events to 5% and variance to 12, after

Piry et al. (1999). For each mutation model, we compared

observed heterozygosities and expected heterozygosities

simulated 10 000 times from the allele number at equilib-

rium using two-tailed Wilcoxon tests, where values signifi-

cantly larger than expected indicate a bottleneck, and

values significantly smaller than expected indicate demo-

graphic growth. We also tested for reductions in effective

population size using the M-ratio test implemented in

M_P_Val and Critical_M (Garza and Williamson 2001).

M, the mean ratio of the number of alleles to the range in

allele size in a population sample of microsatellite loci,

decreases when a population is reduced in size, and the

magnitude of the decrease is positively correlated with the

severity and duration of the reduction in size; thus, M can

distinguish between populations that have been recently

reduced in size and those which have been small for a long

time. M-ratio tests require a prior value of h (4 9 effective

population size 9 mutation rate); thus, we performed

M-ratio tests for h values ranging from 0.01 to 100.

Outlier loci are those that deviate from neutral evolu-

tionary expectations and thus potentially carry a signature

of natural selection. We tested for outlier loci in our sample

using the Beaumont & Nichols Fdist approach (Beaumont
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and Balding 2004) implemented in LOSITAN (Antao et al.

2008). We simulated the neutral FST distribution with

100 000 iterations and a significance threshold of

P < 0.005. We then calculated all 121 pairwise population

FST values and compared them to population heterozygos-

ity measures to identify FST outliers. Runs were performed

using both the stepwise mutation model and the infinite

allele model.

Genetic and environmental disease predictors within and

among populations

Within populations, we tested for associations between

microsatellite genotypes and Bd susceptibility using STRuc-

tured population Association Test (STRAT) (Pritchard

et al. 2000b) to examine disease associations independently

for each genetic deme identified in STRUCTURE (Prit-

chard et al. 2000a). We inferred significance of the test sta-

tistic Λ, the likelihood of association between allele

frequencies and disease phenotype (1 if individual died, 0 if

alive without disease signs) within demes, by comparison

with 10 000 random simulations of genotype frequencies

for each locus.

Across populations, we used general linear models

(GLM) to test for associations of disease variables with

both genetic and environmental variables. For genetic vari-

ables, we included observed heterozygosity (HO), inbreed-

ing (FIS), and allelic richness (AR) for each population

locality. For environmental variables, we extracted spatial

information of nineteen bioclimatic variables of tempera-

ture and precipitation using Worldclim/Bioclim layers at

1000 m resolution (Hijmans et al. 2005; Jarvis et al. 2009)

in ArcGIS 9.3.1 (ESRI 2009) for each population locality.

To reduce multicolinearity issues in our GLMs (Dormann

et al. 2013), we consolidated cross-correlated explanatory

variables. Specifically, we consolidated 11 Worldclim/Bioc-

lim temperature metrics (Bio1–Bio11) into two principal

component (PC) axes, hereafter PC1-Temperature and

PC2-Temperature. We did the same for precipitation met-

rics (Bio12–Bio19) and genetic (HO, FIS, AR) metrics and

used the first and second PC axes from each data set (PC1-

Precipitation and PC2-Precipitation and PC1-Genetics and

PC2-Genetics, hereafter) in downstream model selection

analyses (Figure S3). We used the scores of the first PC axis,

latitude, and longitude as variables in the subsequent

model selection procedures.

To test for an association between genetic and environ-

mental factors and each disease response variable (Bd infec-

tion intensity, Bd infection prevalence, and mortality

prevalence), we used a GLM model selection approach.

Specifically, we included explanatory environmental and

genetic PC variables and disease (Bd infection intensity, Bd

infection prevalence, or mortality prevalence) as a response

variable. We tested all possible models including

interactions among explanatory environmental and genetic

variables. Models were ranked based on Akaike informa-

tion criterion (AICc), and we selected the most parsimoni-

ous model for each run.

Measuring the potential for adaptation

To explore the dynamics of gene flow, drift, and selection

among neighboring populations differing in disease epide-

miology, we focused on the geothermal MR locality, where

populations with different disease dynamics occur in close

proximity and migration could thus potentially have large

effects on the evolution of Bd resistance. We followed the

model employed by Adkison (1995) and McCairns and

Bernatchez (2008) to define the necessary demographic

conditions leading to adaptive divergence among the MR

populations, MRHS and MRBC. The model is based on a

numerical approximation of Slatkin’s (1973) characteristic

length scale of variation in gene frequency (lc), which

defines the minimal cline distance at which populations

cannot respond to environmental variation. Predictions of

three alternative scenarios—genetic homogenization (H),

differentiation due to random drift (R), or adaptive diver-

gence (A)—are based on two derived variables: b, the ratio
of migration to drift, and k, the ratio of the geographic

scale at which selection favors a given allele (j) relative to lc
(Nagylaki and Lucier 1980). Given that MRHS and MRBC

fall into different disease categories, we took the stringent

view that these localities represent independent populations

with different selection acting in each (j = 1). We used a

range of estimates of effective population size (Ne) and

strength of selection (s) to infer the conditions likely to lead

to adaptive divergence (A: b > 1.1; k > 1.1), random dif-

ferentiation (R: b < 1), or genetic homogeneity (H:

b > 1.1; k < 1) across the 95% confidence interval of esti-

mated migration among MRHS and MRBC.

Results

We collected observational disease data and measured Bd

infection from skin swabs for 208 L. yavapaiensis individu-

als sampled in winter (Table S4). We also genotyped 14

microsatellite markers using tissue samples from

513 L. yavapaiensis individuals sampled between 2006 and

2011 (mean = 46 � 21 per site) across 12 study sites in

Arizona, USA (Figs 1 and 3; Table S5). Two populations

were uninfected with Bd, six populations experienced win-

ter chytridiomycosis mortalities, and four did not

(Fig. 1A). Mean Bd infection intensity was not significantly

different between populations with and without winter

mortality (Fig. 1B), suggesting disease tolerance rather than

resistance as a mechanism of Bd survival in some popula-
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tions. Microsatellite markers were highly polymorphic

across sampled populations (10 to 33 alleles per locus).

Populations were significantly differentiated; excluding

comparisons among the MR subpopulations, mean pair-

wise FST was 0.32 (range 0.17–0.60) with 90% of compari-

sons significant (adjusted P = 0.000549) and mean D was

0.64 (range 0.41–0.91) with all comparisons significant

(Table S1).

Bd-tolerant populations showed a trend toward higher

heterozygosity (HO) and allelic richness (AR; Fig. 2A,B),

and Bd-uninfected populations had the lowest measures of

HO and AR (Fig. 2C,D). Mean HO showed a nonsignificant

trend toward differences between disease categories (one-

way ANOVA: F2,8 = 3.24; P = 0.093; Fig. 2C), whereas mean

allelic richness was significantly different between disease

categories (one-way ANOVA: F2,8 = 7.88; P = 0.013). Post

hoc comparisons using the Tukey’s HSD test indicated that

mean allelic richness for Bd-tolerant populations was sig-

nificantly different than for Bd-uninfected populations, but

not significantly different from for Bd-susceptible popula-

tions (t = 3.75; Fig. 2D). Bartlett’s test did not find any

evidence for significantly different variances among groups

(allelic richness, v2 = 2.92, P = 0.23; heterozygosity,

v2 = 0.72, P = 0.70); however, we also performed Kruskal–
Wallis nonparametric tests to infer whether means were

significantly different without assuming equal variances.

Similar to ANOVA results, mean allelic richness was signifi-

cantly different between disease categories (Kruskal–Wallis

test, H = 7.57, df = 2, P = 0.02), while mean heterozygos-

ity was not (Kruskal–Wallis test, H = 4.32, df = 2,

P = 0.12).

Bayesian assignment revealed 10 genetic clusters that

corresponded to the 12 geographic sampling localities with

two exceptions: (i) Individuals from population UH

showed mixed ancestry among several genetic demes, likely

due to extremely small sample size (N = 4), and (ii) indi-

viduals from the two Bd-uninfected localities (HS and AS)

were assigned to the same genetic deme despite the large

geographic distance separating these populations (265 km)

and the presence of four genetically distinct populations in

the intervening region (Fig. 3). Notably, these two popula-

tions were assigned to the same genetic deme for values of

K ranging from 6 to 12, indicating a strong signal of genetic

ancestry. However, both populations had among the small-

est sample sizes across all populations, another potential

explanation for apparent similarities. Individuals from all

other geographic populations were assigned to independent

genetic demes with a high average membership coefficient

(q) of 0.89 (range 0.74–0.95; Fig. 3). After identifying an

outlier locus (RoC110, described below), we re-ran genetic

structure analyses with this locus removed due to putative

non-neutral effects. Analyses excluding the outlier locus

did not produce differences in deme membership or the

number of inferred demes (data not shown).

We did not detect genetic signatures of population

bottlenecks in any of the sampled populations using either

M-ratio tests (for any h value; data not shown) or tests of

heterozygosity excess compared to simulated values under

mutation–drift equilibrium (for any of the three mutation

models). However, in nine of the 12 sampled populations,

we detected a signature of recent demographic expansion

based on a significant deficit of heterozygosity across loci

under the stepwise mutation model (Table S6). Four of

these populations also showed a significant pattern of

demographic expansion under either the infinite alleles

model (SM, a Bd-tolerant population, and CC, a Bd-sus-

ceptible population) or the two-phase model (CC, TV, and

CIC, all Bd-susceptible populations). The three populations

that did not show a pattern of demographic expansion

under any model were the two thermal spring subpopula-

tions (MRHS and MRSS) and one of the two Bd-uninfected

populations (HS).
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Figure 1 Lithobates yavapaiensis winter disease dynamics for 12 natu-

ral populations sampled in Arizona, USA. (A) Observed prevalence of

winter Batrachochytrium dendrobatidis (Bd) infection (gray bars) and

mortality (black bars) by locality, with 95% Clopper–Pearson binomial

confidence intervals. Sample sizes are shown above error bars. (B) Loga-

rithm of mean population winter Bd infection intensity, measured as

the average number of genome equivalents recovered per animal

(+SD). Sample sizes are shown inside of each bar. Locality abbreviations

are as follows: AS, Aliso Spring; AC, Aravaipa Canyon; CC, Cotton-

wood Canyon; CIC, Cienega Creek; HS, House Spring; HR, Hassayampa

River; MRBC, Muleshoe Ranch, Bass Canyon subpopulation; SM, Santa

Maria River; SS, Seven Springs; TV, Tanque Verde Canyon; WC, Willow

Creek; UH, Upper Hassayampa. MR Hot Springs and Secret Spring are

not shown due to geothermally driven disease dynamics; see Savage

et al. (2011).
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Outlier locus analyses identified one of the 14 microsat-

ellite loci as an outlier in 121 pairwise comparisons of the

11 sampled populations (Figure S1). Locus RoC110 showed

a pattern of directional selection with an exceptionally high

FST value (P < 0.005). All other loci fell within the expected

range for neutrally evolving genetic markers. We tested the

10 identified population genetic demes for associations

between microsatellite allele frequencies and two chytridi-

omycosis phenotypes: alive (0), for individuals observed to

be alive and healthy regardless of Bd infection status, or

dead (1), for individuals that were Bd-infected and found

dead or dying with signs of chytridiomycosis. Across all 14

loci only RoC110, the previously identified outlier locus

showed a significant association between allele frequencies

and Bd infection phenotype within genetic groups

(Λ = 21.09, df = 11, P = 0.009; Figure S1).

In our combined analysis of genetic variables, environ-

mental variables, and their interactions, both genetic diver-

sity and environmental variables were significant predictors

of Bd infection prevalence (Table S3, Figure S2). Warmer

temperatures (higher values of PC1-Temperature) were sig-

nificantly associated with higher Bd infection prevalence

(Table 1), and lower population genetic variation (lower

values of PC1-Genetics) was nearly significantly associated

with higher Bd infection prevalence (P = 0.051; Table 1).

In contrast, the best model explaining Bd infection inten-

sity only included variation in temperature (PC1-Tempera-

ture), with higher average temperatures predicting higher

Bd infection loads across sampled populations

(F1,9 = 11.186, r2 = 0.554, P = 0.008). Although environ-

mental factors were important predictors of both Bd infec-

tion intensity and prevalence, host genetics alone best

explained mortality (F1,9 = 8.988, r2 = 0.499, P = 0.015).

Specifically, populations with lower AR and HO and higher

FIS (lower values of PC1-Genetics) showed significantly

higher mortality rates in the field.

We detected negligible contemporary migration (m)

among all pairs of populations (m = 0–6% immigrant
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Figure 2 Lithobates yavapaiensis disease dynamics and population genetics. Mean (A) heterozygosity and (B) allelic richness for 512 individuals from

11 populations genotyped at 14 microsatellite loci are shown in ascending order with population disease status identified as susceptible (black sym-

bols; populations with observed mortality), tolerant (gray symbols; no observed mortality), or uninfected [white symbols; Batrachochytrium dendro-

batidis (Bd) not detected]. Sample sizes are shown above each bar. Mean (C) heterozygosity and (D) allelic richness across susceptible, tolerant, and

uninfected population categories. Sample sizes are shown inside of each bar (N = number of populations). Significant differences (Student’s t-test,

P < 0.05) in mean values across disease categories are denoted by different lowercase letters. Population abbreviations follow Fig. 1. MR is excluded

due to variable environmental conditions.
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ancestry, mean m = 0.02%, all values nonsignificant; Table

S2) except among the subpopulations within the geother-

mal MR locality (Fig. 4). Recent migration among these

subpopulations was considerable, statistically significant,

and unidirectional from the geothermal springs (MRHS)

into both the pond (MRSS; m = 27% immigrant ancestry

from MRHS) and the canyon (MRBC; m = 21% immigrant

ancestry from MRHS). Migration was not detected between

MRSS and MRBC, or from either of these localities back

to MRHS (Fig. 4). Using this information, we modeled

the potential for the MRBC subpopulation to evolve

Arizona

km

60 1200

Figure 3 Lithobates yavapaiensis Structure analysis results for K = 10 with individuals grouped by population locality. Left, Map of Arizona showing

population localities and proportion of each population sample assigned to the ten genetic demes identified in the Structure analysis. Populations are

categorized as susceptible (black circles; populations with observed mortality), tolerant (white circles; no observed mortality), or uninfected (white

squares; Batrachochytrium dendrobatidis not detected). Circle size is proportional to the number of genotyped individuals. Right, Proportion of mem-

bership to each genetic deme for each of 512 individuals genotyped at 14 microsatellite loci. Population abbreviations follow Fig. 1. The 10 genetic

demes are represented as follows: AS/HS = purple; MR = light pink; SM = light blue; HR = red; SS = pink; CC = dark green; AC = light green;

TV = yellow; CIC = blue; WC = tan.

Table 1. Generalized linear model testing the effects of selected

genetic and environmental factors on Batrachochytrium dendrobatidis

(Bd) infection prevalence among 11 populations of Lithobates yavapai-

ensis in Arizona.

Term b SE t Ratio P

Bd infection prevalence

Intercept 0.589 0.073 7.990 <0.001

PC1-Temperature 0.108 0.039 2.710 0.026

PC1-Genetics �0.136 0.059 �2.290 0.051

Whole model tests: (F2,8 = 5.173, r2 = 0.564, P = 0.036).
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chytridiomycosis resistance given the high migration rate

from the geothermal springs (Table 2). We parameterized

adaptive divergence models with a broad range of effective

population sizes (Ne) ranging from 10 to 10 000 individu-

als and included migration rates spanning the 95% confi-

dence interval of estimated dispersal from MRHS into

MRBC (14–29% per generation). Assuming that Bd-driven

selection is zero at the thermal springs, the model predicts

that the strength of selection (s; range 0–1) for chytridi-

omycosis resistance in the canyon must be >0.07 for the

MRBC frogs to adapt at the lower 95% CI of migration,

independent of Ne (Table 2). If migration rates are closer

to the estimated mean value of 21%, s must be >0.11 for

the canyon frogs to evolve Bd resistance, regardless of Ne.

Discussion

To date, studies of Bd disease dynamics have identified eco-

logical and environmental predictors of disease (Briggs

et al. 2010; Becker and Zamudio 2011; Rohr et al. 2011)

and have identified genetic–fitness disease associations

(May et al. 2011; Savage and Zamudio 2011; Ellison et al.

2014). To our knowledge, this study is the first to combine

environmental and genetic factors contributing to Bd dis-

ease dynamics in a single analysis, revealing that host popu-

lation genetics remains a significant predictor of disease

dynamics when considering the entire selective, genetic,

and environmental landscape. Although environmental fac-

tors predicted the proportion and intensity of Bd infections

in the populations, PC1-Genetics (which encapsulates

69.4% of the measured genetic variation) was the best pre-

dictor of mortality (Table S3, Figure S4). We therefore con-

clude that higher genetic variation measured from neutral

microsatellite loci is a hallmark of lower Bd susceptibility in

L. yavapaiensis and that more genetic variability within

individuals and populations reduces the risk of disease sus-

ceptibility. This pattern is consistent with the ‘general

effect’ hypothesis (David 1998), where heterozygosity

across multiple microsatellite markers is an indirect mea-

surement of a population’s average fitness. In contrast, Bd

infection prevalence, the most commonly measured Bd

metric in natural populations given the considerably higher

effort and cost to measure intensity and mortality, was dri-

ven by genetics, geography, and temperature across our

sampled populations. We therefore caution against relying

solely on infection prevalence to make inferences about the

cause or effect of Bd in an ecosystem, as pathogen preva-

lence likely has numerous abiotic and biotic drivers.

Our finding that Bd infection intensity is determined

solely by environmental factors is concordant with the high

variation we observed in mean infection intensities across

populations, regardless of mortality prevalence; environ-

mental conditions dictate Bd growth and therefore the

Table 2. Predicted values of effective population size (Ne) and strength

of selection (s) leading to adaptive divergence (A), genetic homogeniza-

tion (H), or random differentiation (R) across the 95% confidence inter-

val range of migration rates (m) estimated from site MRHS into site

MRBC. Predictions are based on the model of Nagylaki and Lucier

(1980).

Ne m s = 0.001–0.07 s = 0.071–0.10 s = 0.11–1

10 0.14 R A A

100 0.14 H A A

1000 0.14 H A A

10 000 0.14 H A A

100 000 0.14 H A A

10 0.21 R H A

100 0.21 H H A

1000 0.21 H H A

10 000 0.21 H H A

100 000 0.21 H H A

10 0.29 R H A

100 0.29 H H A

1000 0.29 H H A

10 000 0.29 H H A

100 000 0.29 H H A

Warm spring 
(MRSS)
N = 25 Hot spring

(MRHS) 
N = 27 

Bass Canyon
(MRBC)
N = 27

 m = 0.27
(0.20 – 0.33)  

1 km 

 m = 0.21
(0.14 – 0.29)  

BA
SS

CYN
WASH

WASH

HOTSPRING

Muleshoe Ranch

Figure 4 BAYESASS estimates of migration (m) among Muleshoe

Ranch (MR) Lithobates yavapaiensis subpopulations (N = sample size).

Open circles indicate sampling from localities with Batrachochytrium

dendrobatidis (Bd) infection but no observed mortality. Filled circles

indicate sampling from localities with Bd infection and observed mortal-

ity. Arrows show the presence and direction of migration. For each sub-

population, 95% confidence intervals for the proportion of individuals

with immigrant ancestry are indicated in parentheses.
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magnitude of infection, but some populations tolerate high

infection intensities with no apparent consequences (e.g.,

Hassayampa River, HR) while others show mortality at

fairly low infection intensities (e.g., Willow Creek, WC).

The ‘10 000 Zoospore Rule’, a Bd infection threshold for

inducing frog mortality in California’s Sierra Nevada (Vre-

denburg et al. 2010), may therefore apply only to particular

species, geographic regions, or climatic envelopes, rather

than functioning as a fixed threshold for amphibian popu-

lations worldwide. Indeed, in our system, the functional

consequence of infection intensity was locality-specific and

could only be compared within and not among L. yavapai-

ensis populations.

Molecular adaptation to local ecological or environmen-

tal factors, including pathogens, is most commonly

explored in model species with extensive genomic resources

(De La Vega et al. 2002; Savolainen et al. 2013). In con-

trast, genetic signatures of adaptation are rarely explored in

natural wildlife populations, due to the limited number of

molecular markers available. Indeed, for traits under weak

selection or for quantitative traits determined by multiple

loci with small effects, significant patterns are unlikely to be

detected from a limited set of genetic loci. However, as the

strength of selection on a given trait increases, so does link-

age disequilibrium (Lewontin and Kojima 1960; Schork

2002). Thus, for populations facing strong selective pres-

sure – for example, from a disease such as chytridiomycosis

that causes massive population die-offs – selection may be

sufficiently strong to create genetic associations detectable

by a smaller number of unlinked genomic markers. The

‘local-effects’ hypothesis, in which genotype–fitness associ-
ations result from a physical association between a neutral

marker and a locus under selection (David 1998), has

gained empirical support from studies showing that natural

populations can show high levels of linkage disequilibrium

(Yan et al. 1999) and that some loci contribute more than

others to fitness associations (Hansson et al. 2004; Aceve-

do-Whitehouse et al. 2006). We have no direct evidence

that a functional genomic region linked to outlier locus

RoC110 is responsible for the significant associations with

mortality we detected, and further genomic work is neces-

sary to confirm the importance of this pattern. However,

for nonmodel species with large and complex genomes,

inferring genetic hallmarks of disease susceptibility from a

limited number of loci may be the only feasible approach

and can be a useful tool for genetic management of declin-

ing populations.

The United States range of L. yavapaiensis has contracted

precipitously in recent decades (Clarkson and Rorabaugh

1989), and Bd-associated mortality is a likely causative

agent for these rapid declines. We thus tested for genetic

signatures of population bottlenecks in each of our sam-

pled populations. However, rather than a signal of reduced

effective population size, we instead found the opposite

pattern of recent population expansion in nine of 12 sam-

pled populations (Table S6). Notably, we found the strong-

est support (i.e., more than one model significant) for

demographic expansion in three of the five populations

that are currently Bd-susceptible. In contrast, we found no

indication of population expansion in the two Bd-shel-

tered, geothermal spring fed subpopulations (MRHS and

MRSS), or in the Bd-uninfected population House Spring

(HS). Thus, populations that currently show Bd-associated

declines have recently expanded, whereas populations that

have not faced Bd-associated declines have not. Based on

these patterns, we propose the following scenario: In the

recent past (likely the 1970s; Hale et al. 2005), the intro-

duction or emergence of virulent Bd caused a range con-

traction in L. yavapaiensis in which numerous populations

were extirpated from disease. Among those populations

that persisted, however, demographic expansion occurred

in subsequent decades as Bd transitioned from epidemic to

endemic (Briggs et al. 2010). This demographic expansion

is more dramatic in populations that are completely

Bd-susceptible (with environmental and/or pathogen fac-

tors enabling population persistence), compared to cur-

rently Bd-tolerant populations that likely held standing

genetic variation for Bd tolerance when the pathogen first

emerged and therefore did not crash as severely upon initial

Bd outbreaks. The lack of demographic expansion in three

of the four populations that have not experienced Bd

declines (HS, MRHS and MRSS) provides further support

for this scenario. Demographic expansion was also detected

in a phylogeographic analysis of L. yavapaiensis based on

mitochondrial DNA haplotypes (Ol�ah-Hemmings et al.

2010), but this expansion likely took place before the last

glacial maximum and thus does not pertain to Bd-related

demographic effects. In contrast, microsatellite data pro-

vide information on more recent population demograph-

ics, and the patterns of recent expansion we recovered may

reflect postdecline expansions following severe Bd outbreaks.

At the geothermal locality, all three subpopulations were

infected with Bd but experienced distinct disease dynamics,

most likely due to highly localized variation in water tem-

perature (Forrest and Schlaepfer 2011). We predicted that

MRBC (nongeothermal) individuals were under selection

for chytridiomycosis resistance, while MRHS and MRSS

(geothermal) subpopulations were environmentally shel-

tered from this selective pressure. However, MRBC belongs

to the same genetic deme as MRHS and MRSS and was not

significantly differentiated based on pairwise FST and D val-

ues (Table S1). This lack of differentiation exists because

14–29% of the MRBC subpopulation consisted of first- or

second-generation immigrants from MRHS (Fig. 4). Mod-

eling the parameters of migration, drift, and selection nec-

essary to create this scenario showed that the selection
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coefficient imposed by Bd would need to be high (s > 0.11)

for MRBC frogs to adapt given the annual influx of suscep-

tible genotypes from MRHS. A selection coefficient of 0.11

corresponds to an 11% increase in fitness of individuals

with the advantageous genotype when compared to indi-

viduals lacking that genotype. In genomewide studies of

polymorphisms in Drosophila, estimated selection coeffi-

cients for single mutations range from 0.000012 to 0.02

(Jensen et al. 2008). In studies of human HIV, which faces

extreme selection pressure from drug therapies, whole-gen-

ome analyses detect selection coefficients for positively

selected viral genotypes ranging from 8.0E�3 (Neher and

Leitner 2010) to 0.09 (Liu et al. 2002). Thus, the threshold

of 0.11 for MRBC frogs is unlikely to be met, even when

selection for chytridiomycosis resistance is strong. Because

the evolution of host resistance is most likely a fitness

trade-off (Anderson and May 1982) and MRBC frogs only

face punctuated selection for disease resistance in cooler

months when Bd is most virulent (Carey et al. 2006), it is

unlikely that selection will be strong enough for this popu-

lation to become fixed for resistance to chytridiomycosis.

Instead, a perpetual source–sink process of susceptible

frogs migrating from the geothermal springs into the can-

yon and dying from chytridiomycosis in winter is likely to

persist as long as the geothermal habitat remains. These

findings underscore the critical and potentially underap-

preciated importance of geothermal environments for per-

sistence of amphibians in the desert southwest since the

emergence of Bd. In contrast, high gene flow across these

environmentally distinct microhabitats prevents subpopu-

lations from evolving disease resistance and presents a

mechanism by which ecological and genetic variables inter-

act to maintain infectious disease.

We found a single outlier locus that showed significant

association to Bd mortality within populations, whereas

only general measures of genetic diversity were significant

predictors of Bd mortality across populations. This pattern

is consistent with the lack of gene flow we detected among

sampled populations; because populations are completely

isolated, they evolve as independent units based upon

standing measures of genetic diversity and, in the case of

the outlier locus, the presence and frequency of susceptibil-

ity-associated alleles at the time of initial Bd emergence.

Genetic similarity of the two Bd-uninfected populations

(HS and AS) was a surprising pattern that may derive from

a common genetic signature of population structure in the

absence of Bd, although further identification and sampling

of uninfected populations is necessary to draw conclusions

about the precise effects of Bd on population genetic struc-

ture. Of note, we did not explore pathogen genetic varia-

tion in this study. Recent genetic analyses of worldwide Bd

samples have identified genomic recombination, selection,

and chromosome copy number variation (Farrer et al.

2011, 2013; Rosenblum et al. 2013) as hallmarks of virulent

Bd strains; thus, future work incorporating fine-scale path-

ogen variation will likely further elucidate the epidemiology

of chytridiomycosis in L. yavapaiensis.

Our findings demonstrate the importance of integrating

genetic polymorphisms, environmental variables, and

detailed measurements of disease dynamics in the field to

better understand potential evolutionary responses to dis-

ease emergence in natural landscapes. Our findings may

prove useful in predicting the fate of populations facing

pathogen selective pressure and in designating important

evolutionary lineages containing genetic variation for local

adaptation to chytridiomycosis. Bd currently infects

amphibians on every continent where it occurs (Skerratt

et al. 2007), and chytridiomycosis threatens the persistence

of numerous species worldwide (Fisher et al. 2012). Under-

standing the precise ecological and evolutionary dynamics

that allow or prevent populations from persisting with Bd

will be critical for accurate planning and implementation

of species conservation efforts (Woodhams et al. 2011).

For example, the hot springs locality represents a scenario

where environmental sheltering allows populations to per-

sist but also prevents adaptation to disease. Preserving geo-

thermal habitats is therefore critical for persistence of the

amphibian populations they house. Alternately, for popula-

tions with the potential to evolve Bd resistance, effective

conservation efforts will likely entail management actions

that promote genetic diversity and increase effective popu-

lation sizes, as genetic diversity explained Bd-associated

mortality in L. yavapaiensis but environmental factors did

not (Table 1). Paradoxically, the dramatic isolation of

L. yavapaiensis populations in recent decades (Fig. 3; Witte

et al. 2008) has prevented ongoing gene flow from erasing

local adaptation to disease, heightening the evolutionary

potential for remaining populations with any Bd-resistant

and/or Bd-tolerant genotypes to overcome chytridiomyco-

sis susceptibility. Preserving and promoting genetic diver-

sity in isolated populations is therefore likely to be the

most effective management strategy to increase the long-

term probability of L. yavapaiensis species persistence in

the face of ongoing negative effects of habitat change and

chytridiomycosis.
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