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Abstract
Many animals have polka dot patterns on their body surface, some of which are known to have signalling functions; however, 
their evolutionary origins remain unclear. Dot patterns can trigger a fear response (trypophobia) in humans and are known 
to function as aposematic signals in non-human animals, suggesting that dots may deserve attention for biological reasons. 
Interestingly in many birds, plumage dot patterns serve for social/sexual signalling. To understand their evolution, we have 
focused on the sensory bias hypothesis, which predicts the role of pre-existing sensory preference driven by natural selection 
in shaping signal design. Our previous phylogenetic comparative study supported the hypothesis and showed that diet-driven 
visual preference promoted the evolution of plumage patterns, as there was an evolutionary correlation between termite-
eating (white roundish gregarious prey) and the presence of plumage dot patterns in species of the family Estrildidae. This 
suggests that these species possess an intrinsic preference for dots. To test this, we compared the responses of an Estrildid 
species with dot plumage pattern (star finch Neochmia ruficauda) towards simultaneously presented monochrome-printed 
white dot vs white stripe patterns under both food-deprived and -supplied conditions. Overall, star finches preferred dots to 
stripes. They showed foraging-like behaviours almost only toward dots when hungry and gazed at dots frequently even when 
food was available, suggesting both hunger-related and hunger-neutral dot preferences. These results are rather surprising, 
given how strongly the subjects were attracted to abstract dot patterns without organic structure, but provided good support 
for the sensory bias hypothesis.
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Introduction

Trypophobia, a fear response towards images that contain 
a cluster of dots or holes, is shown by many people and is 
argued to be an adaptive response to potentially harmful 
visual stimuli (Cole and Wilkins 2013; Kupfer and Fessler 
2018; Kupfer and Le 2018) but is not well understood from 
a biological perspective (Kupfer and Fessler 2018). How-
ever, at least in many non-human animal species, having or 
paying attention to dot patterns can be crucial for the fitness 
of individuals, as conspicuous dot patterns serve as either 

aposematic signals in interspecific interactions or mating/
social signals in within-species communication. This means 
that dot patterns can evoke aversion or attraction depending 
on the context, and the species of the signaller and receiver 
of dot signals. For example, dot patterns covering the entire 
body are known to function as warning signals against 
predators in ladybugs Coccinella septempunctata (Průchová 
et al. 2014) or in poison frogs Dendrobates pumilio (Sid-
diqi et al. 2004; Darst et al. 2006; Maan and Cummings 
2012), whereas polymorphic dot patterns also contribute 
to individual recognition and mate choice in poison frogs 
(Summers et al. 1999; Siddiqi et al. 2004; Reynolds and 
Fitzpatrick 2007; Maan and Cummings 2008, 2009; Croth-
ers et al. 2011). However, the functions of dot patterns have 
been studied in limited species compared with the vast num-
bers and diversity of animal species displaying dot patterns, 
leaving their evolution unresolved. In particular, it remains 
unclear why dot patterns have evolved as attractive social 
signals.
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In birds, plumage dot patterns are very common (Som-
veille et al. 2016), and some of them are known to function 
as sexual or social signals (Alatalo et al. 1992; Roulin 1999; 
Crowhurst et al. 2012; Zanollo et al. 2012; Soulsbury et al. 
2016; Soma and Garamszegi 2018). Individual birds with 
more conspicuous dot patterns (e.g. larger number of dots, 
or higher reflectance dots) can gain higher mating success 
(barn owls Tyto alba, Roulin 1999) or social dominance 
(diamond firetails Stagonopleura guttata, Crowhurst et al. 
2012), suggesting that dot patterns, like other ornamental 
traits, evolved as signals as they reflect the quality of indi-
viduals owing to the production costs (Zahavi 1975, 1977; 
Andersson 1986; Grafen 1990). However, the cost associated 
with plumage dots is puzzling. Dot patterns usually appear 
as either achromatic spots on melanin-based feathers or 
melanin spots on whitish feathers. White plumage is known 
to require some maintenance cost to avoid bacterial growth, 
parasites (Kose and Møller 1999; Ruiz‐de‐Castañeda et al. 
2012) or abrasion (Griggio et al. 2011), while melanin pig-
mented plumage also incurs production and maintenance 
cost (McGraw et  al. 2002; Galvan and Alonso-Alvarez 
2008; Piault et al. 2012; Guindre-Parker and Love 2014; 
Roulin 2016). Therefore, these traits can reflect immune 
challenge (Hanssen et al. 2008), hormone levels (Moreno 
and López-Arrabé 2021) or diets of individuals (McGlothlin 
et al. 2007). Even so, it is not clear whether having dots on 
plumage is more costly than total white or black plumage. 
Presumably, white spots may save resources for pigment pro-
duction (Prum et al. 1999), but that does not explain why 
colourless parts take a particular shape (e.g., circle) and the 
same could be said for melanin spots as well.

As an alternative to the condition dependence mecha-
nisms, the sensory bias hypothesis (Ryan and Keddy-Hector 
1992; Endler and Basolo 1998; Ryan 1998; Rodríguez and 
Snedden 2004; Fuller et al. 2005) could possibly explain the 
evolution of dot patterns as signals. This hypothesis attempts 
to explain why specific traits evolved as mating signals, by 
focusing on female sensory preferences shaped under nat-
ural selection (Ryan and Keddy-Hector 1992; Endler and 
Basolo 1998; Ryan 1998; Rodríguez and Snedden 2004; 
Fuller et al. 2005; Fuller and Endler 2018). If particular 
characteristics are detected easily and perceived clearly by 
females, they can more likely be used as mate choice criteria 
than other less detectable/perceivable traits (Endler 1992; 
Ryan 1998). As a consequence, male mating signals that 
match female sensory systems would attract females. For 
example, in water mites Neumania papillator, males send 
vibratory signals that mimic those from their prey species to 
solicit female hunting response, leading to successful sper-
matophore transfer (Proctor 1991, 1992). A similar scenario 
can explain the evolution of colour pattern of body surface 
in some fish, such as guppies Poecilia reticulata or several 
Goodeinae species, where males attract females by having 

colour patterns that resemble foods that they prefer (Rodd 
et al. 2002; Garcia and Ramirez 2005). However, in birds, 
the idea that sexual ornament traits evolved from diet-driven 
preferences has not been well tested except for a few reports 
on bower decoration of bowerbirds (Madden and Tanner 
2003; Borgia and Keagy 2006).

The sensory bias hypothesis yields the following three 
main predictions. First, signal features can be explained in 
the light of sensory system properties of signal receivers, 
i.e., females (e.g. Ryan and Rand 1993; Endler and Basolo 
1998; Fuller and Endler 2018; Rosenthal 2018). Second, 
such signals can readily draw attention of females (e.g. 
Ryan and Cummings 2013). Finally, females should prefer 
to mate with males bearing such signal traits (e.g. Basolo 
1990a, b; Ryan and Rand 1990; Rodd et al. 2002; Garcia 
and Ramirez 2005). Although these predictions are usually 
applied to explain the evolution of male signalling traits via 
female mate choice, the same explanations could be possi-
ble for the evolution of social signals, or sexual signals that 
are used for mutual mate choice. Considering that males 
and females evolved to have similar sensory systems, both 
sexes may show similar sensory preference towards particu-
lar stimuli, which can facilitate the signal evolution in any 
social contexts, including dominance interaction or indi-
vidual identification.

Our previous phylogenetic comparative study indicated 
the role of foraging-related visual preference in the evolution 
of plumage patterns shared between the sexes of Estrildid 
finches (family: Estrildidae) (Mizuno and Soma 2020). 
Males and females of many species of Estrildid finches are 
characterised by conspicuous white dot patterns with signal-
ling functions (Crowhurst et al. 2012; Zanollo et al. 2012; 
Soma and Garamszegi 2018), which evolved in associa-
tion with a diet with spotty appearance (Mizuno and Soma 
2020). Specifically, the species that regularly consume whit-
ish small round gregarious prey, such as termites and ant 
larvae or eggs (Goodwin 1982; Payne 2010), tend to have 
white dot patterns (Mizuno and Soma 2020). In addition, 
their white dot patterns often cover the flanks but not the 
whole body (Morris 1958; Somveille et al. 2016; Soma and 
Garamszegi 2018), meaning that dots can attract attention 
in close distance communication, especially when Estrildid 
finches perform bilateral courtship display perching side by 
side (Goodwin 1982; Payne 2010). In such species, males 
are known to fluff up and fully display their dotted plumage 
during courtship display (Goodwin 1982). Having a visual 
preference for white dots would be crucial for both signal-
ling communication and foraging in Estrildid species with 
dotted patterns. This could be applied to both sexes, explain-
ing the evolution of mutual ornamentation driven by diet 
sensory preference (Mizuno and Soma 2020). Consistent 
with this idea, in a species of Estrildid fiches, diamond fire-
tails Stagonopleura guttata, the number of dots is associated 
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with the physical condition (Zanollo et al. 2012), and social 
dominance in females (Crowhurst et al. 2012).

Therefore, we expected that the Estrildid species with 
white dot patterns would show strong visual attention to 
white dots (‘trypophilia’). To test this, we presented abstract 
dot patterns to the star finch Neochmia ruficauda (Fig. 1a), 
an Estrildid species with conspicuous white plumage dot 
patterns covering from face to flank. Visual attention to 
white dots can affect individual fitness in two ways. First, 
plumage dots in the species are highly likely to function 

as sexual and social signals (Crowhurst et al. 2012; Souls-
bury et al. 2016; Soma and Garamszegi 2018), considering 
the sexual and among-individual variations in dot patterns. 
Second, images of dot patterns can indicate the presence 
of food sources, such as tiny seeds and termites (Goodwin 
1982; Payne 2010). Therefore, we expect both hunger-
related and hunger-neutral visual preferences for dot pat-
terns in the star finch. In other words, hungry individuals 
would pay attention to dots, looking for foods, while non-
starving individuals would also pay attention to dots because 

a

1.0 cm

b c

Fig. 1  a Adult male (left) and female (right) star finch. b Dot and 
stripe stimuli. c Top view of the experimental cage, showing the 
food-supplied condition. The four cups in the middle contain water 

and seed mix, whereas the two on both sides contain stimulus-printed 
paper, which was replaced with plain white paper outside the tests



1274 Animal Cognition (2022) 25:1271–1279

1 3

of their potential roles in social/sexual signalling. Consider-
ing the moderate sexual difference in the size of facial dot 
pattern areas (Goodwin 1982; see also Fig. 1a), we predict 
that males and females differ slightly in their responses to 
dot patterns. We prepared monochrome printed images of 
white dots and stripes as a matching stimulus and presented 
them simultaneously first under food-deprived conditions 
and then under food-supplied conditions to test their visual 
preference towards dots. If dot preference exists, the subject 
birds would show stronger responses towards dot stimuli 
than stripes. If such preference is driven by diet, the subject 
birds would show more visual attention towards dots in the 
food-deprived condition than in the following food-supplied 
condition. They would also show less or no foraging-like 
behaviours towards dots in the food-supplied condition after 
they had learned that dot stimuli are not food-rewarding in 
the preceding food-deprived condition. Alternatively, if dot 
preference is not solely for foraging, they may show visual 
attention towards dots even under food-supplied condi-
tions, suggesting sensory bias towards dot patterns. These 
also mean that the idea of sensory bias should be rejected 
in unlikely case that dot preference exists only in the food-
supplied condition.

Methods

Subjects

We used 15 male and 11 female adult star finches obtained 
from several local breeders. Each bird was identified with 
a unique combination of two-coloured leg rings. All birds 
were kept in unisex cages on a 12:12 h light:dark sched-
ule (lights on 08:00–20:00) at approximately 25–26 °C and 
50–60% humidity. They were provided with a finch seed 
mixture, cuttlebone, water, and fresh green vegetables every 
day, unless tested under food-deprived conditions. Each bird 
was tested in the experiments that were conducted between 
May and June 2019, or June and September 2020.

Presented stimuli

We used monochrome dot—(φ 2.0 mm) or stripe—(W 
2.0 mm) printed paper (Fig. 1b) as the experimental/con-
trol stimulus. We chose stripes as a control because they 
are widely seen on the plumage of other Estrildid species 
(Goodwin 1982; Payne 2010), and also because they are 
characterised by simple motif shapes comparable to dots. 
As the distances between motifs were set to 2.0 mm for 
both dot and stripe patterns, black areas were not exactly 
the same between the two stimuli (dot: 873.8  mm2; stripe: 
668.8  mm2). The dot size was adjusted to match the largest 
white dots of Estrildid finches’ plumage patterns (Soma 

and Garamszegi 2018) to derive high responses from the 
birds. Stimuli were created using Adobe Illustrator CC 
2018 (Adobe Systems, San Jose, CA), printed on white 
paper using an inkjet printer (DocuPrint C2110, FUJI 
XEROX, Tokyo, Japan), and set on the inner bottom of 
food cups (35.0 mm maximum diameter, 40.0 mm height) 
using double-sided tape. We used food cups to avoid neo-
phobia and to prevent the stimuli from coming into the 
sight of birds easily without approaching.

Experimental procedure

Each bird was individually introduced into an experimen-
tal cage (8.0 × 15.0 × 14.0 cm), which was equipped with 
food and water cups, and two other empty cups with white 
paper lining at the bottom, which was used for stimuli 
presentation during the tests (Fig. 1c). They were allowed 
to habituate there 1 day before the tests (Day 0) and tested 
for pattern preference under the food-deprived condition 
on Day 1 and food-supplied condition on Day 2. On Day 1, 
food cups were removed 3 h before presenting the stimuli 
and restored immediately after the experiment, whereas on 
Day 2, food was available all the time. Under each condi-
tion, we presented stimuli at the start of 1 h of behavioural 
recording using a video camera (GC-PX1, Victor, Tokyo, 
Japan), and removed them immediately after the end of the 
tests. The stimulus position was reversed from Day 1 to 
control for side preferences. The order of conditions was 
not randomised across birds.

Behavioural quantification

To assess visual preference for each pattern, we measured 
the frequency of gazing and pecking behaviours towards 
each stimulus during each condition, assuming that gaz-
ing reflects visual preference (Dawkins 2002; Endler and 
Mappes 2017), and pecking is associated with foraging 
(Martin 2007). In this study, gazing refers to a bird look-
ing down the stimuli, which was defined based on the 
perched position (i.e. on the perch or the floor close to 
the stimulus, or the edge of the stimulus cup), body/head 
orientation towards the stimulus (i.e. anterior half of body/
head facing the stimulus), and the bill angle (i.e. pointing 
below horizontal). Pecking was defined based on the up-
down head movements towards the stimulus shown by the 
bird standing on the stimulus cup. Frequently, the birds 
repeated pecking behaviours in a row, where we counted 
the total number of up-down movements. As pecking 
always accompanied gazing, we counted one gazing per 
series of peckings (see Online Resource 1). All videos 
were scored by the same observer (A.M.).
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Statistical analysis

To investigate whether the proportion of subjects’ responses 
to each stimulus (dots vs. stripes) deviated from those 
expected by chance (0.5), we ran intercept-only general-
ized linear mixed effect models (GLMM) with a binomial 
error distribution using the glmer function from the lme4 
package (Bates et al. 2015). In these models, gazing/peck-
ing frequency towards the two stimuli (dots vs. stripes) was 
entered as a bound response variable. We also tested the 
effect of experimental conditions (food-supplied vs. food-
deprived) on dot preference using a GLMM with Poisson 
error distribution, with conditions specified as an independ-
ent variable. Possible sexual differences in response were 
also analysed using a separate GLMM in which sex was 
entered as an independent variable. The identity of the sub-
ject was incorporated in all three models as a random effect 
to address the possibility that individuals differed in their 
performance. All analyses were performed using R version 
3.5.1 (R Core Team 2019).

Results

Star finches gazed at the white dot pattern more frequently 
than the stripe pattern under both food-deprived and -sup-
plied conditions (deprived condition: N = 26, Z = 3.959, 

P < 0.001, supplied condition: N = 26, Z = 2.258, P = 0.024; 
Fig. 2a). Gazing preference towards dots was more pro-
nounced under the food-deprived condition (N = 26, 
Z = 20.300, P < 0.001; Fig. 2a).

The pecking frequency (Fig. 2b) showed similar results 
with those for the gazing frequency (Fig. 2a), but with 
pronounced difference between the two (food-derived and 
-supplied) conditions. Star finches pecked white dot patterns 
more frequently than stripes under the food-deprived condi-
tion (N = 26, Z = 4.293, P < 0.001; Fig. 2b), but not under 
food-supplied conditions (N = 26, Z = 0.531, P = 0.596; 
Fig. 2b). The subject birds showed almost no pecking when 
food was supplied (Fig. 2b); therefore, the condition effect 
was statistically significant (N = 26, Z = 27.508, P < 0.001, 
Fig. 2b).

There were no sex differences in either gazing or peck-
ing behaviour (gazing, food-deprived, N = 26, Z = − 0.958, 
P = 0.338, food-supplied, N = 26, Z = 0.254, P = 0.800, peck-
ing, food-deprived, N = 26, Z = 0.282, P = 0.778, food-sup-
plied, N = 26, Z = 0.527, P = 0.598).

Discussion

Star finches showed both hunger-driven and hunger-neutral 
preference for dots by their frequent gazing and pecking at 
dot patterns compared with stripes, regardless of whether 
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food was supplied (Fig. 2; Online Resource 1 and 2). This 
result is in accordance with our prediction but may seem 
rather surprising, given how strongly the subjects were 
attracted by completely abstract patterns without organic 
texture. Considering the visual acuity and depth perception 
of birds (Bischof 1988; Martin 2017; Caves et al. 2018), it 
is unlikely that they failed to perceive the clear image of dot 
patterns at a close distance, which suggests that they have 
an intrinsic visual preference for abstract dot patterns. If 
we could have controlled for prior visual experience of the 
subject birds (e.g., exposure to cage fences, round seed diet, 
or conspecifics plumage), that could give more support to 
the idea that star finches have the sensory bias for white dots.

Star finches’ visual preference for abstract dots can be 
partially explained in association with foraging. Hunger 
experience solicited foraging-like behaviour (i.e. pecking) 
towards dots (Fig. 2b), which was likely promoted by the 
method of stimuli presentation using food cups. However, 
their frequent gazing towards dots was likely not merely 
because of hunger, as they looked at dot patterns very fre-
quently even under the food-supplied condition, after having 
experienced that the exact dot pattern was not food-reward-
ing the day before. These results suggest that dot stimuli for 
the star finch are worth paying attention to both in foraging 
and non-foraging contexts.

Evidence from previous research indirectly supports the 
idea that dots can play a role in within-species communica-
tion, i.e. sexual/social signalling (Alatalo et al. 1992; Roulin 
1999; Summers et al. 1999; Siddiqi et al. 2004; Reynolds 
and Fitzpatrick 2007; Maan and Cummings 2008, 2009; 
Crothers et al. 2011; Crowhurst et al. 2012; Zanollo et al. 
2012; Soulsbury et al. 2016; Soma and Garamszegi 2018). 
Like many Estrildid or other species that are characterised 
by dotted plumage patterns functioning for within-species 
signalling (Roulin 1999; Crowhurst et al. 2012; Zanollo 
et al. 2012; Soulsbury et al. 2016; Soma and Garamszegi 
2018), star finches also bear conspicuous white dots cov-
ering from face to flank, wherein their visual attention to 
white dots would facilitate identification of conspecifics or 
potential mates. Although we did not find any sex differ-
ence in dot preference, this could be associated with the 
fact that both sexes have dot patterns. It is also possible that 
the sample size of this study was not sufficient to detect 
it. At least what is clear from the present results is that 
male star finches pay attention to dots like females do. This 
could be either because dot plumage pattern plays a role in 
social dominance in each sex (e.g. Crowhurst et al. 2012), 
or because dots function in mutual mate choice, given that 
most Estrildid finches are characterised by behavioural and 
morphological sexual signals shared between the sexes and 
functioning for mutual courtship (Gahr and Güttinger 1986; 
Geberzahn and Gahr 2011; Ota et al. 2015; Soma and Gar-
amszegi 2015; Gomes et al. 2017; Soma and Iwama 2017; 

Soma 2018; Soma and Garamszegi 2018). It should be also 
noted that plumage patterns in Estrildid finches can have 
dual roles as sexual and social signals (Swaddle and Cuthill 
1994; Crowhurst et al. 2012; Zanollo et al. 2013; Marques 
et al. 2016; Soma and Garamszegi 2018), making it hard to 
disentangle them. A possible direction for future studies is 
to examine the dot preference of species with clear sexual 
dichromatism in plumage dots, such as the zebra finch.

Lastly, but most importantly, the findings of this behav-
ioural study, together with our previous phylogenetic com-
parative study (Mizuno and Soma 2020), have an important 
implication for how signalling traits originate and evolve in 
animals. According to the sensory bias hypothesis, sensory 
systems tuned for particular stimuli precedes the evolution 
of mating signals (Ryan et al. 1990; Ryan and Keddy-Hector 
1992; Basolo 1995; Endler and Basolo 1998; Ryan 1998; but 
see also Ron 2008). This idea is supported by some research 
findings that females of closely related species with or with-
out a mating signal show similar preferences, meaning that 
their common ancestors likely already had such a sensory 
preference, possibly because of diet (Proctor 1992; Gar-
cia and Ramirez 2005). However, it should be noted that 
our previous and present studies did not directly examine 
whether plumage dots evolved as a result of sensory bias 
driven by foraging preferences. Theoretically, intrinsic dot 
preference could have originated from either plumage sig-
nalling or diet. We cannot completely deny the possibility 
that dietary choices arose as a result of an underlying pref-
erence for plumage dot pattern, but think it unlikely. It is 
because Estrildid’s common ancestors are assumed to lack 
white dot plumage patterns (Mizuno and Soma 2020), while 
all living Estrildid species are granivorous. For better under-
standing, it would be of great importance to apply interspe-
cific comparative approaches to visual preference tests in 
the future. In addition, testing different colour combinations 
using the present test protocols might contribute to shed-
ding light on how pattern signals are perceived and evolved 
in animals. What previous research overlooked is whether 
males share similar sensory preferences with females. As we 
have shown here, visual preference for particular stimuli may 
not be female-specific and can be a factor in the evolution of 
signalling traits that are shared between the sexes.
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