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Abstract: This study aims at developing and evaluating reconstitutable dry suspension (RDS)
improved for dissolution rate, oral absorption, and convenience of use of poorly water-soluble
celecoxib (CXB). Micro-sized CXB particle was used to manufacture nanosuspension by using bead
milling and then RDS was made by spray-drying the nanosuspension with effective resuspension
agent, dextrin. The redispersibility, morphology, particle size, crystallinity, stability, dissolution,
and pharmacokinetic profile of the RDS were evaluated. RDS was effectively reconstituted into
nanoparticles in 775.8 ± 11.6 nm. It was confirmed that CXB particles are reduced into needle-shape
ones in size after the bead-milling process, and the description of CXB was the same in the
reconstituted suspension. Through the CXB crystallinity study using differential scanning calorimetry
(DSC) and XRD analysis, it was identified that CXB has the CXB active pharmaceutical ingredient
(API)’s original crystallinity after the bead milling and spray-drying process. In vitro dissolution
of RDS was higher than that of CXB powder (93% versus 28% dissolution at 30 min). Furthermore,
RDS formulation resulted in 5.7 and 6.3-fold higher area under the curve (AUC∞) and peak
concentration (Cmax) of CXB compared to after oral administration of CXB powder in rats. Collectively,
our results suggest that the RDS may be a potential oral dosage formulation for CXB to improve its
bioavailability and patient compliance.

Keywords: reconstitutable; nanosuspension; bead milling; crystallinity; dissolution; pharmacokinetics

1. Introduction

Celecoxib (CXB) is a cyclooxygenase-2 selective and non-steroidal anti-inflammatory drug for
osteoarthritis and rheumatoid arthritis [1,2]. It is known that CXB, a type II drug in biopharmaceutical
classification system (BCS), is very poor in dissolution and oral absorption due to low solubility
(3.2 µg/mL in water), in spite of its own therapeutic effect [3,4]. A version of the market product
for CXB, Celebrex®(Pfizer) was designed to improve solubility and oral bioavailability through use
of micronized CXB powder and solubilizer [5,6]. However, sodium lauryl sulfate (SLS) used as a
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solubilizer in Celebrex®, is known as toxic material, causing skin irritation and mucosal irritation due
to it being an anionic surfactant with a high solubilizing potential [7,8]. Therefore, it is necessary to
develop the formulation for improving oral absorption without using a very toxic ionic surfactant [9,10].
In addition, celecoxib used in high-dose administration (i.e., 200–400 mg twice daily) requires
improvement for oral absorption and biocompatibility through novel dosage form, and it would
help to improve greatly patient compliance [11]. To overcome these issues of CXB, various strategies
such as self-emulsifying drug delivery system [3], solid dispersion [4], lipid carrier [12], and dry
elixir [13] have been reported. The solubilizing assistants such as oil, hydrophilic polymer, lipid,
and ethanol were used in micro-emulsion [3], matrix [4], lipid particle [12], and elixir system [13],
respectively. If there are ways to expect the effective solubilization of poorly water-soluble CXB without
the use of additional substances, it might be one of the useful approaches.

Recently, nanotechnology has been used as an effective strategy for drug delivery of poorly
water-soluble materials [14–16]. When drug particles are made in nano-scale, their surface
area is dramatically increased, resulting in great improvement in solubility, dissolution rate,
and bioavailability, and there have been a variety of methods to do so [17–19]. Wet media
milling (WMM) performed by physical force (e.g., shearing, impact, crushing, or attrition) is an
efficient process to reduce the size of drug particles in aqueous media [20]. Nanosuspension
manufactured by WMM, is available to greatly decrease the amount of additive used in manufacturing,
and can be used for products with high drug amounts and low side effects, and is convenient
for large-scale production [17,21]. However, in its long-term storage, drug particles grow or
aggregate, causing frequent irreversible sedimentation [22]. This physical unstability has been
mentioned as a big problem in developing a commercial product by applying nanosuspension
technology [23,24]. Even though studies to develop nanosuspension for the poorly water-soluble drug
have been invigorated [25,26], there have been very few research results to improve unstability of
nanosuspension [27]. According to some literature, nanosuspension was made in solid dosage form
through spray-drying, freezing drying, pelletization, and granulation to improve stability and the drug
was administrated to patients by reconstituting it from aqueous solution [28–30]. However, processes
used for manufacturing the solid dosage form add various stresses on the drug, and as a result, may
accompany irreversible aggregation of nanoparticles, requiring investigation [22,23].

The purpose of this study was to develop and evaluate a reconstitutable dry suspension (RDS),
without anionic surfactant used in the commercial product, in order to improve the dissolution and
oral absorption of celecoxib. To the best of our knowledge, no scientific literature is currently available
on the improvement of in vitro dissolution profiles and in vivo pharmacokinetics of CXB by RDS
formulation. We respectively utilized bead-milling equipment and a spray dryer for the size reduction
and solidification process, and used dextrin as a solid matrix material. Dextrin has various advantages
as a pharmaceutical excipient. Dextrin is known to be eligible as an immediate-dissolving solid
dosage formulation forming polymer due to its non-toxic, high water-soluble, and biocompatible
properties [31,32]. Dextrin is an excellent wall-forming material for micro-encapsulation of core
materials [33,34]. Unlike many other polymers, solid dosage forms made of dextrin have non-sticky
and free-flowing properties [31,32], which can be beneficial to further unit operations after the
drying process. The redispersibility, morphology, crystallinity, physical stability, dissolution,
and pharmacokinetic profile of celecoxib nanosuspension or RDS were characterized.

2. Materials and Methods

2.1. Materials

CXB (Crystal Form III) was purchased from MYLAN (Andhra Pradesh, India). Dextrin and Tween
80 were purchased by Daejung (Siheung, Korea) and Duksan (Ansan, Korea), respectively. All other
chemicals and solvents were of analytical reagent grade.
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2.2. Preparation of Nanosuspension and Dry Suspension

2.2.1. Preparation of Nanosuspension Using Wet Bead Milling

Tween 80 as a stabilizer was dissolved in de-ionized water (0.5% w/v). CXB was carefully added to
the aqueous solution (2% w/v) and dispersed using MTOPS MS-3040 mechanical mixer (Seoul, Korea).
The resulting suspension was loaded into the chamber of a Netzsch bead mill (Minicer, Germany) for
size reduction process. In order to prevent screen clogging, the flow was gradually increased from
10 mL/min. The operating conditions for bead milling are as follows: circulation flow, 100 mL/min;
milling speed, 3000 rpm; milling time, 4 h; and product temperature, 17–20 ◦C. The milling machine
equipped with Yttrium-stabilized zirconia beads (0.3 mm diameter) as a milling media was operated
in a recirculation mode.

2.2.2. Preparation of Dry Suspension Using Spray-Drying

The homogenized nanosuspension (containing an amount equivalent to 1 g CXB) was blended
with dextrin (20 g) as the matrix material. The resulting mixture was spray-dried using Büchi B290 mini
Spray Dryer (Flawil, Switzerland) under the following parameters: Inlet air temperature, 120 ◦C;
outlet air temperature, 68–70 ◦C; spray flow control, 470 NL/h; sample feeding flow, 3 mL/min;
and aspiration, 100% [35]. The nanosuspension during spray-drying was continuously stirred with
a magnetic stirrer. The spray-dried RDS powder was collected and kept in a sealed container at
the refrigerator.

2.3. Characterizations of Nanosuspension and RDS

2.3.1. Particle Size, Distribution and Zeta Potential Analysis

The particle size and distribution of drug nanoparticles in the formulation was determined by
Brookhaven 90 Plus dynamic light scattering particle size analyzer (Holtsville, NY, USA). All data
were recorded as volume distributions under a scattering angle of 90◦ at 25 ◦C. The sample was
diluted with de-ionized water and vortexed (30 s) before measurement. The width of the particle size
distribution was calculated using SPAN value and polydispersity index (PDI). D0.1, D0.5, and D0.9

are the size at 10%, 50%, and 90% of the cumulative volume, respectively. The zeta potential was
measured using a Brookhaven NanoBrook 90 Plus zeta potential analyzer (Brookhaven Instruments
Corp., Holtsville, NY, USA).

SPAN = [D0.9 − D0.1]/D0.5 (1)

2.3.2. Redispersibility

The redispersibility of the RDS was evaluated using redispersibility index (RDI). In a glass
vial, the RDS was mixed with distilled water and vortexed (30 s). RDI is defined as the following
equation. D and D0 are the mean particle size of reconstituted suspension and nanosuspension before
spray-drying, respectively [36]. When the RDI value is near to 100%, it means that the dried suspension
powder can be completely redispersed to nanoparticle before spray-drying.

RDI = [D/D0] × 100% (2)

2.3.3. Scanning Electron Microscopy (SEM)

The morphologies of CXB powder, nanosuspension, RDS, and reconstituted suspension were
observed using Hitachi S-4300SE FE-SEM (Tokyo, Japan). The samples were put on a double-faced
carbon tape and air dried at 30 ◦C. The resulting samples were coated with platinum and examined at
an accelerating voltage of 15 kV.



Pharmaceutics 2018, 10, 140 4 of 14

2.3.4. Solid-State Characterization

The solid-state characterizations of nanosuspension and RDS were conducted by differential
scanning calorimetry (DSC) and powder X-ray diffractometry (PXRD). The thermal transition patterns
of various samples were obtained using a TA Q20 differential scanning calorimeter (Leatherhead,
UK). The samples (approximately 3 mg) were weighed in an aluminum pan and sealed with a lid.
The pretreated cans were scanned from 30 ◦C to 200 ◦C at a rate of 10 ◦C/min under a continuous
flow of dried nitrogen gas. X-ray diffraction patterns were gained using Rigaku Ultima IV X-ray
diffractometer (Akishima, Japan) with Cu-Kα radiation. The samples were gently mounted on a
sample holder and PXRD patterns were collected over a range of 3◦ to 40◦ (2θ) using scanning speed
of 2.0◦ per min and a step size of 0.02◦ [37].

2.3.5. Physical Stability

The physical stability of the nanosuspension and RDS were determined at the predetermined time
intervals after being stored in a sealed vial protected from the outer atmosphere at room temperature.
The appearance observation, particle size, distribution, redispersibility, and zeta potential of samples
were monitored for 12 weeks.

2.3.6. In Vitro Dissolution Test

Dissolution of CXB powder, marketed product, nanosuspension, and RDS were performed using
Electrolab TDT-08 L Dissolution Tester (Mumbai, India). The dissolution study was conducted at
36.5 ± 0.5 ◦C with a paddle speed of 50 rpm. Each sample containing an amount equivalent to 2.5
mg CXB was uniformly dispersed in 900 mL dissolution media (containing 0.1% Tween 80) of pH 1.2
(gastric fluid) and pH 6.8 (intestinal fluid). Three milliliters of each medium were collected at 5, 10, 15,
30, 60, 90, 120 min and replaced by an equivalent volume of fresh dissolution medium. The obtained
samples were filtered using a 0.45 µm membrane filter and analyzed at 250 nm. The CXB content was
quantified using an Agilent 1100 HPLC system (Santa Clara, CA, USA) equipped with a UV detector
and Young Jin Biochrom Aegispak C18 column (4.6 × 150 mm, 5 µm, Seongnam, Korea). The mobile
phase consisted of MeOH and H2O (75:25, v/v) and used at a flow rate of 1.25 mL/min. Dissolution
was performed in triplicate [38].

2.3.7. In Vivo Oral Pharmacokinetic Studies in Rats

The in vivo oral pharmacokinetic studies of CXB powder, RDS, and Celebrex® (commercial
product) were investigated at a dose of 5 mg/kg in the fasted condition of male Sprague Dawley (SD)
rats. All animal experiments were performed in accordance with the Guidelines for Animal Care and
Use issued by Gachon University, as described previously [39]. Experimental protocols involving the
animals used in this study were reviewed and approved by the Animal Care and Use Committee of
the Gachon University (#GIACUC-R2018004, approval date on 11 May 2018). The animals were fasted
overnight (i.e., 18 h before oral administration) but allowed to water. After rats were anesthetized
with Zoletil (20 mg/kg, intramuscular injection), femoral arteries were cannulated for blood sample
collection with a Clay Adams PE-50 polyethylene tube (Parsippany, NJ, USA) filled with heparinized
saline (20 IU/mL). After recovery from surgery, rats were orally administered at a dose of 5 mg/kg
of celecoxib all for tested three formulations. Blood samples (100 µL) were collected at 0, 15, 30, 60,
120, 180, 240, 360, 480, 1440, and 2880 min after administration. Plasma was obtained by centrifuging
whole blood at 4 ◦C for 10 min and then stored at −20 ◦C.

Sample preparation was performed by deproteinizing with 100 µL of methanol solution
containing internal standard (IS). Upon vortex-mixing, centrifugation at 12,000× g at 4 ◦C for 10 min
was performed and then the supernatant was obtained. A liquid chromatography tandem mass
spectrometry (LC–MS/MS) bioanalytical method was applied with a simple modification from a
previous method reported [40]. In detail, the LC-MS/MS system consisted of an Agilent HPLC and
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Agilent 6460 QQQ mass spectrometer with ESI+ Agilent Jet Stream ion source (Santa Clara, CA, USA).
The separation of celecoxib and IS was achieved from endogenous plasma substances with Phenomenex
Synergi 4µ polar-RP 80A column (150 × 2.0 mm, 4 µm, Torrance, CA, USA) using the mixture of
0.1% formic acid and methanol (65:35, v/v) at 0.2 mL/min of flow rate. For the quantification of CXB
and IS, multiple reaction monitoring (MRM) in the positive electrospray ionization (ESI+) mode were
chosen, for which the parent ion to production ion transitions were as follows: celecoxib, 381.9→362.0;
IS (atorvastatin), 559.2→440.2.

Based on observed plasma concentration-time profiles, the peak concentration (Cmax) and
time to reach Cmax (Tmax) were read directly. Other pharmacokinetic parameters were calculated
by non-compartmental analysis using Pharsight Winnonlin 5.0.1 (Cary, NC, USA), as described
previously [39]. Furthermore, the relative oral bioavailability (BA) was calculated by dividing
AUC after oral administration of dried nanosuspension or commercial product by AUC after oral
administration of CXB powder. Statistically significant differences were indicated by p-value of <0.05
based on a t test between two means for unpaired data or a Duncan’s multiple range test posteriori
analysis of variance (ANOVA) among three means for unpaired data.

3. Results and Discussion

3.1. Morphology of Nanosuspension and Reconstitutable Dry Suspension

In this study, RDS was manufactured by reducing CXB particles in size through bead milling and
spray-drying. The encapsulated CXB content (4.2 ± 0.2%) appeared to be uniformly maintained in
RDS. The particle morphology of the CXB powder, nanosuspension, and RDS by SEM is shown in
Figure 1. CXB particles (Figure 1A, mean particle size, 6.4 µm) were changed to rod-shaped ones after
the milling process (Figure 1B). The milled particles in this study, unlike the previous studies with
mainly spherical or plate-like ones, showed different shapes [9,41]. It is known that the description
of the particles is closely related to diameters of API and bead used in the milling process, but its
precise correlation is not revealed, yet [42]. In this study, the particles were rod-shaped, and as a result,
depending on the direction of observation, their lengths seemed very different (Figure 1B). The short
axis of the milled particles was very small, around 200–300 nm while the long axis was comparatively
large, about 2–3 µm.

The nanosuspension manufactured through the milling process was smoothly converted into
RDS through spray-drying. The outer morphology of the RDS was spherical with a smooth surface,
and small pieces of particles clung to large particles (Figure 1C). It was also observed that the spherical
microparticles were relatively free-flowing. In this study, to manufacture RDS, dextrin was selected as
an effective diluent to compose a matrix. It has been used as a polymeric carrier in various kinds of
solid dosage forms, since it is stable and compatible with hydrophilic or hydrophobic material and also
has good free-flowing and water-soluble properties suitable for improved dissolution or reconstitution
of the solid dosage form [31,32]. Due to these merits of dextrin, it was confirmed that RDS could be
perfectly recovered to nanosuspension before the spray-drying process as it was well reconstituted in
water (Figure 1D).

In the fabrication using the wet milling process, an appropriate stabilizer must be used to
disperse and stabilize the nanosuspension. Hydrophilic polymers or non-ionic surfactants such
as Pluronic®, Span, Tween, TPGS, HPC, and HPMC have been used as stabilizers in many cases [43].
More recently, advanced research based on surfactant-free nanosuspension has been reported using
superdisintegrants instead of conventional stabilizers [10,44,45]. According to our preliminary study
(data not shown), when using a hydrophilic stabilizer, HPMC, the formation and dispersion of
nanosuspension were found to be good, but the reconstitution behaviors of RDS after the drying
process were observed to be poor. After confirming these results, various additives were also tested in
terms of the milling process and redistribution step. As a result, it was confirmed that Tween 80 can be
effectively used as a stabilizer in very small amounts.
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Figure 1. SEM images of (A) celecoxib (CXB) powder, (B) Nanosuspension, (C) reconstitutable dry
suspension (RDS), and (D) Reconstituted RDS in aqueous solution.

3.2. Characterizations of Suspension System

3.2.1. Particle Size and Redispersibility

It is important to set optimal process time in milling for size reduction of solid particles [46,47].
If the milling time is too short, milling is not properly done, resulting in difficulty getting small
and homogeneous particles, while a milling time that is too long may cause changes in internal
structures, such as crystallinity of particle [25]. Accordingly, in this study, by monitoring size and
crystallinity during the milling process, optimal process time was determined (Figure 2A). CXB powder
(6.4 ± 1.3 µm) is decreased in size according to milling time and it was decreased 781.4 ± 31.2 nm
after two hours and 713.0 ± 25.3 nm after four hours, respectively. However, after some time, size was
not decreased anymore. Therefore, for manufacturing small dispersion system, it was judged that
4 h milling time was the best condition. Each SPAN and PDI value of nanosuspension manufactured
through 4 h milling was 1.31 and 0.24, showing comparatively narrow size distribution and zeta
potential was −19.0 ± 1.9 mV, showing its appropriateness as suspension (Table 1). It is known that a
suspension keeps its stable state when its zeta potential is over 10 mV in absolute value [48].

After reconstitution, checking particle size, SPAN, PDI, RDI, and zeta potential of the
nanosuspension, redispersibility of RDS was evaluated. CXB of around 6400 nm was decreased
to 713.0 ± 25.3 nm in the form of nanosuspension, and after dried as RDS and reconstituted, the size
was not different, at 775.8 ± 11.6 nm (Figure 2B). The SPAN and PDI values of the reconstituted
nanosuspension were 1.32 and 0.26, and the RDI calculated through changes of particle size was
108, showing similar value compared to nanosuspension before its drying (Table 1). A high SPAN
or PDI value represents a wide distribution in size, whereas a low value represents a narrow
distribution [49,50]. The zeta potential of RDS was−15.8± 1.5 mV, which was also similar to the initial
value (−19.0 ± 1.9 mV). These results indicate that the RDS entrapping CXB nanosuspension could be
dispersed well on reconstitution with aqueous solution, resulting nanosuspension with a slightly larger
mean particle size than the milled nanosuspension before spray-drying process. The slight increase in
the mean particle of dispersed system size may be elucidated by the formation of larger particles due
to coalescence or aggregation during the spray-drying process as reported in the previous study [35].
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Our data show that the RDS can be efficiently reformed into nanosuspension upon reconstitution
without any change of characteristics such as particle size, distribution, RDI, and zeta potential.
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Table 1. Physical stability of nanosuspension and reconstitutable dry suspension (RDS) (n = 5, mean± SD).

Formulation Time (Week) Particle Size (nm) SPAN PDI RDI (%) Zeta Potential (mV)

Nano
Suspension

0 713.0 ± 25.3 1.31 ± 0.03 0.24 ± 0.01 −19.0 ± 1.9
2 711.1 ± 15.5 1.26 ± 0.02 0.24 ± 0.01
4 760.9 ± 66.5 1.24 ± 0.03 0.23 ± 0.02
8 923.0 ± 56.4 1.14 ± 0.04 0.20 ± 0.03
12 965.9 ± 170.9 1.43 ± 0.06 0.35 ± 0.05 −7.7 ± 0.8

RDS

0 775.8 ± 11.6 1.32 ± 0.04 0.26 ± 0.04 108 −15.8 ± 1.5
2 756.7 ± 11.0 1.38 ± 0.03 0.29 ± 0.02 106
4 762.9 ± 23.4 1.35 ± 0.03 0.28 ± 0.03 107
8 769.0 ± 5.00 1.40 ± 0.05 0.32 ± 0.03 108
12 758.7 ± 44.1 1.35 ± 0.03 0.25 ± 0.02 106 −15.5 ± 2.5

PDI: polydispersity index; RDI: redispersibility index; RDS: reconstitutable dry suspension.

3.2.2. Solid-State Characterization

Internal structures of the solid could be changed by high energy and heat during the milling and
spray-drying processes, causing problems in quality of pharmaceutical products [51]. Microscopy, DSC,
and PXRD technique are frequently applied for internal structure determination of pharmaceutical
solids [52–55]. We also thought that the influences of fabrication processes and excipients might lead
to changes in melting or crystal form of CXB within the dried formulation. Therefore, maintenance of
internal structure of CXB, the crystallinity in RDS was investigated by using SEM, DSC, and PXRD. As
shown in Figure 1, the physical appearances of reconstituted nanosuspension and the nanosuspension
before drying were found to be identical (via SEM images).

The DSC thermograms (Figure 3) showed that the melting (endothermic) peak at 159–161 ◦C of
CXB observed in the physical mixture and RDS formulation (CXB: Dextrin = 1:20, w/w). However,
the peak in RDS was very small and broad, compared to that in physical mixture. Unlike physical
mixture (with dextrin and CXB), Tween 80 as a stabilizer was additionally added in RDS, and it is
presumed that peak size was smaller due to the influence of the stabilizer used [56]. The several
previous investigations have also reported about the results of smaller melting peak of encapsulated
drug due to the influence of Tween 80 as surfactant included in solid dosage form. Regardless of
solid-state of drug in the solid matrix, this phenomenon is likely due to the effect of Tween 80 when
the crystal lattice of drug absorbs heat and dissolves [57,58]. CXB has a drug with polymorphism,
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and in this study, form III was used. It is known that CXB form III has clear peak in specific 2θ (10.5◦,
16◦, 21.5◦) [51,59]. In the X-ray diffractograms shown in Figure 4, crystalline peaks of CXB were clearly
observed in the physical mixture and RDS. Unlike DSC analysis, the specific peaks representing CXB
in X-ray diffractograms were almost identical in both physical mixture and RDS. Taken together, it is
indicated that internal structure is not likely changed by milling, spray-drying, or Tween 80 used to
manufacture nanosuspension and RDS, and the CXB’s crystallinity is consistently maintained.
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3.2.3. Physical Stability

In spite of various advantages of nanosuspension, it is known that there are problems of physical
unstability such as aggregation, sedimentation, and phase separation due to dramatic increases in
surface and Brownian motion [10,60]. Therefore, nanosuspension should be tested for stability during
its storage period. In this study, the respective stability of nanosuspension and RDS was checked
during 12 weeks (Figure 5 and Table 1). It was confirmed that all particle size, SPAN, PDI, and zeta
potential of nanosuspension were considerably changed. Particle size increased from 713.0 ± 25.3
nm to 965.9 ± 170.9 nm as time went by, while zeta potential decreased from −19.0 ± 1.9 mV to
−7.7 ± 0.8 mV. The significant changes of several indices showing stability of nanosuspension were
reflected in physical unstability such as sedimentation and phase separation of suspension system
(Table 1 and Figure 5B). In contrast to nanosuspension with severe unstability, RDS showed improved
stability in all the indices without notable changes. The particle sizes of RDS were 775.8 ± 11.6 nm
(initial) and 758.7 ± 44.1 nm (12 weeks), and the zeta potentials were −15.8 ± 1.5 mV (initial) and
−15.5 ± 2.5 mV (12 weeks), respectively, maintaining almost identical values. The RDI value is about
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106−108%, which means that the redispersibility of the RDS is very good. These results obviously
show that the RDS containing CXB can be reformed into initial nanosuspension upon reconstitution
without any change of unstability index during storage.
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Figure 6. The dissolution profiles of CXB in (A) pH 1.2 and (B) pH 6.8 medium at 36.5 ± 0.5 °C from 
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3.3. Dissolution Study

The profiles of CXB dissolved from CXB powder, nanosuspension, RDS, and marketed product
were shown in Figure 6. The dissolution profiles were found to be similar at pH 1.2 and pH 6.8.
The aqueous solubility of CXB powder is very low about 3–7 µg/mL when analyzed in vitro [61].
Considering the pKa of CXB (i.e., 11.1), CXB solubility is not likely to vary from pH 1.2–8.0,
corresponding to the in vivo range in the gastro-intestinal tract [61]. The amounts of CXB dissolved
from reconstituted RDS were similar to those from nanosuspension, but higher than those of CXB
powder and marketed product. In particular, dissolution rates of nanosuspension and RDS were very
different from CXB powder. The dissolution profile of a marketed product (Celebrex®) also tended to
be very high, compared to CXB powder. However, higher dissolution for nanosuspension is likely due
to increased surface area through nano-milling process, whereas the dissolution of marketed product
is high through operation of SLS included as ingredient in Celebrex®. It suggests that reconstituted
of RDS without toxic SLS in aqueous solution efficiently formed a CXB nanosuspension with similar
dissolution profiles to nanosuspension before spray-drying. The improved dissolution rates of CXB in
water might be expected to contribute to the increase in oral absorption.
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3.4. Pharmacokinetic Study

The pharmacokinetics of CXB powder, reconstituted RDS, and commercial product were
investigated and compared in rats. Figure 7 shows temporal profiles of CXB concentrations in
plasma after a single oral administration of the three formulations, respectively. The pharmacokinetic
parameters, including Cmax, Tmax, T1/2, AUClast, AUC∞, and MRT of CXB are summarized in Table 2.
Maximum concentration in plasma (Cmax) and the area under the curve (AUC∞) of the developed
RDS were significantly increased by 5.7- and 6.3-fold, compared to the CXB powder group, which was
comparable to the marketed product. Although our developed RDS formulation does not contain
the anionic surfactant (i.e., SLS), unlike Celebrex®, it was comparable to the commercial product
with respect to the systemic exposure (i.e., AUC) and Cmax, with similar relative BA (625% vs. 605%).
Therefore, these pharmacokinetic observations strongly indicate that developed RDS exert dramatically
enhanced oral absorption of CXB in vivo in rats. The needs for developing various approaches have
been proposed to widen the application of CXB, a poorly water-soluble and high-dose drug (400 mg
twice daily) [62]. Since commercial product (Celebrex®, Pfizer) is the capsule formulation containing
SLS to increase the solubility and bioavailability of CXB, the alternative approach using reconstitutable
dried nanosuspension, not using anionic SLS as a solubilizer, may be useful to widen the usage of CXB
in terms of patient compliance and safety.
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Figure 7. Plasma concentration profiles in the Sprague Dawley (SD) rats after oral administration of an
equivalent dose of CXB (5 mg/kg), RDS, and marketed product (Celebrex®).

Table 2. Pharmacokinetic parameters of celecoxib (CXB) following oral administration of CXB powder,
RDS and a marketed product in rats (n = 4, mean ± SD).

Pharmacokinetic Parameters CXB Powder RDS Market Product

Tmax (min) 420 ± 69 405 ± 150 195 ± 57
Cmax (µg /mL) 0.26 ± 0.08 1.49± 0.29 1.64 ± 0.31

T1/2 (min) 345 ± 70 357 ± 56 295 ± 66
AUClast (µg·min/mL) 304 ± 85 1904± 350 1844 ± 316
AUC∞ (µg·min/mL) 305 ± 85 1910± 353 1847 ± 318

MRT (min) a 789 ± 148 888 ± 22 684 ± 79
Relative BA (%) 625 605

a MRT = AUMC/AUC; AUMC: area under the first moment curve; BA: oral bioavailability.

4. Conclusions

RDS formulation containing CXB was reconstituted well and stability indexes such as mean
particle size, SPAN, PDI, RDI, appearance, and zeta potential were almost unchanged for storage
period. The CXB encapsulated in RDS matrix retained its original crystallinity after milling and
spray-drying processes. The RDS increased the dissolution of the encapsulated CXB and improved
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in vivo absorption in rats after oral administration compared unmilled powder. The in vivo absorption
of CXB when administered in RDS was comparable to the marketed product, which contains anionic
surfactant (SLS) to increase the solubility and absorption of CXB. Taken together, the RDS might be
developed as an alternative delivery system to improve both the bioavailability and patient compliance.
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