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SUMMARY

Every human somatic cell inherits a maternal and a paternal genome, which work
together to give rise to cellular phenotypes. However, the allele-specific relation-
ship between gene expression and genome structure through the cell cycle is
largely unknown. By integrating haplotype-resolved genome-wide chromosome
conformation capture, mature and nascent mRNA, and protein binding data from
a B lymphoblastoid cell line, we investigate this relationship both globally and
locally. We introduce the maternal and paternal 4D Nucleome, enabling detailed
analysis of the mechanisms and dynamics of genome structure and gene function
for diploid organisms. Our analyses find significant coordination between allelic
expression biases and local genome conformation, and notably absent expres-
sion bias in universally essential cell cycle and glycolysis genes. We propose a
model in which coordinated biallelic expression reflects prioritized preservation
of essential gene sets.

INTRODUCTION

Biallelic gene expression in diploid genomes inherently protects against potentially harmful mutations.

Disrupted biallelic expression of certain genes increases vulnerability to disease in humans, such as in fa-

milial cancer syndromes that have loss of function in one allele (Knudson, 1971). BRCA1 and BRCA2 are

quintessential examples, for which missense, nonsense, or frameshift mutations affecting function of one

allele significantly increase the risk of breast cancer in women (Gudmundsson et al., 1995; Maxwell et al.,

2017). Imprinted genes are also associated with multiple disease phenotypes such as Angelman and

Prader-Willi syndromes (Zakharova et al., 2009; Buiting, 2010). Other genes with monoallelic or allele-

biased expression (MAE, ABE) may be associated with disease, but the contribution of allelic bias to dis-

ease phenotypes remains poorly understood.

ABE can occur with single nucleotide variants (SNVs), insertions or deletions (InDels), and chromatin mod-

ifications (Consortium, 2015; Rozowsky et al., 2011; Kundaje et al., 2015; Rao et al., 2014; Tan et al., 2018).

Analyses of allelic bias suggest high variance across tissues and individuals, with estimates ranging from 4%

to 26% of genes in a given setting (Leung et al., 2015; Rozowsky et al., 2011). In addition, higher order

chromatin conformation and spatial positioning in the nucleus shape gene expression (Rajapakse and

Groudine, 2011; Misteli, 2011, 2020; Cook, 2010). As the maternal and paternal alleles can be distant in

the nucleus, their spatial positions may promote ABE (Beliveau et al., 2015; Cremer and Cremer, 2010).

A major step toward understanding the contribution of allelic bias to disease is to identify ABE genes,

recognizing that important biases may be transient and challenging to detect. Allele-specific expression

and 3D structures are not inherently accounted for in genomics methods such as RNA-sequencing and

genome-wide chromosome conformation capture (Hi-C). These limitations complicate interpretations of

structure-function relationships, and complete phasing of the two genomes remains a significant

challenge.

To improve understanding of ABE in genomic structure-function relationships, we developed a novel

phasing algorithm for Hi-C data, which we integrate with allele-specific RNA-seq and Bru-seq data across

three phases of the cell cycle in a human female B-lymphoblastoid cell line (Figure 1). RNA-seq and Bru-seq
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provide complementary gene expression data. RNA-seq provides information on steady state gene

expression by measuring mature RNA, while Bru-seq measures nascent RNA transcription through bro-

mouridine tagging (Paulsen et al., 2014). RNA-seq and Bru-seq data were separated into their maternal

and paternal components through SNVs/InDels (Pickrell et al., 2010). Our algorithm, HaploHiC, uses

phased SNVs/InDels to impute Hi-C reads of unknown parental origin. Publicly available allele-specific pro-

tein binding data (ChIP-seq) were also included to better understand potential regulatory elements

involved in allelic bias (Chen et al., 2016b; Rozowsky et al., 2011). In addition to identifying known ABE

genes silenced by X Chromosome inactivation (XCI) or imprinting, our analyses find novel expression

biases between alleles and cell cycle phases in several hundred genes, many of which had corresponding

bias in allele-specific protein binding. Furthermore, the alleles of ABE genes were significantly more likely

to differ in local structure compared to randomly selected alleles. In contrast, we observed a pronounced

lack of ABE in crucial biological pathways and essential genes. Our findings highlight advantages of inte-

grating genomics analyses in a cell cycle and allele-specific manner and represent an allele-specific exten-

sion of the 4D Nucleome (4DN) (Chen et al., 2015; Ried and Rajapakse, 2017; Dekker et al., 2017; Lindsly

et al., 2021). This approach will be beneficial to investigation of human phenotypic traits and their pene-

trance, genetic diseases, vulnerability to complex disorders, and tumorigenesis.

Figure 1. Experimental and allelic separation workflow

Cell cycle sorted cells were extracted for RNA-seq, Bru-seq, and Hi-C (left to right, respectively). RNA-seq and Bru-seq

data were allelicly phased via SNVs/InDels (left). SNV/InDel based imputation and haplotype phasing of Hi-C data using

HaploHiC (right). These data provide quantitative measures of structure and function of the maternal and paternal

genomes through the cell cycle. For all G2 labels after the cell cycle diagram, G2 includes both G2 and M.
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RESULTS

Chromosome-scale maternal and paternal differences

Spatial positioning of genes within the nucleus is known to be associated with transcriptional status (Raja-

pakse and Groudine, 2011; Misteli, 2011, 2020; Cook, 2010). One might expect that the maternal and

paternal copies of each chromosome would stay close together to ensure that their respective alleles

have equal opportunities for transcription. Imaging of chromosome territories has shown that this is often

not the case (Figure 2A, method details) (Solovei et al., 2002; Bolzer et al., 2005; Ronquist et al., 2017). This

observation inspired us to investigate whether the two genomes operate in a symmetric fashion, or if allele-

specific differences exist between the genomes regarding their respective chromatin organization patterns

(structure) and gene expression profiles (function). We analyzed parentally phased whole-chromosome Hi-

C and RNA-seq data at 1 Mb resolution to identify allele-specific differences in structure and function,

respectively. We subtracted each chromosome’s paternal Hi-C matrix from the maternal matrix and found

the Frobenius norm of the resulting difference matrix. The Frobenius norm provides a measure of distance

between matrices, where equivalent maternal and paternal genome structures would result in a value of

zero. Similarly, we subtracted the phased RNA-seq vectors in log2 scale and found the Frobenius norm

of each difference vector. RNA-seq vectors were constructed by taking the average expression of all genes

contained within each 1 Mb bin for all chromosomes. The Frobenius norms were adjusted for chromosome

size and normalized for both Hi-C and RNA-seq.

We found that all chromosomes have allelic differences in both structure (Hi-C, blue) and function (RNA-

seq, red) (Figure 2B). Chromosome X had the largest structural difference, as expected, followed by Chro-

mosomes 9, 21, and 14. Chromosome X had the most extreme functional differences as well, followed by

Chromosomes 13, 7, and 9. A threshold was assigned at the median Frobenius norm for Hi-C and RNA-seq

(Figure 2B green dashed lines). Themajority of chromosomes with larger structural differences than theme-

dian in Hi-C also have larger functional differences than the median in RNA-seq. There is a positive corre-

lation between chromosome level differences in structure and function, which is statistically significant only

when Chromosome X is included (R = 0.66 and p = 0.007 with Chromosome X; R = 0.30 and p = 0.17 without

Chromosome X).

Allele-specific RNA expression

After confirming allelic differences in RNA expression at the chromosomal scale, we examined allele-spe-

cific expression of individual genes through RNA-seq and Bru-seq. We hypothesized that the chromosome

scale expression differences were not only caused by known cases of ABE such as XCI and imprinting, but

Figure 2. Genome imaging and chromosome differences

(A) Nucleus of a primary human fibroblast imaged using 3D FISH with the maternal and paternal copies of Chromosome 6, 8, and 11 painted red, green, and

white, respectively (left). Subsection highlighting the separation between the maternal and paternal copies of Chromosome 11, now colored red (right).

(B) Normalized chromosome level structural and functional parental differences of GM12878 cells. Structural differences (D Structure, blue) represent the

aggregate changes between maternal and paternal Hi-C over all 1 Mb loci for each chromosome, adjusted for chromosome size in G1. Functional

differences (D Function, red) represent the aggregate changes between maternal and paternal RNA-seq over all 1 Mb loci for each chromosome, adjusted

for chromosome size in G1. Green dashed lines correspond to the median structural (0.48, chromosome 3) and functional (0.20, chromosome 6) differences,

in the top and bottom respectively, and all chromosomes equal to or greater than the threshold are labeled. Scatterplot of maternal and paternal differences

in structure and function with best-fit line (R = 0.66 and p = 0.007).
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also by widespread ABE over many genes (Gimelbrant et al., 2007; Deng et al., 2014). Therefore, we eval-

uated all genes with sufficient reads covering SNVs/InDels for differential expression across the six settings:

maternal and paternal in G1, S, and G2/M. These settings give rise to seven comparisons which consist of

maternal versus paternal within each of the cell cycle phases (three comparisons), as well as G1 versus S and

S versus G2/M for the maternal and paternal genomes, respectively (two comparisons for each genome).

Within this manuscript, we define the term ‘‘allele-specific genes’’ as any genes with sufficient expression

and SNV/InDel coverage for accurate separation of the maternal and paternal allelic contributions,

although it is likely that other genes with insufficient coverage may also have biases in their allelic

expression.

First, we identified genes with ABE and cell cycle-biased expression (CBE) from RNA-seq. Although ABE

refers to differential expression between alleles in each cell cycle phase, CBE refers to significant changes

in expression from one cell cycle phase to another in each allele. From 23,277 RefSeq genes interrogated,

there were 4,193 genes with sufficient coverage on SNVs/InDels to reliably determine allele-specific

expression (O’Leary et al., 2016). We performed differential expression analysis for the seven comparisons

to identify which of the 4,193 genes had ABE or CBE (Anders and Huber, 2010). We identified 615 differen-

tially expressed genes from RNA-seq: 467 ABE genes, 229 CBE genes, and 81 genes with both ABE and

CBE (Tables S2 and S4). Both exons and introns containing informative SNVs/InDels were used for our

Bru-seq data, from which 5,294 genes had sufficient coverage. We identified 505 differentially expressed

genes from Bru-seq: 380 ABE genes, 164 CBE genes, and 39 genes with both ABE and CBE (Tables S3

and S5). We also identified 130 genes that had ABE in both RNA-seq and Bru-seq. Although this is substan-

tially smaller than the total number of ABE genes for RNA-seq and Bru-seq (467 and 380, respectively), the

number of genes that are allele-specific in both data modalities is also smaller. That is, only 285 of the ABE

genes from RNA-seq are allele-specific in Bru-seq and 192 of the ABE genes from Bru-seq are allele-specific

in RNA-seq. The remaining genes did not have sufficient expression or SNV coverage to be included in the

downstream analysis, even though they may have biases in their allelic expression levels. We then sepa-

rated the differentially expressed genes into their respective chromosomes to observe their distribution

throughout the genome. From RNA-seq (Bru-seq), we found that autosomes had 3-14% (1-11%) of ABE

in their allele-specific genes which is comparable to previous findings (Leung et al., 2015). As expected,

Chromosome X had a particularly high percentage of ABE genes at 90% (91%).

We identified 288 genes that have ABE in all three cell cycle phases from RNA-seq (160 paternally biased,

128 maternally biased) and 173 from Bru-seq (129 paternally biased, 44 maternally biased). This is the most

common differential expression pattern among ABE genes and these genes form the largest clusters in Fig-

ure 3A. These clusters include, but are not limited to, XCI, imprinted, and other MAE genes. Known exam-

ples within these clusters are highlighted in the ‘X-Linked’ and ‘Imprinted’ sections of Figure 3B. We also

identified hundreds of genes that are not currently appreciated in literature to have ABE, with examples

shown in the ‘Autosomal Genes’ sections of Figure 3B for both mature and nascent RNA. Approximately

half of all ABE genes were only differentially expressed in one or two cell cycle phases, which we refer to

as transient allelic biases. These genes form the smaller clusters seen in Figure 3A. Examples of genes

with transient allelic biases are also presented in the ‘Autosomal Genes’ section of Figure 3B. Transient

expression biases like these may be because of coordinated expression of the two alleles in only certain

cell cycle phases, though the mechanism behind this behavior is unclear.

Among the ABE genes from RNA-seq analysis, we found 117 MAE genes. In addition to the requirements

for differential expression, we impose the thresholds of an FCR 10 and for the inactive allele to have <0.1

Fragments Per Kilobase of transcript per Million (FPKM), or FC R 50 across all three cell cycle phases. Our

analysis confirmedMAE for imprinted and XCI genes, with examples shown in Figure 3B. Imprinted and XCI

genes are silenced via transcriptional regulation, which was verified bymonoallelic nascent RNA expression

(Bru-seq). The XIST gene, which is responsible for XCI, was expressed in the maternal allele reflecting the

deactivation of the maternal Chromosome X. XCI was also observed from Hi-C through large heterochro-

matic domains in the maternal Chromosome X, and the absence of these domains in the paternal Chromo-

some X (Figure 4C). The inactive Chromosome X in our cells is opposite of what is commonly seen for the

GM12878 cell line in literature (likely because of our specific GM12878 sub-clone), but is consistent be-

tween our datamodalities (Chen et al., 2016b; Rao et al., 2014; Tan et al., 2018). TheMAE genes also include

six known imprinted genes, four expressed from the paternal allele (KCNQ1OT1, SNRPN, SNURF, and

PEG10) and two from the maternal allele (NLRP2 and HOXB2). Some of the known imprinted genes that

were confirmed in our data are associated with imprinting diseases, such as Beckwith-Wiedemann
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syndrome (KCNQ1OT1 andNLRP2), Angelman syndrome (SNRPN and SNURF), and Prader-Willi syndrome

(SNRPN and SNURF) (Cao et al., 2017; Adams, 2008). These genes and their related diseases offer further

support for allele-specific analysis, as their monoallelic expression could not be detected otherwise.

After observing that approximately half of all ABE genes had transient expression biases, we hypothesized

that alleles may have unique dynamics through the cell cycle. We then focused our investigation on allele-

specific gene expression through the cell cycle to determine if alleles had CBE, and whether alleles were

coordinated in their cell-cycle dependent expression (Figure S1B). We compared the expression of each

allele between G1 and S as well as between S and G2/M, which provides insight into the differences be-

tween maternal and paternal alleles’ dynamics across the cell cycle. In the G1 to S comparison, there are

88 (55) genes in RNA-seq (Bru-seq) which have similar expression dynamics in both alleles. These genes’

maternal and paternal alleles are similarly upregulated or downregulated from G1 to S. In contrast, 87

(97) genes in RNA-seq (Bru-seq) have different expression dynamics between alleles. That is, only one allele

is up or downregulated in the transition from G1 to S. In the S to G2/M comparison, there are 26 3) genes in

RNA-seq (Bru-seq) that have similar expression dynamics in both alleles and 56 (12) genes with different

Figure 3. Allele-specific mature and nascent RNA expression

(A) Differentially expressed genes’ maternal and paternal RNA expression through the cell cycle. Expression heatmaps

are average FPKM values over three replicates after row normalization. Genes are grouped by their differential expression

patterns (Figure S1).

(B) Representative examples of X-linked, imprinted, and other autosomal genes with allelic bias. Top and bottom sections

of (A) and (B) show mature RNA levels (RNA-seq) and nascent RNA expression (Bru-seq), respectively.

(C) Examples of cell cycle regulatory genes’ mature RNA levels through the cell cycle. These genes are grouped by their

function in relation to the cell cycle and all exhibit CBE but none have ABE. All example genes in (B) and (C) reflect average

FPKM values over three replicates, and ABE in a particular cell cycle phase is marked with an orange or purple asterisk for

maternal or paternal bias, respectively. Within this figure, G2 includes both G2 andMphase. Any plots with no visible error

bars in (B) and (C) have errors smaller than the marker at each cell cycle phase.
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expression dynamics between alleles. From these data, we see a coordination of expression between

many, but certainly not all, alleles through the cell cycle.

Biallelic expression and cellular function

We observed from our analysis of CBE that multiple cell cycle regulatory genes had no instances of ABE

(Figure 3C). We expanded this set of genes to include all allele-specific genes contained in the KEGG

cell cycle pathway (Kanehisa and Goto, 2000). Again, we found zero instances of ABE. This may suggest

that genes with certain crucial cellular functions, like cell cycle regulation, may have coordinated biallelic

expression to ensure their sufficient presence as a means of robustness. This is supported by previous find-

ings which showed restricted genetic variation of enzymes in the essential glycolytic pathway (Cohen et al.,

1973).

We hypothesized that genes implicated in critical cell cycle processes would be less likely to have ABEs. We

tested additional modules derived from KEGG pathways containing at least five allele-specific genes, with

the circadian rhythm module supplemented by a known core circadian gene set (Chen et al., 2015). Exam-

ples of modules with varying proportions of ABE are shown in Table 1 (Table S7), where ‘‘Percent ABE’’

Figure 4. Haplotype phasing of Hi-C data

(A) HaploHiC separates paired-end reads into groups based on parental origin determined through SNVs/InDels (left, method details). Reads are grouped

by: (i) reads with one (sEnd-P/M) or both ends (dEnd-P/M) mapped to a single parent, (ii) reads are inter-haplotype, with ends mapped to both parents (d/

sEnd-I), and (iii) reads with neither end mapped to a specific parent (dEnd-U). Abbreviations within this figure are defined as follows: dEnd, double-end;

sEnd, single-end; U, unmapped; P, paternal; M, maternal; I, inter-haplotype; chrF/posF, mapped chromosome and position of forward end after sorted;

chrL/posL, mapped chromosome and position of latter end after sorted. An example of a paired-end read (dEnd-U) with no SNVs/InDels has its origin

imputed using nearby reads (right, method details). A ratio of paternally and maternally mapped reads is found in a dynamically sized flanking region around

the haplotype-unknown read’s location (method details). The ratio then determines the likelihood of the haplotype-unknown read’s origin. This example

visualization shows a slight bias toward Hi-C reads with a paternal origin, but the majority of our Hi-C data has stronger biases than what is shown here.

(B) Whole-genome Hi-C of GM12878 cells (top left). Inter-haplotype and intra-haplotype chromatin contacts after phasing Hi-C data using HaploHiC (right).

Chromosomes 14 and 15 highlight inter- and intra-chromosome contacts within and between genomes (bottom left). Visualized in log2 scale 1 Mb resolution

in G1.

(C) Haplotype phasing illustrates that the inactive maternal Chromosome X is partitioned into large heterochromatic domains, outlined in dotted black

boxes. Visualized in log2 scale 100 kb resolution in G1.
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refers to the proportion of genes with ABE to the total number of allele-specific genes in that module. We

found that there are multiple crucial modules, including the glycolysis/gluconeogenesis and pentose phos-

phate pathways, which also had zero ABE genes. To explore the possibility of a global phenomenon by

which genes essential to cellular fitness are significantly less likely to have biased expression, we analyzed

the frequency of ABE in 1,734 genes experimentally determined to be essential in human cells (Blomen

et al., 2015). Using the 662 allele-specific genes in this set, we found that these essential genes were signif-

icantly less likely to have ABE than a random selection of allele-specific genes (5.8% versus 11.1%, p < 0.001,

method details), consistent with our hypothesis that critical genes are likely to be expressed by both alleles.

In total, we offer a model in which coordinated biallelic expression reflects prioritized preservation of

essential gene sets.

Allele-specific genome structure

Motivated by our observations of chromosome level structural differences between the maternal and

paternal genomes, we examined the HaploHiC separated data in more detail to determine where these

differences reside. The genome is often categorized into two compartments: transcriptionally active

euchromatin and repressed heterochromatin. In studies comparing multiple types of cells or cells under-

going differentiation, areas of euchromatin and heterochromatin often switch corresponding to genes

that are activated/deactivated for the specific cell type (Dixon et al., 2015). We explored this phenomenon

in the context of the maternal and paternal Hi-C matrices to determine if the two genomes had differing

chromatin compartments. Chromatin compartments can be identified from Hi-C data using methods

such as principal component analysis or spectral clustering (method details) (Chen et al., 2016a). We

applied spectral clustering to every chromosome across all three cell cycle phases at 1 Mb resolution.

We found that there were slight changes in chromatin compartments for all chromosomes, but the vast ma-

jority of these changes took place on the borders between compartments rather than an entire region

switching compartments. These border differences were not enriched for ABE genes. This implies that,

although the structures may not be identical, the maternal and paternal genomes have similar overall

compartmentalization (aside from Chromosome X).

We next applied spectral clustering recursively to the Hi-C data at 100 kb resolution to determine whether

there were differences in TADs between the two genomes throughout the cell cycle (Chen et al., 2016a).

While the current understanding of genomic structure dictates that TAD boundaries are invariant (between

alleles, cell types, etc), it is also known that ‘‘intra-TAD’’ structures are highly variable (Dixon et al., 2012,

2015; Finn et al., 2019). The spectral identification method has an increased ability to discern these subtle

structural changes. We found that TAD boundaries were variable between the maternal and paternal

genomes and across cell cycle phases in all chromosomes. This supports previous findings of allelic differ-

ences in TADs for single cells, and we predict that they are even more variable across cell types (Chen et al.,

2016a; Finn et al., 2019). Differences in TAD boundaries were observed surrounding MAE genes, ABE

genes, and genes with coordinated biallelic expression (Figure S6). This indicated that changes in TAD

boundaries were not directly related to allelic expression differences.

Althoughwedid not find a direct relationship between TADboundary differences andABE genes, we observed

during this analysis that the local genome structure around the six imprinted genes had noticeable differences.

Table 1. Allelic bias in biological modules.

Module Percent ABE

Cell cycle 0%

Glycolysis/gluconeogenesis 0%

Pentose phosphate 0%

BCR signaling 8%

Circadian rhythm 9%

p53 signaling 11%

Wnt signaling 16%

Hippo signaling 21%

Whole genome 11%
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We then sought to analyze all genes with ABE or CBE to find out if they had corresponding structural differences

at a local level. We analyzed the local Hi-C matrices for each of the 615 RNA-seq and 505 Bru-seq differentially

expressed genes. Using a 300 kb flanking region centered at the 100 kb bin containing the transcription start

site, we isolated a 7 3 7 matrix (700 kb) for each differentially expressed gene (Figures 5A and 5B). These

matrices represent the local genomic structure of the differentially expressed genes, and are slightly smaller

than average TAD size (�1 Mb). We then compared the correlation matrices of the log2-transformed local

Hi-C data and determined whether or not the matrices have statistically significant differences (p < 0.05) (Koziol

et al., 1997; Lindsly et al., 2021). We applied this comparison to all genes that were differentially expressed in

RNA-seq (Bru-seq) and found that 515 (403) genes had at least one comparison in which both the expression

and local structure had significantly changed. Although changes in local genome structure and changes in

gene expression do not have a one-to-one relationship, we found that both ABE and CBE genes aremore likely

to have significant architectural differences than randomly sampled allele-specific genes (p = 0.001 and p =

0.004, respectively) (Figure 5D andmethoddetails). This lends further support to the idea that there is a relation-

ship between allele-specific differences in gene expression and genome structure.

Allele-specific protein binding

To uncover the mechanisms behind the relationship between allele-specific gene expression and genome

structure, we looked to DNA binding proteins such as RNA polymerase II (Pol II), CCCTC-binding factor

(CTCF), and 35 other transcription factors. We used publicly available protein binding data from AlleleDB

in tandem with RNA-seq and found 114 genes that have an allelic bias in both gene expression and binding

of at least one such protein (Chen et al., 2016b). We identified 13 genes which have ABE and biased binding

of Pol II, with bias agreement in 11 cases (85%). That is, the allelic expression and Pol II binding were biased

toward the same allele. For CTCF, 33 of 72 cases have bias agreement (46%), and for all other transcription

factors analyzed, 20 of 29 cases have bias agreement (69%) (Table S6). The CTCF binding bias agreement of

around 50% is expected, based on previous studies (Rozowsky et al., 2011). This is likely because of CTCF’s

role as an insulator, since an allele could be expressed or suppressed by CTCF’s presence depending on

the context. To avoid potential inconsistencies between our data and the protein data from AlleleDB, we

excluded Chromosome X when testing for ABE and protein binding biases.

We evaluated the relationship between TAD boundary differences between the maternal and paternal ge-

nomes and allele-specific CTCF binding sites. We found multiple instances of biased binding of CTCF and

corresponding changes to the boundaries of TADs containing ABE genes. Examples of this phenomenon

are shown in the center of Figure S6A, where TAD boundaries from the maternal (paternal) Hi-C data are

closer to a maternally (paternally) biased CTCF binding site in some cell cycle phases near the ABE genes

ANKRD19P, C9orf89, and FAM120A. Despite observing individual instances of biased CTCF binding

corresponding to TAD boundary differences and ABE genes, there were insufficient data to evaluate

this relationship genome-wide. We hypothesize that differences in TAD boundaries would correspond

to allele-biased CTCF binding provided that there were enough data, as it has been repeatedly shown

that TAD boundaries are enriched with CTCF binding (Wutz et al., 2017; Dixon et al., 2012).

We analyzed the 11 genes with allelic expression and Pol II binding bias agreement further to determine if

they also had significant changes in local genome structure. Through local Hi-C comparisons, we found that

all 11 of these genes had significant changes in structure in at least one cell cycle phase. 3Dmodels for six of

these genes are shown in Figure 5B, which highlight differences in local genome structure (method details)

(Varoquaux et al., 2014). Local Hi-C contact maps for these example genes are shown in Figure S7. The

genes with bias agreement and changes in local genome structure include known imprinted genes such

as SNURF and SNRPN, as well as genes with known allele-specific expression (and suggested imprinting

in other cell types) like ZNF331 (Ben-David et al., 2014). In addition, there are multiple genes with known

associations with diseases or disorders such as BMP8A, CRELD2, and NBPF3 (Wu et al., 2017; Kim et al.,

2017; Petroziello et al., 2004). These findings suggest that changes in local structure often coincide with

changes in expression because of the increased or decreased ability of a gene to access the necessary tran-

scriptional machinery within transcription factories (Cook, 2010; Osborne et al., 2004). We visualize this rela-

tionship for the gene CRELD2 as an example (Figure 5C).

The maternal and paternal 4D Nucleome

We define the maternal and paternal 4DN as the integration of allele-specific genome structure with gene

expression data through time, adapted from Chen et al. (2015). Many complex dynamical systems are
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Figure 5. Local chromatin structure and transcription factor binding

(A) Local regions around differentially expressed genes are tested for significant conformational changes. These regions

are modeled to visualize the conformations around each allele through G1, S, and G2/M (method details). Example of

local chromatin structure extraction is shown for ZNF331 in G1 phase (center of blue box). Hi-C matrices are shown in log2

scale 100 kb resolution.

(B) 3Dmodels of the local genome structure around six ABE genes with bias agreement of Pol II and significant changes in

local genome structure.

(C) Schematic representation of allele-specific Pol II and CTCF binding, with highlighted gene CRELD2, which had

binding biases in both. Table shows extreme binding biases of Pol II and CTCF on CRELD2 as an example.

(D) ABE and CBE genes are significantly more likely to have changes in their local genome architecture than randomly

selected genes. Blue and red lines represent the average number of significant local Hi-C changes for randomly

selected genes and differentially expressed genes, respectively (method details). Within this figure, G2 includes both G2

and M phase.
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investigated using a network perspective, which offers a simplified representation of a system (Newman,

2018; Strogatz, 2001). Networks capture patterns of interactions between their components and how those

interactions change over time (Chen et al., 2015). We can consider genome structure as a network, because

Hi-C data captures interactions between genomic loci (Rajapakse and Groudine, 2011; Misteli, 2020). In

network science, the relative importance of a node in a network is commonly determined using network

centrality (Newman, 2018). For Hi-C data, we consider genomic loci as nodes and use network centrality

to measure the importance of each locus at each cell cycle phase (Liu et al., 2018; Lindsly et al., 2021).

We initially performed a global analysis of thematernal and paternal 4DN by combining RNA-seq with mul-

tiple network centrality measures (method details) (Lindsly et al., 2021). We found differences between the

maternal and paternal genomes and across cell cycle phases, but only Chromosome X had clear maternal

and paternal separation (Figures S9 and S10).

In our earlier analysis, we found a significant relationship between ABE and changes in local genome

structure. We also observed that genes in multiple critical biological modules had coordinated biallelic

expression. Motivated by these results, we performed an integrated analysis of structure and function to

determine allele-specific dynamics of targeted gene sets. We constructed a sub-network for each gene

set (analogous to an in silico 5C matrix), by extracting rows and columns of the Hi-C matrix containing

genes of interest for each cell cycle phase (Dostie et al., 2006). We used eigenvector centrality (similar to

Google’s PageRank) to quantify structure, and used the average expression from the three RNA-seq rep-

licates to quantify function, for each allele in the sub-network (Page et al., 1999). We utilized the concept of

a phase plane to plot thematernal and paternal 4DN (4DNphase plane, adapted fromChen et al.) (Figure 6)

(Chen et al., 2015). We designated one axis as a measure of structure and the other as a measure of func-

tion. Coordinates of each point in the 4DN phase plane were determined from normalized structure data (x

axis, sub-network eigenvector centrality) and function data (y axis, FPKM). The 4DN phase plane contains

three points for each allele, which represent G1, S, and G2/M. We define allelic divergence (AD) as the

average Euclidean distance between the maternal and paternal alleles across all cell cycle phases in the

4DN phase plane (method details).

We show four example 4DN phase planes of gene sub-networks with various ADs in Figure 6. Genes which

are known to be crucial for cell cycle regulation have a mean AD of 0.0245 (Figure 6B, middle-left). Given

that GM12878 is a B-lymphoblastoid cell line, we were interested in the AD of genes which are related to

B cell receptor functionality. We found that these genes had a mean AD of 0.0225 (Figure 6B, left). The ADs

of cell cycle regulating genes and B cell specific genes are smaller than the mean AD of randomly selected

allele-specific genes (AD = 0.0301 over 10,000 samples). This may be indicative of a robust coordination be-

tween the alleles to maintain proper cellular function and progression through the cell cycle, and therefore

a lack of ABE genes or large structural differences. We show a random set of allele-specific genes with a

mean AD of 0.0249 as an example (Figure 6B, middle-right). MAE genes had a mean AD of 0.1748 (Fig-

ure 6B, right), significantly higher than randomly selected allele-specific genes (p = 0.001, method details).

This approach is useful for quantifying differences between maternal and paternal genomes throughout

the cell cycle, highlighting gene sets with large structural or expression differences over time. In previous

work, we have also shown that this method may be broadly applicable to time-series analysis of different

cell types (Lindsly et al., 2021).

DISCUSSION

In this study, we present evidence for the intimate relationship among allele-specific gene expression,

genome structure, and protein binding across the cell cycle. We validated our data and methods using

known allele-specific properties such as themonoallelic expression of imprinted and X-linked genes, broad

similarities of chromatin compartments between the maternal and paternal genomes, and large hetero-

chromatic domains of Chromosome X (Reik andWalter, 2001; Babak et al., 2015; Baran et al., 2015; Santoni

et al., 2017; Rao et al., 2014). Unique to this study, we established a coordination of allele-biased expression

and changes in local genome structure, which included hundreds of genes not commonly associated with

allele-biased expression. We observed further evidence of this coordination through corresponding pro-

tein binding biases.

Through our analysis of mature (nascent) RNA, we found 467 (380) genes to be differentially expressed be-

tween the two alleles and 229 (164) genes with differential expression through the cell cycle. Approximately

half of the genes with allele-biased expression are only differentially expressed in certain cell cycle phases,
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and over half of the genes with CBE are only differentially expressed in one allele. Further research is

needed to explore why certain genes have coordinated cell cycle dynamics across both alleles, while other

genes have disparate expression in some cell cycle phases. We predict that these transient allelic biases

may be associated with developmental pathologies and tumorigenesis, similar to imprinted and other

MAE genes. Conversely, we found no allele-biased expression from genes in multiple biological modules,

such as the cell cycle and glycolysis pathways (Table 1). We were not able to establish a statistical signifi-

cance here due to the limited number of allele-specific genes in these modules, so we surveyed a set of 662

essential genes and found that they are significantly less likely to have allele-biased expression (Blomen

et al., 2015). This supports our hypothesis of highly coordinated biallelic expression in universally essential

genes.

We developed a novel phasing algorithm, HaploHiC, which uses Hi-C reads mapped to phased SNVs/

InDels to predict nearby reads of unknown parental origin. This allowed us to decrease the sparsity

of our allele-specific contact matrices and increase confidence in our analysis of the parental differences

in genome structure. Although found that the overall compartmentalization (euchromatin and

Figure 6. 4DN phase planes reveal a wide range of allelic divergences in gene sub-networks

(A) Workflow to obtain structure and function measures. Eigenvector centrality for each gene is computed from the extracted sub-network of Hi-C contacts.

Expression for each gene can be found directly from RNA-seq. Simplified phase planes are shown with linear relationships between changes in structure and

function, changes in structure with no changes in function, and changes in function with no changes in structure.

(B) 4DN phase planes of genes specific to B cell function, cell cycle genes, random allele-specific genes, and MAE genes, highlighting the similarities and

differences between their alleles. Genes such as BUB1B and PIK3AP1 have similar phase planes between alleles, while RAC1 differs in structure andWRAP73

differs in function. The bottom plot for each column combines the phase planes of the nine example genes, and the average allelic divergence is calculated

from each of these gene sets. Circles, squares, and triangles represent phases of the cell cycle: G1, S, and G2/M, respectively. Solid and dashed lines indicate

the minimum volume ellipses that contain all cell cycle phases for the maternal and paternal allele of each gene, respectively (Sun and Freund, 2004). Within

this figure, G2 includes both G2 and M phase.
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heterochromatin) of the two genomes was broadly similar, there were many differences in TAD boundaries

and local genome structure between the two genomes and between cell cycle phases. We focused our

search for allele-specific differences in genome structure by calculating the similarity of local contacts sur-

rounding differentially expressed genes (Koziol et al., 1997; Lindsly et al., 2021). We found that differentially

expressed genes were significantly more likely to have corresponding changes in local genome structure

than random allele-specific genes.

We incorporated publicly available allele-specific protein binding data for Pol II and CTCF to explore the

mechanisms behind the gene expression and local genome structure relationship (Rozowsky et al., 2011). In

genes that had both allele-biased expression and Pol II binding biases, we found that 85% of these genes

had allelic bias agreement. Additionally, we found that all of the genes with expression and Pol II binding

bias agreement had significant changes in local genome structure. Analysis of the relationships among

allele-specific gene expression, genome structure, and protein binding is currently hindered by the amount

of information available and our limited understanding of the dynamics of cell-specific genome structure

and gene expression variability (Finn andMisteli, 2019). The ability to separate maternal and paternal gene

expression and protein binding is dependent on the presence of an SNV/InDel within the gene body and

nearby protein binding motifs. As SNVs/InDels are relatively rare in the human genome, the number of

genes available to study is severely limited. Once we are able to separate the maternal and paternal ge-

nomes through advances in experimental techniques, we will be able to fully study these relationships.

Overall, these data support an intimate allele-specific relationship between genome structure and func-

tion, coupled through allele-specific protein binding. Changes in genome structure, influenced by the

binding of proteins such as CTCF, can affect the ability of transcription factors and transcription machinery

to access DNA. This results in changes in the rate of transcription of RNA, captured by Bru-seq. The rate of

transcription leads to differential steady state gene expression, captured by RNA-seq. Integration of these

data into a comprehensive computational framework led to the development of a maternal and paternal

4DN, which can be visualized using 4DN phase planes and quantified using allelic divergence. Allele-spe-

cific analysis across the cell cycle will be imperative to discern the underlyingmechanisms behind many dis-

eases by uncovering potential associations between deleterious mutations and allelic bias, and may have

broad translational impact spanning cancer cell biology, complex disorders of growth and development,

and precision medicine.

Limitations of the study

The experiments presented in this study are limited to a single B lymphoblastoid cell line. This cell line’s

maternal and paternal genome sequences are known, allowing for the separation of gene expression

and chromatin conformation data. SNVs are relatively rare in the human genome, so the number of genes

available to analyze is severely limited. Increasing sequencing coverage depth and length of reads may

improve future analyses. This study does not present comprehensive analysis on the specific relationships

between chromatin conformation changes and differences in gene expression, only that these changes

frequently occur together. Targeted investigations into particular chromatin conformations and gene

expression profiles are needed to further elucidate the complex relationship between genome structure

and function, and how the maternal and paternal genomes compare throughout the cell cycle.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Dr. Indika Rajapakse (indikar@umich.edu).

Materials availability

This study did not generate new reagents.

Data and code availability

d All RNA-seq, Bru-seq, and Hi-C data are publicly available and have been deposited at the Gene Expres-

sion Omnibus (GEO) database. The accession number is listed in the key resources table.

d Prototype MATLAB implementation for differential expression analysis is available through MathWorks

and original HaploHiC code has been deposited to a GitHub repository. DOIs are listed in the key re-

sources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture and cell cycle sorting

Human GM12878 cells were cultivated in RPMI1640 medium supplemented with 10% fetal bovine serum

(FBS). Live cells were stained with Hoechst 33342 (Cat #B2261, Sigma-Aldrich), and then sorted by fluores-

cence-activated cell sorting (FACS) to obtain cell fractions at the corresponding cell cycle phases G1, S, and

G2/M (Figure S2).

METHOD DETAILS

RNA-seq and Bru-seq sequencing

Total RNA was extracted from sorted live cells for both RNA-seq and Bru-seq. We performed 50-bromour-

idine (Bru) incorporation in live cells for 30 minutes, and the Bru-labeled cells were then stained on ice with

Hoechst 33342 for 30 minutes before sorting at 4�C to isolate G1, S, and G2/M phase cells. The sorted cells

were immediately lysed in TRizol (Cat # 15596026, ThermoFisher) and frozen. To isolate Bru-labeled RNA,

DNAse-treated total RNA was incubated with anti-BrdU antibodies conjugated to magnetic beads (Lieber-

man-Aiden et al., 2009). We converted the transcripts from the RNA-seq and Bru-seq experiments for all

samples into cDNA libraries and deep-sequenced at 50-base length on an Illumina HiSeq2500 platform.

The RNA-seq and Bru-seq data each consist of three biological replicates. From our RNA-seq replicates,

we obtained a total of 193.4, 197.2, and 202.0 million raw reads for G1, S, and G2/M, respectively. From

our Bru-seq replicates, we obtained a total of 162.5, 149.9, and 138.0 million raw reads for G1, S, and

G2/M, respectively.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw and analyzed data (RNA-seq, BRU-seq, and Hi-C) This paper GEO: GSE159813

Software and algorithms

Prototype MATLAB implementation for differential

expression analysis

MathWorks https://www.mathworks.com/help/bioinfo/ug/identifying-

differentially-expressed-genes-from-rna-seq-data.html

HaploHiC code This paper https://github.com/Nobel-Justin/HaploHiC
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Hi-C sequencing

For cells used in construction of Hi-C libraries, cells were crosslinked with 1% formaldehyde, the reaction

was neutralized with 0.125 M glycine, then cells were stained with Hoechst 33342 and sorted into G1, S, and

G2/M fractions. Cross-linked chromatin was digested with the restriction enzyme MboI for 12 hours. The

restriction enzyme fragment ends were tagged with biotin-dATP and ligated in situ. After ligation, the chro-

matins were de-cross-linked, and DNA was isolated for fragmentation. DNA fragments tagged by biotin-

dATP, in the size range of 300–500 bp, were pulled down for sequencing adaptor ligation and polymerase

chain reaction (PCR) products. The PCR products were sequenced on an Illumina HiSeq2500 platform.

Respective to G1, S, and G2/M, we obtained 512.7, 550.3, and 615.2 million raw Hi-C sequence reads.

RNA-seq and Bru-seq data processing

RNA-seq and Bru-seq analysis were performed as previously described (Seaman et al., 2017; Paulsen et al.,

2014). Briefly, Bru-seq used Tophat (v1.3.2) to align reads without de novo splice junction calling after

checking quality with FastQC (version 0.10.1). A custom gene annotation file was used in which introns

are included but preference to overlapping genes is given on the basis of exon locations and stranding

where possible (see Paulsen et al. (2014) for full details). Similarly for RNA-seq data processing, the raw

reads were checked with FastQC. Tophat (version 2.0.11) and Bowtie (version 2.1.0.0) were used to align

the reads to the reference transcriptome (HG19). Cufflinks (version 2.2.1) was used for expression quanti-

fication, using UCSC hg19.fa and hg19.gtf as the reference genome and transcriptome, respectively. A

locally developed R script using CummeRbund was used to format the Cufflinks output.

Separation of maternal and paternal RNA-seq and Bru-seq data

To determine allele-specific transcription and gene expression through Bru-seq and RNA-seq, all reads

were aligned using GSNAP, a SNV aware aligner (Wu and Nacu, 2010; Kukurba and Montgomery, 2015).

HG19 and UCSC gene annotations were used for the reference genome and gene annotation, respectively.

The gene annotations were used to create the files for mapping to splice sites (used with –s option).

Optional inputs to perform SNV aware alignment were also included. Specifically, –v was used to include

the list of heterozygous SNVs and –use-sarray = 0 was used to prevent bias against non-reference alleles

(Degner et al., 2009).

After alignment, the output SAM files were converted to BAM files, sorted and indexed using SAMtools (Li

et al., 2009). SNV alleles were quantified using bam-readcounter to count the number of each base that was

observed at each of the heterozygous SNV locations. Allele-specificity of each gene was then assessed by

combining all of the SNVs in each gene. For RNA-seq, only exonic SNVs were used. Bru-seq detects

nascent transcripts containing both exons and introns, so both exonic and intronic SNVs were used.

Maternal and paternal gene expression were calculated by multiplying the genes’ overall read counts by

the fraction of the SNV-covering reads that were maternal and paternal, respectively. We identified

266,899 SNVs from the Bru-seq data, compared with only 65,676 SNVs from RNA-seq data. However in

the Bru-seq data, many SNVs have low read coverage depth. We required at least 5 SNV-covering reads

for a SNV to be used to separate the maternal and paternal contributions to gene expression. This criterion

found that there were similar numbers of informative SNVs (19,394 and 19,998) in the RNA-seq and Bru-seq

data, respectively. Genes which did not meet these criteria were omitted from downstream allele-specific

analysis.

Allele-specific differential expression

For a gene’s expression to be considered for differential expression analysis, we require each of the three

replicates to have an average of at least 10 SNV-covering reads mapped to at least one of the alleles in all

three cell cycle phases. This threshold was introduced to reduce the influence of technical noise on our dif-

ferential expression results. From the 23,277 Refseq genes interrogated, there were 4,193 genes with at

least 10 read counts mapped to either the maternal or paternal allele (or both) in the RNA-seq data.

From Bru-seq, there were 5,294 genes using the same criterion. We define these genes as ‘‘allele-specific

genes’’ for their respective data sources. We observed that there were larger variances between samples

and lower read counts in the Bru-seq data set than in RNA-seq.We identified differentially expressed genes

between alleles and between cell cycle phases for both RNA-seq and Bru-seq using a MATLAB implemen-

tation of DESeq (Anders and Huber, 2010). To reduce the possibility of false positives when determining

differential expression, we imposed a minimum FPKM level of 0.1, a false discovery rate adjusted p-value
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threshold of 0.05, and a fold change cutoff of FC > 2 for both RNA-seq and Bru-seq (Benjamini and Hoch-

berg, 1995).

Separation of maternal and paternal Hi-C data by HaploHiC

Hi-C library construction and Illumina sequencing were performed using established methods (Rao et al.,

2014). In this study, we separate the maternal and paternal genomes’ contributions to the Hi-C contact

matrices to analyze their similarities and differences in genome structure. In order to determine which

Hi-C reads come from which parental origin, we utilize differences in genomic sequence at phased

SNVs/InDels. As these variations are unique to the maternal and paternal genomes, they can be used to

distinguish reads. When attempting to separate the maternal and paternal genomes, complications arise

when there are sections of DNA that are identical. There are a relatively small number of allele-specific var-

iations, and the resulting segregated maternal and paternal contact matrices are sparse. In order to com-

bat this problem, we seek to infer contacts of unknown parental origin.

We propose a novel technique, HaploHiC, for phasing reads of unknown parental origin using local impu-

tation from known reads. HaploHiC uses a data-derived ratio based on the following hypothesis: if the

maternal and paternal genomes have different 3D structures, we can use the reads with known origin (at

SNV/InDel loci) to predict the origin of neighboring unknown reads (Figure 4A, method details) (Selvaraj

et al., 2013). For example, if we observe that many contacts between two loci can be directly mapped to

the paternal genome but few to the maternal genome, then unphased contacts between those loci are

more likely to be from the paternal genome as well, and vice versa. This process of imputing Hi-C reads

of unknown origin based on nearby known reads is similar to the methods developed by Tan et al. (2018).

HaploHiC marks paired-end reads as haplotype-known or -unknown depending on their coverage of het-

erozygous phased SNVs/InDels. Haplotype-known reads are directly assigned to their corresponding

haplotype, maternal or paternal. HaploHiC uses a local contacts-based algorithm to impute the haplotype

of haplotype-unknown reads using nearby SNVs/InDels. If the minimum threshold (ten paired-ends) of

haplotype-known reads for local imputation is not reached, HaploHiC randomly assigns the haplotype-un-

known reads to be maternal or paternal (less than 5% of all haplotype-unknown reads).

Our validation shows that HaploHiC performs well, with an average accuracy of 84.9%, 86.1%, and 86.9% for

G1, S, and G2/M, respectively, over 10 trials each (Table S12). Each validation trial randomly removed 10%

of the heterozygous phased SNVs/InDels, and calculated imputation accuracy by the fraction of correctly

imputed reads from the haplotype-known Hi-C reads covering these removed heterozygous mutations.

Our main validation of imputation accuracy is similar to the method presented in Tan et al. (2018), but

we perform additional tests and multiple simulations for further validation. HaploHiC is available through

a GitHub repository.

After haplotype assignment through HaploHiC, Hi-C paired-end reads (PE-reads) were distributed to intra-

haplotype (P-P and M-M) and inter-haplotype (P-M and M-P).Juicer was applied on intra-haplotype

PE-reads, and outputs maternal and paternal contact matrices which were normalized through the

Knight-Ruiz method of matrix balancing (Durand et al., 2016; Knight and Ruiz, 2013). Inter-haplotype con-

tact matrices were generated by HaploHiC.Intra- and inter-haplotype contacts are shown in Figures 4B and

S8. Both base pair level and fragment level matrices were constructed. The resolution of base pair level

matrices are 1 Mb and 100 kb. Gene-level contacts were converted from fragment level matrices by

HaploHiC.

Generation and haplotype assignment of Hi-C

Phased germline mutations of GM12878. From the AlleleSeq database (version: Jan-7-2017) (Rozow-

sky et al., 2011), we downloaded the VCF file of sample GM12878. This VCF file contains phased heterozy-

gous germline mutations (SNV and InDel) with a total of 2.49 million genomic loci (Table S8). We confirmed

that paternal allele is the left side of phased alleles, and the maternal allele is the right side, e.g., ‘0|1’ at

HG19 genomic position chr1:2276371. This mutation list was also utilized in the realignment process of

GATK.

HaploHiC utilizes heterozygous genotype information to distinguish reads’ parental origin as long as the

reads cover the heterozygous genomic loci. Considering that short sequence insertions and deletions

ll
OPEN ACCESS

18 iScience 24, 103452, December 17, 2021

iScience
Article



dramatically influence alignment accuracy, we applied a filtration on heterozygous InDels. All homologous

and heterozygous InDel alleles were assigned a minimum distance to the next InDel on the haplotyped

genome. This minimum distance considers repeatability of both the mutation sequence and local genomic

context. The mutation sequence (i.e., the inserted or deleted sequence) might be repetitive and repeated

at its genomic position. For example, at HG19 genomic position chr1:2277268, the maternal genome has a

deletion (‘CACA’). The deleted sequence is ‘CA’-unit repetitive (2 times) and also repeated in the adjacent

reference context (‘CA’-unit repeats 11 times). The minimum distance is the whole repeats’ length added

by unit repeated time of mutation sequence. So, at genomic position chr1:2277268, the minimum distance

of the deletion allele on maternal genome is 28, which means any InDel located within this distance on

maternal genome will be excluded from following analysis. In total, 11,614 heterozygous genomic loci

harboring InDel alleles were filtered (Table S8). HaploHiC outputs a list of these filtered genotypes. The

minimum distance is also applied in InDel allele judgment on sequencing reads (see parental origin cate-

gories of Hi-C PE-reads).

Alignment and filtering of Hi-C PE-reads. Illumina adapter sequences and low quality ends were

trimmed from raw Hi-C reads by Trimmomatic (Bolger et al., 2014). Paired-ends (PE, R1 and R2) were sepa-

rately aligned to the human reference genome (HG19) using the function ‘mem’ from BWA (0.7.15) with

default parameters (Li and Durbin, 2009). Then, each alignment BAM file was coordinated, sorted, and real-

igned by GATK (3.5) (McKenna et al., 2010). All realigned BAM files were sorted by read names before pro-

cessing in HaploHiC.

HaploHiC loads Hi-C PE-reads’ mapping information from paired alignment BAM files, and filters unqual-

ified and invalid pairs in the first step. After exclusion of unqualified and invalid pairs, remaining Hi-C PE-

reads are eligible to provide chromatin contacts (Table S9).

Unqualified PE-reads are filtered out if either or both ends are un-mapped, mapped with a mapping quality

less than 20, or mapped to multiple genomic positions. Note that supplementary alignments are reserved,

because theoretically, a portion of sequencing reads that cover ligation site could be soft-clipped mapped

to two genomic locations by BWA and provide contact information. HaploHiC sets two filtering criteria on

primary and supplementary alignments: 1) the difference between their length sum and the reads’ length

must be less than one fifth of the reads’ length, 2) the overlaps between primary and supplementary map-

ped parts must be shorter than one third of the shorter one. If the two criteria are not satisfied simulta-

neously, the supplementary alignment will be marked as ‘remove_SP’ and discarded.

HaploHiCdetects four categories of invalid pairs: 1) dangling ends, 2) self circle, 3) dumpedpair forwardedmap-

ped, and 4) dumped pair reversed mapped. The definition of these four categories are the same as HiC-Pro

(Servant et al., 2015), while the singleton type is included in the unqualified PE-reads mentioned above. The

two ends of an invalid pair must map to same the enzyme fragment or within a close distance (1 kb).

Parental origin categories of Hi-C PE-reads. HaploHiC assigns a haplotype situation to sequencing

reads by checking whether reads cover and support heterozygous alleles of specific parental origin.

Note that, in this section, we deal with each alignment of sequencing reads. Four haplotype situations

are defined (Figure 4): 1) ‘P’ (only paternal allele), 2) ‘M’ (only maternal allele), 3) ‘I’ (both maternal and

paternal alleles, i.e., inter-haplotype), and 4) ‘U’ (no parental allele supported). Clearly, the former three

situations (‘P’, ‘M’, and ‘I’) are haplotype-known, and the fourth (‘U’) is haplotype-unknown. Note that

sequencing reads with ‘I’ support both haplotypes simultaneously, as covering the junction site of the

ligated maternal and paternal fragments.

For sequencing reads covering heterozygous genomic positions and matching either parental allele, the

bases that match the allele must meet two criteria: 1) base quality is not less than 20, and 2) distance to

bilateral edges of this read is not less than 5 bp. Note, if the allele is determined through an InDel, the

read-edge distance might use the minimum distance representing the repeatability mentioned above

(see section) if the latter is larger. HaploHiC outputs a list recording all InDel alleles that have the repeat-

ability distance. There are a total of 255,961 heterozygous loci having such InDel alleles in sample GM12878

(Table S8).

According to the haplotype status of the two ends, HaploHiC assigns Hi-C PE-reads to seven categories:

dEnd-P/M/I, sEnd-P/M/I, and dEnd-U. Here, ‘dEnd’ and ‘sEnd’ represent dual-ends and single-end,
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respectively. Common instances of each category are shown in Figure 4. Additionally, we also set require-

ments on distance of alignments (Table S9).

� dEnd-P: both ends support only paternal alleles, and are not close-aligned

� dEnd-M: both ends support only maternal alleles, and are not close-aligned

� dEnd-I: at least one end supports bothmaternal and paternal alleles, and the other one is haplotype-

known

� sEnd-P: one end supports only paternal allele, the other one has haplotype-unknown alignment

� sEnd-M: one end supports only maternal allele, the other one has haplotype-unknown alignment

� sEnd-I: one end supports both maternal and paternal alleles, the other one has haplotype-unknown

alignment

� dEnd-U: both ends are haplotype-unknown.

Clearly, four categories (dEnd-P/M/I and sEnd-I) have confirmed allele-specific contacts, and we call them

phased Hi-C PE-reads. Conversely, the other three categories are unphased: PE-reads have one (sEnd-P/

M) or two (dEnd-U) haplotype-unknown ends. The next step is to assign the haplotype to these unphased

Hi-C PE-reads based on the allele-specific contact information in local regions.

Local region contacts from phased Hi-C PE-reads. By integrating all phased Hi-C PE-reads, HaploHiC

records allele-specific contacts in windowed regions. For example, to record allele-specific contacts of two

genomic regions (‘no.A’ window on ‘chrA’, and ‘no.B’ window on ‘chrB’), HaploHiC sorts ‘chrA’ and ‘chrB’ in

ASCII order, and if ‘chrA’ and ‘chrB’ are the same chromosome, it then sorts ‘no.A’ and ‘no.B’ in ascending

order. This dual-sorting process avoids duplicated records and reduces software memory consumption.

After sorting, the former region is ‘chrF, no.F’ (here, ‘F’ for former), and the latter region is ‘chrL, no.L’

(here, ‘L’ for latter). HaploHiC keeps a dictionary with key-value pairs. The key is ‘chrF, no.F, chrL, no.L’,

and its value is a set of phased Hi-C PE-reads that link these two regions with haplotype combinations

(i.e., ‘P-P’, ‘M-M’, ‘P-M’, and ‘M-P’, Figures 4B and S4. Additionally, HaploHiC de-duplicates the Hi-C

PE-reads under each haplotype combination.

HaploHiC utilizes a local allele-specific contacts based algorithm to impute the haplotype for haplotype-un-

known ends. To get the local region of one end of the unphased Hi-C PE-reads, HaploHiC extends bilaterally

from themapped position. The extension length is 50 kbon each unilateral side, which is referred to as an exten-

sion unit. Note that each unilateral region cannot harbor more than 30 phased heterozygous loci, or else the

unilateral region will be trimmed. The bilateral extended regions are merged as one local region. A similar

extension gets the local region of the other end of the Hi-C PE-read. Then, from the dictionary of phased

Hi-C pairs, HaploHiC counts PE-reads linking these two local regions of each haplotype combination. For

simplicity, the contact counts of haplotype combinations are: a (‘P-P’), b (‘M-M’), g (‘P-M’), and d (‘M-P’), respec-

tively. HaploHiC uses these counts to impute the haplotype for haplotype-unknown reads. Note that if the sum

of these counts is zero, local regions of both ends will be iteratively extended by more extension units until the

sum is non-zero or local regions reach the maximum length (10 Mb, more than 90% Hi-C pairs get imputed in

local region%3 Mb in this study). Finally, if the sum is still zero, we define this pair of local regions as unphased.

Assign haplotype to unphased Hi-C PE-reads (sEnd-P/M). First, HaploHiC deals with unphased Hi-C

PE-reads from sEnd-P/M categories. Because these Hi-C pairs already have one haplotype-known end,

some haplotype combinations should be excluded. For example, one Hi-C pair has one paternal end (map-

ped to ‘posA’ on ‘chrA’) and one haplotype-unknown end (mapped to ‘posB’ on ‘chrB’). After dual-sorting

the mapped chromosomes and positions, ‘chrB, posB’ is the ‘chrF, posF’, and ‘chrA, posA’ is the ‘chrL,

posL’. HaploHiC calculates the local regions of ‘chrF, posF’ and ‘chrL, posL’ respectively, and summarizes

contacts counts of haplotype combinations recorded under key ‘chrF, posF, chrL, no.L’: a (‘P-P’), b (‘M-M’),

g (‘P-M’), and d (‘M-P’). Because ‘chrL, posL’ is from the paternal genome in this instance, b (‘M-M’) and g

(‘P-M’) are impossible and should be excluded. HaploHiC then randomly assigns ‘P’ or ‘M’ to the

haplotype-unknown end (‘chrF, posF’) with possibility defined as:

possibility
�
paternal

�
=

a

a+ d
(Equation 1)
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possibilityðmaternalÞ = d

a+ d
(Equation 2)

Moreover, if the local regions are still unphased after iterative extension, i.e., the sum of contacts counts of

haplotype combinations is still zero, HaploHiC will assign the haplotype with uniform possibility depending

on the mapped chromosome situation. In this example, if ‘chrF, posF’ and ‘chrL, posL’ belong to same

chromosome, HaploHiC assigns the haplotype of ‘chrL, posL’ (the haplotype-known end) to ‘chrF, posF’

(the haplotype-unknown end). However, if ‘chrF, posF’ and ‘chrL, posL’ belong to different chromosomes,

uniform possibility (0.5) will be applied.

If intra-chromosome mapped (in this example):

possibility
�
paternal

�
= 1 (Equation 3)

possibilityðmaternalÞ = 0 (Equation 4)

If inter-chromosome mapped:

possibility
�
paternal

�
= 0:5 (Equation 5)

possibilityðmaternalÞ = 0:5 (Equation 6)

Hi-C pairs from sEnd-P/M categories are marked as ‘phased imputed’ and ‘unphased imputed’ corre-

sponding to phased and unphased local regions, respectively.

Assign haplotype to unphased Hi-C PE-reads (dEnd-U). Before the operations on unphased Hi-C PE-

reads from dEnd-U category, HaploHiC records ‘phased imputed’ Hi-C pairs from sEnd-P/M categories to

expand the contacts dictionary. For dEnd-U Hi-C pairs, calculation of local contacts counts of haplotype

combinations is identical to that of sEnd-P/M mentioned above. Note that as both ends are haplotype-

unknown, no haplotype combination will be excluded. Based on local regions’ contacts count (a (‘P-P’),

b (‘M-M’), g (‘P-M’), and d (‘M-P’), Figure 4B), HaploHiC randomly assigns a haplotype combination to

dEnd-U Hi-C PE-reads with possibility defined as:

possibility
�
paternal;paternal

�
=

a

a+ b+g+ d
(Equation 7)

possibilityðmaternal;maternalÞ = b

a+ b+g+ d
(Equation 8)

possibility
�
paternal;maternal

�
=

g

a+ b+g+ d
(Equation 9)

possibility
�
maternal;paternal

�
=

d

a+ b+g+ d
(Equation 10)

Similar to sEnd-P/M, if the local regions are still unphased after iterative extension, HaploHiC will assign a

haplotype with uniform possibility depending on the mapped chromosome status.

If intra-chromosome mapped:

possibility
�
paternal;paternal

�
= 0:5 (Equation 11)

possibilityðmaternal;maternalÞ = 0:5 (Equation 12)

possibility
�
paternal;maternal

�
= 0 (Equation 13)

possibility
�
maternal;paternal

�
= 0 (Equation 14)

If inter-chromosome mapped:

possibility
�
paternal;paternal

�
= 0:25 (Equation 15)

possibilityðmaternal;maternalÞ = 0:25 (Equation 16)

possibility
�
paternal;maternal

�
= 0:25 (Equation 17)

possibility
�
maternal;paternal

�
= 0:25 (Equation 18)

Hi-C pairs from dEnd-U category are also marked as ‘phased imputed’ and ‘unphased imputed’ corre-

sponding to phased and unphased local regions, respectively.

Allele-specific integrated results of Hi-C PE-reads. After processing the unphased Hi-C PE-reads of

sEnd-P/M and dEnd-U categories, HaploHiC successfully assigns haplotype to all valid Hi-C pairs. Finally,
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HaploHiC integrates Hi-C pairs of each haplotype combination: intra-paternal (‘P-P’), intra-maternal

(‘M-M’), and inter-haplotype (‘P-M’ and ‘M-P’). Note that ‘P-M’ and ‘M-P’ are recorded with different

tags in one file.

� Intra-paternal includes dEnd-P category, and imputed (‘P-P’) Hi-C pairs from sEnd-P/M and dEnd-U

categories

� Intra-maternal includes dEnd-M category, and imputed (‘M-M’) Hi-C pairs from sEnd-P/M and

dEnd-U categories

� Inter-haplotype includes dEnd-I and sEnd-I categories, and imputed (‘P-M’ and ‘M-P’) Hi-C pairs

from sEnd-P/M and dEnd-U categories

All integrated files are in BAM format, which keeps the original alignments of Hi-C pairs. HaploHiC adds

several tags in SAM optional fields to denote processing details. A report is generated recording statistics

of each category of all Hi-C pairs.

We calculated the phased rate in each sample (Table S10). The phased rate is the percentage of phased

Hi-C pairs, including dEnd-P/M/I, sEnd-I, and phased Hi-C pairs with imputed haplotype from sEnd-P/M

and dEnd-U categories. Phased rates in sEnd-P/M and dEnd-U categories are calculated separately.

Additionally, we introduced ‘inter-chr imbalance’ to evaluate the difference between inter-haplotype and

intra-haplotype assignment of inter-chromosomeHi-C pairs. Theoretically, for inter-chromosome contacts,

there is no reason to assume any difference between the intra-haplotype and inter-haplotype. The ‘inter-

chr imbalance’ is defined as the difference of intra-haplotype and inter-haplotype inter-chromosome con-

tacts divided by their larger one. Our data shows very low ‘inter-chr imbalance’ (0.01%–0.04%, Table S10),

which supports the accuracy of HaploHiC phasing.

Validation of allele-specific contacts. To validate HaploHiC, we randomly removed 10% of heterozy-

gous loci from the list of phased mutations. The Hi-C PE reads from three categories (dEnd-P/M/I) were

selected for validation, as both ends of these reads have known parental origin and can be used as the

ground truth. To estimate the imputation accuracy of HaploHiC, we compared the imputed haplotype

and the original haplotype of all Hi-C PE that cover the removed phased mutations. This validation method

is similar to the one proposed in Tan et al. (2018). We found that HaploHiC was able to correctly assign an

average of 84.9%, 86.1%, and 86.9% of these Hi-C reads for G1, S, andG2/M, respectively, over 10 trials. The

minimum accuracy over all trials for G1, S, and G2/Mwere 84.5%, 83.7%, and 84.1%. Accuracy of imputation

was calculated by the fraction of correctly imputed ones from the haplotype-known Hi-C reads covering

these removed heterozygous mutations (Table S12).

We performed an additional hold-out validation which randomly selects SNVs and finds 10% of Hi-C read

pairs that cover these SNVs from dEnd-P/M/I categories. These Hi-C pairs are then considered to be

dEnd-U to validate HaploHiC’s prediction accuracy. Unlike the validation presented in Tan et al., this vali-

dation procedure removes the entire Hi-C read instead of only removing a random set of SNVs. When

random SNVs are removed, many dEnd-P/M/I Hi-C reads only lose one end’s SNV coverage which leads

to easier predictions. We found that prediction accuracy for the randomly removed ‘‘dEnd-U’’ reads was

significantly lower than the previous validation, at an average of 41.6%, 42.2%, and 42.8% for G1, S, and

G2/M, respectively, over 10 trials (Table S13).

We note that during the prediction of dEnd-U Hi-C reads, it is likely that a pair of reads will be falsely as-

signed to the opposite haplotypes (e.g. ‘M-M’ assigned to ‘P-P’ and vice-versa), which we refer to as ‘‘recip-

rocal swaps.’’ When reciprocal swaps occur, the actual Hi-C haplotype assignment is incorrect but the final

count of Hi-C contacts between loci in each haplotype remain the same. Therefore, reciprocal swaps would

not affect downstream analysis of the population data. After considering this case, the accuracy of impu-

tation increases to 58.3%, 63.0%, and 64.5% for G1, S, and G2/M, respectively, averaged over 10 trials

(Table S13). In approximately 15–20% of prediction cases, only one Hi-C read existed in our validation

data set (Table S13). This prevents the possibility of reciprocal swaps. Given that the full Hi-C data set

has many more Hi-C reads, we expect that the number of occurrences of reciprocal swaps would increase,

causing the final imputed Hi-C counts to more closely match the ground truth. As expected, we also found
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that as the amount Hi-C data with SNV coverage increases, the number of false contacts decreases greatly

(Table S14). This means that larger Hi-C data sets with better SNV coverage will allow HaploHiC to make

more accurate imputations of unknown Hi-C reads.

To further evaluate our local contacts based algorithm, we simulated Hi-C sequencing data from haplotype

specific contacts between gene pairs of ten categories:

Five categories for imitation of intra-haplotype autosome contacts:

� Cross-Chrom: inter-chromosome translocations

� Long-Distance: intra-chromosome, but on different arms

� Long-Distance: intra-chromosome, on same arm, gene distance is > 10 Mb

� TAD level: intra-chromosome, on same arm, gene distance is [1 Mb, 2 Mb]

� LOOP level: intra-chromosome, on same arm, gene distance is < 700 kb

Two categories for imitation of inter-haplotype contacts:

� InterHap/interChr: inter-chromosome translocations

� InterHap/intraChr: intra-chromosome, gene distance is > 10 Mb

Three categories for imitation of chrX specific activation (intra-haplotype):

� chrX/LongDistance: gene distance is > 10 Mb

� chrX/TAD: gene distance is [1 Mb, 2 Mb]

� chrX/LOOP: gene distance falls into is < 700 kb

In total, 67 gene pairs were randomly selected from COSMIC cancer gene census database (Forbes et al.,

2016) to construct pairwise allele-specific contacts of maternal and paternal genomes respectively (Table

S11). The maternal and paternal genomes are downloaded from AlleleSeq database (version: Jan-7-2017)

(Rozowsky et al., 2011). The simulations on the LOOP level are CN-based (copy number), and the others are

SV-based (structure variation, Figure S5). To imitate SV-based chromatin contacts for one pair of genes,

e.g. BCR and ABL1, breakpoints are randomly picked from the two genes’ genomic regions respectively.

At the breakpoints, reciprocal translocations are formed via concatenating extended flanking 2 Mb

genomic sequences. As the gene-pair contact is heterozygous, sequences are extracted from paternal

genome FASTA file to form an allele-specific SV, and sequences from maternal genome are extracted

and kept unchanged (Figure S5A). To simulate CN-based chromatin contacts on the LOOP level, we assign

different copy numbers to genomic regions harboring two neighbor genes on the two haplotypes (Fig-

ure S5B). For one genomic region containing two nearby genes (gene C and D), to make the paternal

genome have more contacts between these two genes, we use two copies of this region from the paternal

genome, while only keeping one copy from the maternal genome. We applied simu3C (DeMaere and

Darling, 2017) to simulate the Hi-C sequencing reads of the SV-based and CN-based allele-specific

gene-pair contacts.

HaploHiC successfully recovers the allele-specific contacts in simulation data with 97.66% accuracy (Table S11).

First, all SV-based intra-haplotype allele-specific contacts areprecisely reportedbyHaploHiC. For example, con-

tacts of genepair ‘ETV6,NTRK3’ are all ‘P-P’, and contacts of genepair ‘KCNJ5, LMO2’ are all ‘M-M’. Second, for

CN-based intra-haplotype allele-specific contacts, the advantage haplotype is successfully reported by

HaploHiC. For example, gene pair ‘FLT3, LNX2’ has ‘P-P’ contacts more than three times of the ‘M-M’ contacts,

and gene pair ‘RUNX1, SMIM11’ has ‘M-M’ contacts more than two times of the ‘P-P’ contacts. These ratios are

close towhat we found in simulation. Third, all inter-haplotype gene pairs are successfully identified with correct

the haplotype combination. For example, all contacts of the gene pair ‘WT1, ZMYM2’ link paternal WT1 and

maternal ZMYM2. The gene pair ‘MAP2K1, NUP214’ has seven ‘M-P’ contacts (false positives), which is only

2.6% of all its contacts (273). Fourth, all the intra-haplotype chrX allele-specific activation cases are reported

correctly. Two gene pairs have some bias to inactivated haplotype (‘LAS1L, ZC4H2’ and ‘GPC3, HS6ST2’).
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Note that even shifted, they still show enrichment on correct haplotype. Gene pair ‘LAS1L, ZC4H2’ has larger

shifting (33.3%) to ‘M-M’ contact,because theneighborgene (MSN, genedistance isabout 75 kb) ofLAS1L forms

gene pair ‘MSN, STAG2’ which is simulated to have only ‘M-M’ contacts. ‘LAS1L, ZC4H2’ is influenced by ‘MSN,

STAG2’ as wemerged all simulated Hi-C sequencing data of 67 gene pairs together as one sample inHaploHiC

evaluation.Finally, all Hi-Cpairswithmistakenly assignedhaplotypecombinations aregatheredas falsepositives

(count is 1,326, total count of valid Hi-C pairs is 55,013).

Whole Chromosome probe generation and 3D FISH

Whole chromosome paint probes were generated in-house using PCR labeling techniques as described at

https://ccr.cancer.gov/Genetics-Branch/thomas-ried. Chromosome 7 was labeled with Orange dUTP (Ab-

bott Laboratories, Abbott Park, IL), Chromosome 8 was labeled with Dy505 (Dyomics, Jena, Germany) and

Chromosome 11 was labeled with Biotin-16-dUTP (Roche Applied Science, Indianapolis, IL). Cells were

grown on slides and fixed with 4% paraformaldehyde for 10 minutes. Cells were then washed with 0.05%

Triton X100 for five minutes followed by permeabilization steps which included incubation with 0.5% Triton

X100 for 20 minutes, followed by subsequent repeated (4x) freeze thaw in liquid nitro- gen/glycerol. The

slides were then incubated in 20% glycerol for at least one hour before being frozen in 1xPBS at�20�C until

hybridization was performed. Prior to hybridization, cells were washed in 0.05% Triton X100 followed by in-

cubation in 0.1N HCl for 10 minutes. Cells were then washed in 2XSSC followed by incubation in 50% form-

amide/2XSSC for at least one hour before hybridization. Cells and probes were co-denatured at 72�C for

five minutes followed by a 48 hours hybridization at 37�C. After incubation at 37�C, detection commences

with posthybridization washes followed by incubation in blocking (3%BSA, 4xSSC, 0.1% Tween20) for 30mi-

nutes at 37�C. The biotinylated probes were detected with the fluorochrome Cy5 conjugated to Strepta-

vidin (Rockland, Gilbertsville, PA). The slides were then washed with 2XSSC before being counterstained

with Prolong Gold antifade reagent with DAPI (Promega Madison, WI).

QUANTIFICATION AND STATISTICAL ANALYSIS

Spectral clustering: the Laplacian, Fiedler value, and Fiedler vector

The Laplacian, Fiedler value, and Fiedler vector can be summarized as follows. Consider an adjacency ma-

trix A, where ðAÞi;j = wðni; njÞ, and weight function, w, satisfying wðni;njÞ=wðnj;niÞ (symmetrical) and

wðni ;njÞR0 (nonnegative). The Laplacian, L, of A is defined to be L = D� A, where D=diagðd1;/;dkÞ
and di = Sk

j = 1aij. The normalized Laplacian is the matrix L = D�1=2LD�1=2. The second smallest eigenvalue

of L (or L) is called the Fiedler value, and the corresponding eigenvector is called the Fiedler vector (Chung

andGraham, 1997). The Fiedler value is also known as the algebraic connectivity of a graph. The magnitude

of the Fiedler value increases as the number of edges in the graph increases, and as the graph becomes

more structurally ordered. The Fiedler vector partitions the genome into two parts that reflect underlying

topology, as given by edge weights inferred from Hi-C data. The Fiedler vector plays a role similar to the

eigenvector associated with the largest eigenvalue (principal component 1) of the correlation matrix of the

normalized Hi-C matrix (Lieberman-Aiden et al., 2009), but it is directly related to properties of the associ-

ated graph (Chung and Graham, 1997). The Fiedler vector can be calculated recursively to identify smaller

partitions in Hi-C data. These smaller partitions correspond to topologically associated domains (TADs)

(Chen et al., 2016a). Description of the Laplacian, Fiedler value, and Fiedler vector adapted from Chen

et al. (2015).

Structure-function visualization and the 4D Nucleome

The goal of the maternal and paternal 4DN is to understand the relationship of allele-specific genomic

structure and gene function through time. Gene expression (RNA-seq) directly offers us a scalar value to

represent the function of an individual gene, or for a genomic locus (total gene expression for all genes

within the locus). In order to find a compatible scalar value which represents structure, we look to Hi-C con-

tacts. Hi-C provides insight into the structural organization of the genome by finding distant regions of the

genome (in terms of genomic sequence) that are close to one another in 3D space. The 3D structure of the

genome can be viewed through the perspective of a ‘genomic network’. In such a network, genomic re-

gions are considered nodes and the contacts between genomic regions are the edges.

A concept that is well known in network theory is centrality. Network centrality measurements, or features,

encompass a wide range of network properties (Newman, 2018). The common goal of these features is to

assign quantitative measurements to the structure of the network. One particularly important feature is the
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eigenvector centrality, which is the eigenvector associated with the largest eigenvalue of the adjacency

matrix which defines the network. Eigenvector centrality assigns values to each node in a network corre-

sponding to that node’s influence on the network. Other centrality features that have been shown to

have biological relevance include degree, betweenness, and closeness centrality (Liu et al., 2018). We

calculated these four centrality features from the Hi-C data at 1 Mb resolution and concatenated them

with RNA-seq to form a new structure-function (S-F) matrix which represents both structure and function

(rows correspond to genomic loci, columns correspond to centrality features and RNA-seq) (Liu et al.,

2018; Lindsly et al., 2021). We derived the S-F matrix both genome-wide and for individual chromosomes.

We then normalize the S-F matrix for each setting (maternal and paternal in G1, S, and G2/M) and concat-

enate all settings. Next, we apply t-SNE to the combined S-Fmatrix (containing all settings) and reduce it to

two dimensions (Maaten and Hinton, 2008). Then we can visualize the two dimensional projection, and

observe how the maternal and paternal genomes compare across cell cycle phases (Figure S9).

The structure-function matrix integrates genomic structure and gene expression into a common subspace,

but it does not directly inform us of the relationship between structure and function. To visualize this allele-

specific relationship, we use eigenvector centrality and mature RNA (RNA-seq, FPKM) for each allele at

each phase of the cell cycle. In other words, eigenvector centrality and RNA-seq serve as structure

(x-axis) and function (y-axis) coordinates across the cell cycle, respectively (Figure 6). The cell cycle and B

cell receptor signaling genes displayed in Figure 6 are contained in a larger sub-network of genes based

on their KEGG pathway, whose Hi-C contacts (1 Mb resolution) define the edges of their respective

sub-networks (from which eigenvector centrality is calculated). Similarly, the MAE genes displayed are

contained within a sub-network of all MAE genes identified in our ABE analysis. The allele-specific genes

displayed, which serve as a control, are contained within a gene sub-network which was randomly selected

from all allele-specific genes. The number of allele-specific genes selected for the control is themean of the

other three sets’ sizes. The three points (G1, S, and G2/M) in the 4DN phase plane for each allele are fit with

a minimum volume ellipse to capture the 4DN variance of the allele (Sun and Freund, 2004). Allelic

divergence for each gene is calculated as the mean Euclidean distance between the maternal and paternal

alleles’ coordinates in the 4DN phase plane for G1, S, and G2/M, after normalization of coordinates. The

allelic divergence for each group of genes displayed in Figure 6 is defined as the mean of these genes’

individual allelic divergences.

Statistical significance via permutation test

A permutation test builds the shape of null hypothesis (namely, the random background distribution) by

resampling the observed data. We use a permutation test to establish statistical significance in our analysis

of the relationship between local structural changes and corresponding functional changes, the frequency

of ABE genes in an essential gene set, and average allelic divergence of MAE genes. This sampling proced-

ure was repeated 10,000 times in all cases cases. A rank-based p-value is then calculated for the right-tailed

event for testing likelihood of local structure changes around ABE genes and allelic divergence. The left-

tailed event was tested for decreased ABE in an essential gene set (Blomen et al., 2015). The background

distribution for ABE in essential genes was generated by calculating the proportion of ABE genes in a

randomly selected set of 662 allele-specific genes (same number of genes as the allele-specific essential

gene set). The proportion of ABE genes in the essential gene set compared to this background distribution

yields the p-value (Figure S3). The background distributions for genome structure changes were generated

by calculating the average number of significant changes in the Hi-C contacts surrounding random allele-

specific genes. The probability of the right-tailed event of our observation of significant structural changes

around ABE, CBE, and combined set of ABE and CBE genes under their respective background distribu-

tions yields the p-values (Figure 5D). The background distribution for allelic divergence in MAE genes was

generated by calculating the average allelic divergence among randomly selected sets of allele-specific

genes. The allelic divergence of the MAE gene set compared to this background distribution yields the

p-value (Figure S11).

Structure alignment and 3D modeling

Structures computed from different distance matrices could be varied in both scale and orientation. To

align different structures and superimpose them into the same coordinates, we used Procrustes analysis

(Stegmann and Gomez, 2002) which applies the optimal transform to the second matrix (including

scaling/dilation, rotations, and reflections) to minimize the sum of square errors of the point-wise differ-

ences. First, we translocate shapes to the origin by subtracting the mean value of all coordinates. Next,
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we force shapes into the same scale by dividing each shape by the Frobenius norm. For anm3 nmatrix A,

the Frobenius norm is defined as kAkF = ðPm
i = 1

Pn
j = 1

��aij
��2Þ

1
2
: Finally, we find an optimal rotation matrix

that will align one contact matrix A to matrix B by using Singular Value Decomposition (SVD) on M where

M = AuB. Applying SVD to thematrixM givesM = USVu, where Vu is the rotationmatrix of B. Then BVu is

the rotated shape. To visualize the final structure from the inferred three dimensional embedding,

we smooth the curve by interpolating three dimensional scatter data using the radial basis function

(RBF) kernel. The structure was visualized using the Mayavi package in Python (Ramachandran and

Varoquaux, 2011).
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