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Abstract
The presence of excess L-amino acid in the Murchison meteorite, circular polarization effect in the genesis of stars and 
existence of chirality in interstellar molecules contribute to the origin of life on earth. Chiral-sensitive techniques have been 
employed to untangle the secret of the symmetries of the universe, designing of effective secure drugs and investigation of 
chiral biomolecules. The relationship between light and chiral molecules was employed to probe and explore such molecules 
using spectroscopy techniques. The mutual interaction between electromagnetic spectrum and chirality of matter give rise 
to distinct optical response, which advances vital information contents in chiroptical spectroscopy. Chiral plasmonic gold 
nanoparticle exhibits distinctive circular dichroism peaks in broad wavelength range thereby crossing the limits of its char-
acterization. The emergence of strong optical activity of gold nanosystem is related to its high polarizability, resulting in 
plasmonic and excitonic effects on incident photons. Inspired by the development of advanced chiral plasmonic nanomaterials 
and exploring its properties, this review gives an overview of various chiral gold nanostructures and the mechanism behind 
its chiroptical properties. Finally, we highlight the application of different chiral gold nanomaterials in the field of catalysis 
and medical applications with special emphasis to biosensing and biodetection.

Keywords Gold nanostructures · Chirality · Circular dichroism · Plasmonic nanoparticle · Surface plasmon resonance · 
Chiroptical properties

Introduction

Chirality is a fascinating property of certain objects in nature 
[1]. Chirality means handedness, is observed in snail shells, 
gourd tendrils, human hands and even spiral galaxies [2, 3]. 
An object is said to be chiral if it is not superimposable on 
its mirror image [4]. Chirality plays a major role in the ori-
gin of life. The building blocks of life such as amino acids, 
carbohydrates and nucleic acids are chiral [5, 6]. Deoxy-
ribonucleic acid/ribonucleic acid (DNA/RNA) consists of 

residues with the same handedness owing to act as template 
in replication of cell division process. In prebiotic chemical 
world, these macromolecules synthesized from small mol-
ecules are prone to have existed as racemic mixtures [5]. Life 
on earth manifests a priority for L-amino acids and D-sug-
ars, in spite of a thermodynamic stability equilibrium of the 
L- and D-enantiomers of these molecules. The bioactivities 
of a chiral molecule depend on its handedness; for example, 
one enantiomer might act as a drug while the other might 
be toxic [7]. Accordingly, chirality of molecules has a vital 
role in functionality and interaction with other molecules.

Chirality is an intrinsic property of certain molecules or 
nanostructures, which on interaction with light, generate a 
significant contribution to both absorption and scattering 
[1, 8]. The interaction of chiral molecules with circularly 
polarized photons, circular dichroism (CD) effect occurs 
relating the variation in molecular absorption of clockwise 
and counter-clockwise circularly polarized lights [9]. CD 
spectroscopy is a potential technique to unravel molecular 
chirality and conformational analysis in a chemical reac-
tion [10]. The chiroptical response of a chiral ensemble 
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can be tuned and enhanced by the integration of plasmonic 
nanoparticles [11]. Chirality existence in nanosystem taking 
place via (i) intrinsic chirality depends on the geometry of 
the particle (ii) incorporation of chiral templates like DNA 
and peptides and (iii) plasmon-induced chirality [12]. Nano-
particles with chiral plasmonic properties generate chiropti-
cal activity owing to its ability to create broadband circular 
polarization states of photons [13]. The origin of chirality in 
nanoparticle is well investigated using plasmonic chiral gold 
nanoparticles (Au NPs). The interaction of electronic states 
of ligands with the surface gold atoms give rise to distinct 
chirality effects in chiral Au NPs [14].

In this review, we present the origin of chirality of gold 
nanostructures, different types of chiral gold nanostructures, 
enhancement of chirality in Au NPs and its applications in 
physical, chemical and biological fields. The distinct elec-
tromagnetic properties, shift in wavelengths, energy changes 
associated with Au NPs and hybrid plasmonic Au NPs are 
also illustrated. We concentrate our attention on the phenom-
ena of electronic interactions between ligands and surface 
gold atoms, variation in optical properties such as plasmonic 
resonance and CD. The mechanism of innate chirality and 
external factors contributing for chirality of gold nanostruc-
tures were also studied. Finally, we provide an outlook for 
numerous bioanalytical applications based on plasmonic 
chiral gold nanostructures.

Chiral gold nanostructures

A chiral dimer of gold nanorods (Au NRs) could be synthe-
sized by using a chiral-binding agent between the adjacent 
nanorods in a solution. The size parameter and aspect ratio 
of the Au NRs affect its optical activity. Exciton coupling 
theory highlights the dipole–dipole interaction between 
dimer of Au NRs arranged as prolate ellipsoids in a medium 
of refractive index n = 1.5. The energy level of the local-
ized surface plasmon resonance (LSPR) consists of hybrid 
modes such as symmetric (ω+) and antisymmetric (ω-). The 
scaling of the system increased the extinction efficiency by 
a factor of ̴ 6, and overall extinction efficiency of the longi-
tudinal LSPR contributes to the same extent of absorption 
and scattering. The asymmetric CD spectrum appears due 
to the retardation effect in dimers, where the electromag-
netic coupling depends on the wavelength of the incident 
light. The CD efficiency of the chiral Au NR dimer varies 
in a nonlinear basis with the aspect ratio of the Au NR. 
The enhancement of CD signal depends on interparticle 
distance, size of the particle, cooperative activity between 
neighbouring multiple Au NRs and higher-order multipolar 
effect. Like molecular system, plasmonic structure gives rise 
to a dark mode in addition to the bonding mode if the dipoles 
remain parallel to each other. The integrated intensity of the 

antibonding mode (dark mode) is the same as that of the 
bonding mode [15].

The geometrical chirality in left- and right-handed gold 
Gammadions produces strong plasmonic CD bands. The 
CD response of the Gammadions establishes that its origin 
is either due to sum of the localized response from differ-
ent regions in the structure or due to collective response 
of the overall structure. The left- and right-handed chiral 
gold Gammadions show opposite signal in the spatial dis-
symmetry maps. The Gaussian-like distribution based on 
the geometric centre of Gammadions is in good agreement 
with simulated spatial dissymmetry maps. The dissymme-
try sign switches between left- and right-handed 150-nm 
Gammadion in transmission mode at 600 nm. The Gaussian 
response of the Gammadions establishes that its origin is 
either due to sum of the localized response from different 
regions in the structure or due to collective response of the 
overall structure [16].

Gold nanodumbbells (Au NDs) were dimerized as paral-
lel, twisted and twisted with planar displacement (Fig. 1a). 
Transmission electron microscopy (TEM) images of the 
Au NDs depict that the particles have smaller aspect ratio 
(Fig. 1b) and remain in different configurations (Fig. 1c). 
The UV–visible extinction spectroscopy of the Au NDs 
gives a red shift after the formation of dimers (Fig. 1d and 
e). The red shift in the transverse mode as well as in the 
longitudinal mode can be attributed to the side-by-side 
assembly of the dimer, large refractive index of the adsorbed 
polystyrene and the interaction of plasmon resonances to 
changes in the refractive index. The absence of detectable 
CD signal before and after dimerization of Au NDs, owing 
to the existence of racemic mixture of chiral dimers in solu-
tion (Fig. 1f and g) [17].

The DNA-driven nanoparticle chiral pyramids compris-
ing of Au NPs, CdSe@ZnS quantum dots and silver nano-
particles (Ag NPs) give CD signals in a wide range from 
350- to 550-nm region. Chiral Au NPs synthesized using 
D-glutamic acid and L-glutamic acid inhibit the forma-
tion of human serum albumin fibrils. The surface chiral-
ity of Au NPs strongly influences the fibrillation process, 
which is more for D-glutamic acid–based Au NPs [18]. 
The  Au144(SR)60 with chiral icosahedral shell (1-Au60) have 
unique optical, electronic, vibrational and structural proper-
ties [19].

The chiral handedness of Au NRs obtained from the 
helical glutathione (GSH) oligomers result in the forma-
tion of end-to-end crossed (EEX) Au NR junctions [20]. 
Peptide conjugates and alkyne-terminated aliphatic sub-
strates  C18-(PEPAu M−ox)2 direct the formation of plas-
monic chiroptically active single helical Au NPs, where 
peptide conjugate  PEPAu M−ox =  AYSSGAPPMoxPPF, 
 C18 = 18 carbon chain and ox = oxidation [21]. The chiral-
ity of Au NRs depends on the aspect ratio. The chirality 
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Fig. 1  Structural and spectral 
characteristics of Au NDs and 
Au ND dimers. a Cartoon 
depiction of the dimer forma-
tion scheme through polymer 
capture, resulting in parallel 
(top), twisted (middle) and 
twisted with planar displace-
ment (bottom) dimers. b, c 
TEM images of the Au NDs 
before and after dimerization, 
respectively. Scale bars are 
100 nm. d, e Ensemble UV–Vis 
extinction spectra of the Au ND 
and dimer samples, respectively. 
The Au NDs show maxima at 
521 and 812 nm. The maxima 
for Au ND dimers are at 534 
and 816 nm. f, g Ensemble CD 
spectra of the Au ND and dimer 
samples, respectively. No peaks 
are observed in either case. 
“Reprinted with permission 
from Ref. 17. Copyright (2016) 
American Chemical Society”
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increases with increase in aspect ratio. It depends upon 
the concentration of  AgNO3 in growth solution. The 
length of Au NRs increases, whereas diameter decreases 
with increase in concentration of  AgNO3. The origin 
of intrinsic chirality in nanocrystals is due to the point 
defects, dislocation and chiral defects in the nanosys-
tem, which is greater in Au NRs with high aspect ratio. 
Here Au NR–based colorimetric assay was used for the 
detection of L-valine in the presence of D-valine with a 
detection limit of 0.1 mM [22]. The human serum albu-
min and porcine serum albumin–guided chiral assembly 
of Au NRs exhibit left-handed CD responses, whereas 
equine serum albumin, sheep serum albumin and bovine 
serum albumin executed on the converse (Fig. 2a). The 
interaction of albumin with Au NRs is electrostatic. The 
cryogenic TEM image of human serum albumin–guided 
and bovine serum albumin–guided Au NRs manifested 
left-handed and right-handed twisted side-by-side geom-
etry respectively (Fig. 2c and d). These spatial asymmetry 
geometries indicated the template-dependent chirality of 
serum albumins. The handedness of the chiroptical prop-
erties depends on the surface charge distributions of the 
serum albumins and the ambient  pH [23].

Chiral plasmonic gold nanoparticle

A multi-chirality evolution step method for the synthesis of 
chiral plasmonic Au NPs with increase in particle uniformity 
has been utilized for the enhancement of chiroptic response. 
The Au NPs having 432 point-group symmetry (432 heli-
coid 111) shows well-defined gaps between the nanoparticle, 
increased dis-symmetry factor of g = 0.31 and distinct cubic 
boundaries [24]. Chiral Au NPs are produced by using pep-
tides with random coil and α-helix. These Au NPs show CD 
signals at the surface plasmon resonance (SPR) wavelength ( ̴
520 nm) and in the visible region of spectrum get red-shifted 
on aggregation [25]. A core-satellite nanostructure of Au 
NRs (core) and Au NPs (satellites) were created using DNA 
as linkers. CD spectrum displayed plasmonic CD (PCD) 
corresponding to Au NRs and Au NPs at SPR wavelength 
region (Fig. 3). The chirality depends upon the number of 
Au NPs around Au NRs, structure of core-satellites nanosys-
tem, ligand induction, dipole–dipole interactions and chiral 
arrangement of surface atoms or molecules [26].

Chiral cholesterol-capped Au NPs were constructed 
and synthesized uniformly dispersed mixtures in different 
nematic liquid crystal hosts. These nanoassemblies prepared 
in the presence of disulphide chiral bias are strong chiral 
inducers as compared to that in the absence of a chiral bias 
[27]. The chiral discrimination of tyrosine and phenylalanine 

Fig. 2  Vis–NIR region. a CD and b UV–Vis absorbance spectra of 
five SA-guided GNR assemblies; the cryo-TEM (left), 3D reconstruc-
tion (middle) and schematic images (right) of the nanoassemblies 
guided by HSA (c) and BSA (d). The GNR, CTAB and SA concen-

trations, pH value and ionic strength of each individual assembly sys-
tem are all set to 5.0 nM, 2.0 mM and 3.0 mM; 7.4; and 10.0 mM, 
respectively.  Reproduced from Ref. 23 with permission from the 
Royal Society of Chemistry”
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enantiomers with cysteine-modified Au NPs was analysed 
with Raman spectra. It was found that the left-handed enan-
tiomer combination of tyrosine or phenylalanine with same 
handedness cysteine-based Au NPs gives enhanced Raman 
signals. Similar observation was obtained for D-enantiomer 
as well. This type of interaction occurs due to (i) the pres-
ence of three interaction sites in the vicinity of D-selector 
and D-enantiomer of L-selector and L-enantiomer and (ii) 
possibility of more hydrogen bonds between different amino 
acids of same handedness as that of different handedness 
[28]. The blending of the results obtained from CD spectra 
and Raman spectra can be used for the discrimination of 
enantiomers of amino acids. Chiral liquid crystalline Au NPs 
(LC-Au NPs) were assembled into a fluid lamellar structure 
showing chiroptical activity. The arylamine in liquid crys-
tal ligands reduce Au(III) to Au(0) and bind to the Au NPs 
core. The LC-Au NPs exhibit temperature-dependent bisig-
nate CD signals. The thick coating of Au NPs by mesogens 
produces a negative refractive index. This physical quantity 
can be utilized for the investigation of metamaterials [29].

Chiral plasmonic gold nanoantenna

The combination of Au NRs with a 3D chiral structure 
known as nanoantenna delivers powerful chirality probes 
for functionalization with proteins, DNA and other metal 
nanoparticles. The ordering of gold nanorods on a fibre 
backbone gives a three-dimensional chiral structure known 
as plasmonic gold nanoantenna. The fluid dispersion of 
chiral fibres is obtained by adding water in anthraquinone-
based oxalamide-1 present in DMF/ethanol solution. This 
plasmonic gold nanoantenna generates strong surface 

plasmon–mediated circular dichroism (SP-CD) with high 
anisotropy factors (g-factor) across visible and near-infrared 
wavelengths (600–900 nm). These Au NRs in fluid suspen-
sion manifest a g-factor of 0.022, which is comparable to 
proteins complexes (0.06) and polyaromatic compounds 
(0.05). The SP-CD band arises as a result of 3D chiral 
arrangement of the Au NRs, and the intensity of SP-CD 
decreases with an increase in disorder of the particle. Here, 
each particle is considered as an electric dipole where the 
SP-CD depends on the geometry and composition of the 
structure [30].

Plasmonic helical nanoantenna on thin gold layer con-
verts subwavelength longitudinal near-fields into circularly 
polarized wave and vice versa. The nanoantenna consists 
of L-handed four-turn Au-coated carbon helix coated on 
cylindrical pedestal. The excitation of an L-handed helix 
with circular polarization generates a longitudinally oriented 
dipole containing the surface plasmons. This effect occurs in 
a broad wavelength range owing to the waveguide mode of 
surface plasmons propagating along the nanoantenna [31]. 
The stability of such nanoantenna is excellent. The nature 
of nanoantenna with right-handedness upon excitation could 
also contribute to its usage in practical applications.

Hybrid chiral gold nanostructures

The chiral gold-upconversion nanoparticle pyramids exhibit 
strong plasmonic circular dichroism at 512 nm and lumi-
nescence in the range 500–600 nm. The resulting nanop-
yramids enumerate the following process: (i) bathochromic 
shift in UV–Visible spectrum, (ii) strong CD signal and 
(iii) luminescence resonance energy transfer (LRET) from 

Fig. 3  Representative TEM 
images of the assemblies for dif-
ferent hybridization times; the 
assembled times were a 5 and 
b 30 min and c 1, d 3, e 6 and f 
12 h. “Reprinted with permis-
sion from Ref. 26. Copyright 
(2013) American Chemical 
Society”
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upconversion nanoparticle to Au NPs. The merit of this 
nanoassembly is that multiple optical on–off changes take 
place on interaction with active analytes [32]. The chiral 
gold nanoparticle-chromophore hybrid complexes possess 
tuneable strong chiroptical activity. The chiroptical activity 
is tuned by optimizing the spectral overlap between plasmon 
resonances and chiral collective molecular excitations. The 
chiral Au NP-chromophore hybrid assembly with the aid of 
DNA-template establishes a spectral overlap between plas-
mons and collectively coupled chiral excitons. This leads 
to an enhancement in molecular CD along with a triggered 
plasmonic CD. This nanosystem can act as a bisignate CD 
probe for nanosensing strategies [33].

Core‑satellite/shell chiral gold nanostructures

The chiral DNA-modified shell core-satellite nano super-
structures based on Au NPs have been self-assembled for 
the detection of mycotoxin. The shell core structure con-
sists of Au–Ag alloyed hollow sphere as core with a thin 
layer of gold as outer shell. The core-satellite structure was 
developed with the dipole–dipole interaction between DNA-
modified shell core structure and Au NPs, which produce a 
strong chiral signal [34]. The gold/silver core shell nanorods 
functionalized with DNA has enhanced plasmonic proper-
ties and exhibit increased circular dichroism responses. The 
Ag shell thickness can be used as a parameter for tuning 
the LSPR. The DNA origami platform holds great promise 
for synthesizing bimetallic nanoparticles [35]. The chiral 
core-satellite silver nanorod (Ag NR)-gold nanoparticle 
nanostructure has been fabricated by using L-cysteine and 
D-cysteine as bridging molecules. The L- and D-cysteine-
based core-satellite structure gives mirrored CD signals. 
Increase in concentration of both enantiomers produces a 
red shift in CD spectra. Here, the origin of optical activ-
ity is explained as (i) electronic interaction between chiral 
cysteine molecules and achiral metal electrons and (ii) vici-
nal effects developed from the dissymmetric fields via the 
formation of chemical bond between dissymmetric centre 
and the metal core.[36].

The chiral cysteine molecules intercalated between Au 
NR core and Au shell, which is modified with cetyltri-
methylammonium bromide and cetylpyridinium chloride 
(Fig. 4a). The overall morphology of the core–shell structure 
consists of an additional arrow head–like end cap as that of 
Au NR core (Fig. 4b). The modification of the core–shell 
structure with CTAB imparts positive charge on its surface. 
The trisodium citrate molecules link the modified core–shell 
assembly side-by-side (Fig. 4c and d). The surfactants trans-
fer and amplify the chirality induced by the adsorbed chiral 
molecule. The chiral force developed, owing to the forma-
tion of hot spots via dipole–dipole interaction between chiral 
molecule and achiral plasmonic gold nanostructures [37]. 

The surfactants and chiral thiols could induce strong chirop-
tical effects in gold-nanoparticle based core–shell structures.

DNA‑based chiral gold nanostructures

Three-dimensional (3D) plasmonic chiral gold nanostruc-
tures were developed through programmable transforma-
tion of Au NPs using DNA origami as template. A two-
dimensional (2D) DNA origami template organized the Au 
NPs into a 3D helix with engineerable optical chirality [38]. 
The plasmonic coupling between Au NRs in a pattern is 
arranged in the presence and absence of a gold nanosphere 
using DNA origami. Here, the gold nanosphere acts as a 
transmitter. The two Au NRs having 54-nm length and 
23-nm width are separated by a surface-to-surface distance 
of 62 nm and tilted by 90° to each other. These nanosystems 
were assembled in thiol-functionalized DNA (Fig. 5b and d). 
The presence of gold nanosphere (Fig. 5a and c) in between 
Au NRs creates hotspots via near-field mechanism and pro-
duced enhanced CD response [39]. The interaction of these 
nanosystems with biomolecules for utilizing it as a biosensor 
is in chaos. The Au NPs were assembled into 3D tetrahe-
drons with DNA origami template. The CD spectra of the 
3D tetrahedrons exhibit bisignate signatures. The CD signal 
depends on the size of the Au NPs as well as the interpar-
ticle distance (Fig. 5). For same-sized Au NPs (20 nm), the 
intensity of CD signal continually increases with decrease 
in interparticle distance and decreases with decrease in size 
of Au NPs (13 nm) [40].

The arrangement of four identical Au NPs into 3D asym-
metry tetramer using DNA origami template exhibiting 3D 
chirality [41]. Modular assembly of spherical Au NPs, Au 
NRs with definite numbers and heterogeneous nanostruc-
tures were fabricated with sample DNA origami template 
[42]. The DNA barrel scaffold induces the assembly of left- 
or right-handed tethers for the building-up of the chiral plas-
monic Au NPs. The scalability of the DNA barrel structure 
into nanowire, followed by the deposition of Au NPs, could 
be initiated as chiroplasmonic wave-guides [43]. A dynamic 
Au NP plasmonic chiral nanostructures assembled using the 
DNA origami method in which the DNA alignment process 
gives several-fold increased CD signal[44].

The Au NR–based chiral plasmonic-excitonic sys-
tems were assembled on DNA template. The nanosystem 
shows Rabi splitting and anticrossing behaviour in the CD 
spectra. Rabi splitting occurs whenever the plasmon and 
exciton resonance energies are the same. The energy dif-
ference between symmetric mode and excitons is known 
as Rabi splitting. The splitting increases with an increase 
in the extent of coupling between excitonic molecule and 
chiral plasmonic nanostructures. The plasmon-like branch 
and exciton-like branch show transformations until the CD 
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resonances of the two branches become synchronized, thus 
exhibiting anticrossing property[45].

Polymer‑based chiral gold nanostructures

The chiral self-assembled Au NRs with strong CD signal in 
the visible-near IR region has been successfully constructed 
using poly (2-hydroxyethyl methacrylate) (PIPEMA) and poly 
(methacrylate hydroyethyl-3-indolepropionate) (PHEMA). 
The pristine Au NRs do not induce any CD response. The 
intensity of bisignate longitudinal peak at 591 nm (positive 
peak) and 730 nm (negative peak) is stronger than the trans-
verse peak at 528 nm (Fig. 6a). Here, the intensity of CD signal 
depends on the molecular weight of the polymers used as well 
as the pH values of the solution (Fig. 6a and d). The TEM 

image and tilt angle (0–60°) TEM image show an L-handed 
side-by-side arrangement of Au NRs (Fig. 6b and c) [46].

The chiral arrangement of Au NPs using D- and L-helical 
pores in block copolymer films templates was fabricated. 
The arrangement of Au NPs in a porous poly(butadiene)-b-
poly(ethylene oxide) film prepared using D-tartaric acid and 
L-tartaric acid with projection perpendicular and parallel to 
the cylinder axis are shown in Fig. 7. The TEM image consists 
of Au NPs with a pitch of average 40 nm (Fig. 7a and d) and 
3D tomography further confirms the different helical chiral 
arrangements (Fig. 7c) [47].

Fig. 4  a Schematic diagram of embedding sergeants in the interface 
region of Au NR core and Au shell (upper panel). A chiral SS dimer 
is used to demonstrate the formation of chiral plasmonic assemblies 
(lower panel). The surfactant layer (soldiers) on the nanorod surface 
is omitted for clarity. b Representative TEM images of Au NR cores 

and AuNR@Cys2@Au0.05 core–shell nanostructures. c SEM and 
TEM images of AuNR@Cys@Au SS oligomers. d A HRTEM image 
showing rod side facet link mode in a rod trimer. AA/Au3 + molar 
ratio = 1.6. “ Reproduced from Ref. 37 with permission from the 
Royal Society of Chemistry”
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Origin of chirality

The plasmon-coupled circular dichroism (PCCD) emerges 
due to the dipole–dipole interaction between plasmonic 
nanoparticle and chiral adsorbate molecules. The PCCD 
was achieved in Au NRs-BSA aggregates. The CD arises 
in these aggregates by: (i) intrinsic structural chirality with 
enantiomeric excess of right-handed configuration, (ii) hot 
spots created between closely spaced Au NRs. The high-
angle annular dark-field scanning transmission electron 
microscopy (HAADF-STEM) imaging indicates that non-
parallel dimer of Au NRs was circular differential scattering 
(CDS) active at 720 nm (Fig. 8A and B) whereas parallel 
dimer of Au NRs was CDS active at 618 nm (Fig. 8E and 
F). The tomographic reconstruction and simulations indicate 
that nonparallel dimer is chiral (Fig. 8C and D) and parallel 
dimer is achiral (Fig. 8G and H) [48].

The gold nanostructures lock the chirality of circularly 
polarized light through the plasmonic field-driven asym-
metric displacement of nanoparticles in dynamic ensemble 

followed by particle-to-particle growth [49]. Chiral gold 
nanostructures were synthesized using L-cysteine and 
D-cysteine as capping agents [50]. The L-cysteine-encoded 
gold nanoparticle absorbs right-handed/clockwise circularly 
polarized light (CPL) at 534 nm and left-handed/anticlock-
wise CPL at 638 nm. In the CD spectrum of D-cysteine-
encoded Au NPs, an inverted response at the same peak 
position is obtained (Fig. 9a). The 150-nm-sized rhombic 
dodecahedron Au NPs have 60-nm-sized edge with bent 
at an angle of + ϕ, while for D-cysteine the same sized 
nanoparticle has edge with bent at an angle of -ϕ (Fig. 9b 
and c) [51]. The chiro-optical activity of amino acid and 
peptide directed synthesized gold nanoparticle depends 
on edge length, gap width, gap angle, growth rate, curva-
ture and nature of additives [50]. The origin of chirality in 
 Ag24Au1(R/S-BINAS)x (DMBT)18-2x, x ranges from 1 to 7, 
(DMBT = 2,4-dimethylbenzenethiolate, BINAS = R/S-1,1’-
[binaphthalene]-2,2’-dithiol) is due to the transitions within 
 Ag24Au1S18 framework and conjugation effects within the 
aromatic system of the ligand[52].

Fig. 5  Chiral plasmonic transmitter. a Side view and front view 
of DNA origami-nanoparticle assemblies in a nanorod-nano-
sphere = nanorod (NR-NS-NR) arrangement and b a nanorod-void-
nanorod (NR- -NR) arrangement. The nanorods and the nanosphere 
are mounted on a DNA origami structure (blue cylinders represent 
DNA helices) via thiolated DNA strands that are anchored to the 
origami structure. c Transmission electron micrograph of assem-
blies in the NR-NS-NR arrangement and d in the NR- -NR arrange-
ment. Scale bars: 100 nm.CD spectra of the four Au NP tetrahedrons. 

e Experimental data. f Calculated results. (i) 20-nm Au NPs with 
interparticle distance of 15 nm (red curve in e and f), (ii) 20-nm Au 
NPs with interparticle distance of 10  nm (green curve in e and f), 
(iii) 20-nm Au NPs with interparticle distance of 5  nm (blue curve 
in e and f), (iv) 13-nm Au NPs with interparticle distance of 10 nm 
(magenta curve in e and f). a, b, c and d Reprinted with permission 
from ref. 39. Copyright (2021) Springer Nature”. e and f “Reprinted 
with permission from Ref. 40. Copyright (2014) American Chemical 
Society”
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Fig. 6  a CD spectra of the original GNRs and the assemblies induced 
by PIPEMA192 under different pH values. The numbers in the label 
correspond to the pH value in the solution. b Representative TEM 
image of the assembled nanostructures at pH 13.4. c Top: tilt angle 
TEM images of a representative assembled structure, bottom: the cor-

responding 3D model structures. The numbers in the label correspond 
to the title angle. d CD spectra of the GNR assemblies induced by 
PIPEMA with different molecular weights. “Reprinted with permis-
sion from Ref. 46. Copyright (2019) American Chemical Society”

Fig. 7  TEM image of chiral 
arrangement of Au NPs in a 
porous PBdEO film prepared 
using D-TA with projection a 
perpendicular to the cylinder 
axis and b parallel to the cyl-
inder axis. The doping amount 
of TA in the parent BCP film is 
16 wt %. c 3D tomography of 
chiral arrangement of Au NPs 
in a porous PBdEO film using 
D-TA. d TEM image of chiral 
arrangement of Au NPs in a 
porous PBdEO film prepared 
using L-TA with projection per-
pendicular to the cylinder axis. 
“Reprinted with permission 
from Ref. 47. Copyright (2017) 
American Chemical Society”
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Fig. 8  CDS-active Au NR dimer-BSA complexes with chiral and 
achiral configurations. A and E HAADF-STEM tilt-series images 
of a chiral dimer (A) and an achiral dimer (E) and the correspond-
ing geometric models extracted from the tomographic reconstruc-
tions. B and F Experimental single-particle CDS spectra of the 
chiral dimer (B) from (A) and the achiral dimer (F) from (E). The 
experimental spectra are shown with a pink envelope that represents 
the experimental error. C and G Simulated scattering spectra of the 
chiral dimer (C) and achiral dimer (G) for incident LCP and RCP 
light and the corresponding CDS spectra. The insets in (C) show the 
charge plots calculated at 720 and 805  nm. The insets in (G) show 
the charge plots calculated at 618 and 670  nm. The charge plots 

in C and G share the same scale bar. The dashed lines in C and D 
refer to the plasmon modes at 720 (green) and 805 nm (orange). The 
dashed lines in F and G refer to the plasmon modes at 618 (green) 
and 670  nm (orange). D and H Cross-sectional views of calculated 
near-field enhancements (lE/E0  l2) for the chiral dimer (D) at 720 and 
805 nm and the achiral dimer (H) at 618 and 670 nm. These results 
demonstrate that although the dimer in (E) to (H) is not chiral on the 
basis of its geometry, CDS is observed and must originate from chiral 
BSA molecules located in inter-NR hotspots. a.u., arbitrary units; E, 
electric field; k, incident wave vector. “ Reproduced with permission 
from Ref. 48. Copy right 2019, The American Association for the 
Advancement of Science”
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The three main spectroscopic techniques for the charac-
terization of chirality in materials include optical rotatory 
dispersion (ORD), CD and Raman optical activity (ROA). 
CD is related to the imaginary part of the chirality param-
eter “k.” It depends on ellipticity, which is a function of the 
proportionate difference in transmission. The ORD is related 
to the real part of chirality parameter. It is expressed as the 
unequal rotation for plane polarized light of different wave-
lengths [53]. Optical activity is the ability of a molecule to 
rotate the plane polarized light [54].

Intrinsic plasmonic chirality

In 3D chiral plasmonic nanomaterials, the circular dichro-
ism effect occurs due to the interaction of (i) electric dipole 
and magnetic dipole and (ii) electric and magnetic dipoles 
with dipole-quadruple responses of the system. A 3D chiral 
configuration resulted from the wave vector, electric dipole 
and magnetic dipole. The interplay of electric and magnetic 
dipole results in an imaginary part of mixed electric and 
magnetic polarizability. This mixed polarizability is a dot 
product of both these dipoles. The helical arrangement of 
Au NPs bring about coupled plasmon waves disseminat-
ing along a helical path associated with absorption of these 
waves with respect to the handedness of the plasmonic nano-
helices [55].

Extrinsic plasmonic chirality

Extrinsic plasmonic chirality resulted from the mutual 
alignment of the 2-D metamaterial and the direction of 

wave propagation [54]. Extrinsic chirality of 3D-chiral 
metamaterials occurs by the oblique incidence onto meta-
surfaces, if it lacks line of mirror symmetry in the direc-
tion of plane of incidence [56, 57]. The extrinsic chirality 
via asymmetric transmission due to oblique incidence can 
occur in square arrays of plasmonic nanospheres, semi-
conductor quantum dots, planar metamaterials and lossy 
double-periodic gratings [58]. The extrinsic chirality 
through photoluminescence emission takes place by break-
ing the mirror symmetry in the presence of asymmetric Au 
coating [59]. The oblique excitation/illumination of a 2D 
achiral plasmonic nanostructure at a particular incident 
angle exhibits a non-zero plasmonic CD response through 
extrinsic chirality [60]. Such extrinsic chirality happens 
by the strong interplay of electric and magnetic dipoles 
leading the way to mixed polarizability. Under oblique 
incidence, symmetry breaking and the projection of the 
oscillating magnetic moment on the plane perpendicular 
to the wave propagation induced by CPL are nonzero [61].

The huge extrinsic CD of a plasmonic splitting rec-
tangle ring originates due to the generation of circular 
current by acting as a magneton is verified using the FEM 
simulation. In analytical model, the CD of meta-molecule 
from left and right circularly polarized light occurs due 
to mixed electric and magnetic polarizability [62]. The 
Au–Ag heterodimer behaves like a plasmonic magneton. 
It possesses multipolar Fano-resonances and powerful CD 
effect. Both Fano-resonance profile and CD signal depends 
on size, gap and shape of nanorice heterodimer; the CD 
spectra are sensitive to ambient medium in visible and near 
IR regions. In addition to it, the CD effect varies construc-
tively with Fano-asymmetry factor [63].

Fig. 9  Opposite handedness of chiral nanoparticles depending on the 
cysteine enantiomer. a Circular dichroism (CD) spectrum of nano-
particles synthesized using L-cysteine (L-Cys, black) and D-cysteine 
(D-Cys, red). SEM images of resultant chiral nanoparticles obtained 
using L-Cys (b) and D-Cys (c). Schematic models and magnified 

SEM images are shown in the inset. Auxiliary lines indicating oppo-
sitely bent edges at an angle of + ϕ for L-Cys and − ϕ for D-Cys are 
illustrated in the SEM images. Scale bar, 100 nm.  Reproduced with 
permission from Ref. 51. Copyright © 2020, Springer Nature
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Chiral fields in dipoles under external excitation

The generation of strong chiral fields in the vicinity of a 
dipole dimer is illustrated in Fig. 10. An enhanced and 
uniform chiral field was formed in the gap between the two 
dipoles placed in such a way that two lobes with the same 
chirality get overlapped. In the corners of Au block dimers, 
strong field enhancement occurs, resulting in drastic chi-
ral fields. The chiral metal nanostructure and non-chiral 
structure with CPL illumination, the chiral field is non-
uniform and the enhancement changes between positive 
and negative at different wavelength. In the case of helical 
structures excited with linearly polarized light, the chiral 

field is uniform. Here, the enhancement factors are either 
negative or positive [64].

Discrete dipole approximation

In multipoles, thousands of dipoles are considered as 
individual particles. The plasmonic CD response of such 
multipoles is taken by averaging the variance in extinction 
cross sections, Q, of left circularly polarized from right cir-
cularly polarized plane waves by considering different ori-
entation of the helical superstructures CD =  <  QIL -QIR > Ω, 
where  QIL and  QIR indicates extinction cross section of 
left circularly polarized plane waves, and right circularly 
polarized plane waves, respectively, Ω represents the set 

Fig. 10  Formation schematic of enhanced chiral near-fields with uni-
form optical chirality in the gap of a coupled point dipole dimer (a) 
and Au spherical nanoparticle (10-nm diameter) dimer (b). a Ana-
lytically calculated chiral near-field distributions of (i) one dipole, (ii) 
two dipoles with a large gap d of 0.06λ, and (iii–iv) two dipoles with 
a small gap d of 0.04λ. Black arrows show the dipole momentum. 
Signs of “ + ” and “– “ in the scale bar indicate the field is left- and 
right-handed, respectively, which applies to all figures in the follow-

ing. b Numerically calculated chiral near-field distributions of (i) one 
sphere, (ii) two spheres with a large gap d of 10 nm and (iii–iv) two 
dipoles with a small gap d of 2 nm. c Corresponding electric field dis-
tribution of the case (b)-iii. The right coordinates give incident polar-
ization and direction. d Schematic of the directions of incident fields 
and scattered fields by a dipole dimer.  Reproduced with permission 
from Ref. 64. Copyright © 2015, Springer Nature
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of orientations of the helical superstructure with respect 
to the incident wave-vector [65]. The total CD signal in a 
system comprising of a nanocrystal and a chiral molecule 
is  CDNP-molecule =  CDNP +  CDmolecule, Where  CDNP =  <  QNP,+ 
-Qmolecule,- > Ω, where  Q+(-) are the rate of absorption cor-
responding to two incident electromagnetic waves. The mol-
ecule produces a strong Fano effect in the CD spectra. This 
CD band of molecule appears at the plasmon frequency. The 
plasmonic nanoparticles like gold and silver nanoparticle 
exhibit an absorption enhancement with small separation 
between molecules and nanoparticle [66].

Optical coupling between gold nanorods and chiral 
surfactants

The Au NRs coated with chiral mesoporous silica shells 
(CMS) manifest strong CD signals in the visible light and 
NIR region (Fig. 11a). The CD activity is due to the optical 
coupling between Au NRs and the chiral cysteine molecules 
docked in the CMS shells. The small CD signals at 520 nm 
correspond to the feeble transverse LSPR while strong CD 
signal ranging from 500 to 900 nm are attributed to the 
intense longitudinal LSPR (Fig. 11b). In the absence of chi-
ral mesoporous silica, the mixing of Au NRs with pure chiral 
molecules lacks CD signal in the visible region, while that in 
the UV region remains. With an increase in aspect ratio of 
Au NRs, the plasmonic peak around 700 nm gets red-shifted. 
It indicates that the origin of plasmon-induced chiral prop-
erty is due to the strong near-field coupling between chiral 
molecules within the mesoporous shell and Au NRs.[67].

Chirality induced by preferred handedness 
of the polymer chain

Using the chain transfer polymerization of PIPEMA 
and PHEMA leads to the self-assembly of Au NRs, with 
CD response at Vis–NIR region. The CD spectra of the 

nanoassembly give a maximum intensity peak at pH of 
13.4. The origin of chirality of Au NRs is controlled by the 
preferred handedness of the chiral polymers owing to the 
syndiotacticity and steric hindrance of the side groups of 
the polymer chain. Moreover, the intensity of the CD signals 
is controlled by the molecular weight of the polymers [46].

Born‑Kuhn model

The plasmonic form of the Born-Kuhn model can be well 
illustrated as two identical corner-stacked, vertically aligned 
nanorods having an angle of 90° between them. These 
orthogonal nanorods are equivalent to chiral plasmonic 
dimer. In coupled oscillator model the excitation of a mode 
depending on symmetry of light corresponds to antisym-
metric case. Hybridization model gives idea about sign and 
spectral position of the resulting optical modes. The plas-
monic Born-Kuhn model demonstrates the tuning of vertical 
inter-rod distance, which can open on to selective excita-
tion of bonding and antibonding plasmonic chiral modes 
[68]. The Born-Kuhn-type plasmonic analog produced with 
3D gold chiral metasurfaces was used for the analysis of 
third-harmonic generation circular dichroism (THG-CD). 
The THG-CD spectra consist of broader peak and dip than 
that of linear CD spectra. In addition to this, the nonlinear 
CD peaks is almost zero at the peak position of linear CD 
spectra [69].

Tuning of chirality of Au NPs

The chiroptical activity of chiral Au NPs can be tuned by 
the peptide sequence. The sequence engineering of A3 gold-
binding peptide (AYSSGAPPMPPF) can be used for opti-
mizing chiroptical properties of chiral helical Au NPs. The 
similar CD spectra show that all peptides have polyproline 
II secondary structure (Fig. 12). The position of methionine 

Fig. 11  a CD and b UV–Vis 
spectra of the GNR@CMS NPs 
templated by three types of dif-
ferent chiral surfactants: C16-L-
Phe (black); C16-D-Phe (red); 
C16-DL-Phe (blue). “Reprinted 
with permission from Ref. 67. 
Copyright (2013) American 
Chemical Society”
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(M) or methionine sulphoxide (M-ox) within the peptide 
sequence controls the aspect ratio of Au NPs. The nature of 
the peptides determines the formation of spherical, oblong 
or rod-shaped Au NPs. The shift in the M-ox position of 
peptides gives large-sized oblong Au NPs with high inten-
sity of CD peaks [70]. A series of Au NRs capped with 
axially chiral binaphthyl thiols and its dispersion in nematic 
liquid crystals 5CB have been synthesized. The enhance-
ment of chirality by a related series of polyhedral Au NRs 
can be employed to identify chirality transfer. The nematic 
liquid crystal phase reflects the variation in chiral induction 
strength and facilitated cooperative effects with helically 
arranged chiral objects [71]. In a polar protic solvent, chiral 
gold nanoclusters (Au NCs) undergo self-aggregation into 
supraparticles, while in polar aprotic solvent, self-aggrega-
tion does not occur. The degree of self-aggregation increases 
with an increase in polarity of polar protic solvent, which 
induces amplification and chirality of supraparticles [72].

The Au NPs functionalized with a highly sensitive and 
conformational responsive enantiomeric pairs of axially 
chiral binaphthyl ligands were employed to induce the chi-
rality transfer from nanoscale solid particle to a bulk achi-
ral liquid crystal phase. The Au NP–conjugated binaphthyl 
ligands were used for analysing the dependent factors of 
chirality transfer such as size of Au NPs, chiral correlation 
length, the local number, dihedral angle and density of chiral 
binaphthyl ligands [73]. A coordinating thermally sensitive 
organogelator template controls the chirality in the in situ 
synthesis of hybrid Au NPs. The sol form of the template 
induces coordination between Au(III) and azobenzene moi-
ety results in chirality inversion, whereas the gel form of the 
template cannot coordinate with  HAuCl4 so that original 
chirality is maintained [74]. The chiral poly(fluorene-alt-
benzothiadiazole) doped with helically ordered Au NPs via 
dipole–dipole interaction leads to plasmonic enhancement of 
optical chirality parameter (Fig. 12) [75]. The circular differ-
ential Mie scattering (CDMS) of Au NPs is linearly propor-
tional to the resonance strength and chirality parameter (k) 
of the molecules [76]. The three chiral Au NR-chromophore 

hybrid structures were constructed by self-assembling achi-
ral cyanine dye K21J-type aggregates, cyanine dye (cy3) 
and cyanine dye (cy5) with Au NRs with the aid of DNA 
templates. The chirality of the hybrid complexes depends on 
the spectral overlap between the SPR and chiral collective 
molecular excitations [33].

Mechanism of CD effect in chiral plasmonic 
gold nanostructures

The mechanism of CD effect in chiral plasmonic gold nano-
structure is based on coulomb interaction, plasmon-induced 
mechanism and dipole–dipole interaction. The coulomb 
interaction between molecule and nanoparticle creates an 
angle separation between electric and magnetic dipole of 
the molecule (Scheme 1a and b). The interaction of nano-
particle creates a CD effect via lowering the symmetry of 
the molecule. The dipole of the molecule induces a chiral 
current inside the nanoparticle. It results in a Fano effect in 
the CD spectra. The CD spectra due to the interaction of a 
molecule and nanoparticle in the presence of an electric field 
comprises of (i) incident field, (ii) field induced by nanopar-
ticle and (iii) field created by the molecule. The asymmetric 
shapes of CD bands of a nanoassembly are called Fano-type 
effect. In Scheme 1a, the electric and magnetic dipole �⃗𝜇 12 
and ��⃗m 21, respectively, are not perpendicular to each other, 
thereby resulting in CD signal. Here, R is centre to centre 
separation and ∆ is the distance between the centre of the 
molecule and nanoparticle surface [66].

The chiral adsorbate on Au NPs interacts with the elec-
tronic states of the nanoparticle and generates a CD band 
at the plasmon wavelength (Scheme 1c and d) [77]. This 
type of mechanism is applied to the nanosystem in which 
the absorption peak of the chiral molecule is far away from 
plasmonic band of the nanoparticle. Here, the CD effect is 
induced due to the modification of the surface state of the 
nanoparticle via the adsorption of the chiral molecule [66].

Fig. 12  Secondary structure 
analysis of PEPAuM,11 and 
PEPAuM-ox,11. a CD measure-
ments indicate that both PEPAu 
M,11 and PEPAu M-ox,11 
exhibit predominantly PPII 
secondary conformations in 
solution. b Structural similarity 
between PEPAu M,11 (blue) 
and PEPAu M-ox,11 (red) 
sequences gathered via theo-
retical cross-peptide analysis. 
“Reprinted with permission 
from Ref. 70. Copyright (2019) 
American Chemical Society”
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In hybrid materials such as azo-compounds and Au NPs 
in polymer films, the two components of dipole vectors can 
freely rotate in a direction perpendicular to the direction of 
propagation of light. The CPL can induce supramolecular 
chirality with one vector on the surface of Au NPs and the 
second dipole vector is fixed within the Au NPs (Scheme 1e 
and f). Here, the initial weak adsorption of chiral species on 
the surface of Au NPs limited the motion of the resulting 
complex (Scheme 1e) [78].

Applications of chiral plasmonic gold 
nanostructures

Chiral plasmonic gold nanostructures are established as a 
probe for a wide variety of applications including cataly-
sis, biosensing and biodetection. Chiral, multipetal gold 
nanoflowers (Au NFs) were prepared by the reduction of 
 HAuCl4 with the aid of core-satellite silver nanoparticle 

seeds. The  Hg2+/Au NF combination catalyses the transfor-
mation of rhodamine B to rhodamine 110 and nitroarenes 
to aminoarene. The bright-field TEM images of Au NF look 
like mermaid flower (Fig. 13a and b). The HRTEM images 
consist of lattice planes with spacing 2.33 Å corresponding 
to (111) plane of fcc Au NFs (Fig. 13c). The STEM-HAADF 
(scanning transmission electron microscopy/high-angle 
annular dark field) (Fig. 13d), energy-dispersive x-ray (EDX) 
(Fig. 13e), energy-filtered TEM (EFTEM) image (Fig. 13g), 
CD spectra and wide-angle XRD profile of Au NF prove the 
characteristic properties of gold. Relative thickness map of 
individual Au NF (Fig. 13f) is shown in Fig. 13h [79].

Biosensing

Chiral plasmonic gold nanostructures exhibiting CD were 
used for biosensing because they are sensitive to asymmetry 
in sample structure, quick easy method in obtaining meas-
urements, shorter time scale, less amount of sample required 

Scheme 1  Schematic represen-
tation showing the mechanism 
of origin of CD effect. a The 
direction of magnetic vector and 
electric vector. b The coulomb 
interaction between energy 
states of dye molecule and the 
Au NPs. c and d The change 
in photo-induced CD signal 
with variation in the direction 
of electric vector of molecule. 
e Non-parallel interaction of 
chiral molecule (molecular 
plane) with the electric dipole 
of Au NPs and f the parallel 
interaction of chiral molecule 
(molecular plane) with the 
electric vector of Au NPs
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and recovery of sample is possible [80]. CD exploits the dif-
ferential absorption of right- and left-handed plane polarized 
light sensitive to asymmetric in structure of molecules [81]. 
Recently, chiral plasmonic gold nanostructures offer new 
platform for highly sensitive detection strategies. Because of 
their biocompatibility and plasmonic properties, gold nano-
structures can make sensible effect in the detection process.

Chiral plasmonic gold nanostructures can find the way 
towards various biosensing applications, including label-
free single-molecule/virus detection. The antibody-con-
jugated self-assembled superstructure of chiroplasmonic 
gold nanoparticles (CAu NPs) and CdTe NPs quantum dots 
(QDs) nanohybrids could detect picomolar concentrations 
of avian influenza A  (H5N1) virus. The CdTe NPs exhibit a 
particle size of 6.5 nm with strong emission wavelength at 
710 nm and possibly could overlap with plasmonic states in 
the nanohybrids. Here, prolate, flower and urchin-shaped 
Au NPs having plasmonic peaks at 548 nm, 565 nm and 
590 nm, respectively, were chosen to make nanohybrids. The 
urchin-shaped Au NPs outperform all other Au NPs because 

of their broadened plasmonic peak and maximum extent of 
overlap with excitonic wavelength of CdTe NPs. The sensi-
tivity of the nanohybrid-based bioassay could detect up to 1 
 pgmL−1 of  H5N1 virus, which was 10 times more than that 
of bioassay based on bare urchin-like Au NPs. Moreover, 
chiroptical response is more sensitive as compared to visual 
colour response–based commercial kit, which could detect 
up to 1  ngmL−1 (Table 1). The sensing performance was also 
extended to detect avian influenza A (H4N6) virus, corona-
virus and fowl adenovirus. The concept of optical rotation 
activity and energy coupling characteristics due to chiral 
plasmon-exciton interactions change the chirality enhancing 
the sensitivity of chiral plasmonic nano sensors [82].

A chiral assembly of 16-mercaptohexadecanoic 
acid–functionalized Au NPs immobilized with tropo-
myosin (TROP) and anti-tropomyosin monoclonal (mAb) 
antibodies as trimer was developed for the sensing and 
quantification of shell fish allergen tropomyosin. In the 
nanosensor, Au NPs-TROP comparatively binds with Au 
NPs-mAb and free antigen. The AuNPs-TROP and Au 

Fig. 13  a and b BF-TEM 
images of Au NFs and a single 
Au NF, respectively, and c 
HRTEM image of a part of Au 
NF. d STEM-HAADF image. 
e EDX line profile. f Unfiltered 
image of a single Au NF. g 
EFTEM image of that Au NF. h 
Relative thickness map. i Line 
profile over the red rectangular 
box indicated in h. j CD spectra 
of chiral Au NFs. k Wide-
angle XRD profile of Au NFs. 
“Reprinted with permission 
from Ref. 79. Copyright (2015) 
American Chemical Society”
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NPs-mAb could form aggregates of different oligomers 
and contributes to the increase in CD intensity. The bio-
sensor was designed in such a way that a decrease in CD 
intensity takes place whenever the concentration of free 
antigen increases, resulting in a decrease in the concentra-
tion of aggregates. In comparing CD absorption curves 
of the probe in the presence of non-allergic proteins, the 
latter does not affect the strong CD intensity of the probe, 
indicating the specificity of the biosensor[83].

The deposition of gold or shells around gold heterodi-
mers gives tuneable CD signals, which depends on the 
composition, shell thickness and sequence of metallic layer 
(Fig. 14). The chiroptical assemblies of nanoparticles pro-
duce amplified chiroptical signal, were used for DNA detec-
tion at zeptomolar level. The chiroplasmonic band of Au 
heterodimers (HDs) at 525 nm exhibited a red shift pink to 
purple by an Au shell (@Au) deposition on it. The strong 
peak at 581 nm of HD@Au gets amplified with a g-factor 
of 1.21 ×  10–2. The formation of shell on HDs decreased the 
gap between two nanoparticles thereby enhanced the CD 
bands. The narrow CD spectra with the highest g-factor is 
obtained in HD@Au with g-factor 1.03 ×  10–2 and double-
shelled Ag shell followed by Au shell on HD (HD@Ag@Au) 
with g-factor 0.44 ×  10–2 or Au shell followed by Ag shell 
on HD (HD@Au@Ag) with g-factor 0.28 ×  10–2. The strong 
CD bands of HD@Au were utilized for DNA detection. The 
DNA concentration quantitatively affects the HD@Au and 
optical activity of the resulting dispersions. The LOD of the 
HD@Au-based biosensor was low (Table 1) as compared to 

fluorometric QD assay (LOD = 1 aM) [84] and colorimetric 
biobar-code assay (LOD = 500 zM) [85]. Here, the enhanced 
CD signal in combination with polymeric chain reaction is 
attributed to the highly sensitive detection of DNA [86].

The Ag NP-Au NP heterodimers linked with antigen–anti-
body bridges exhibit chiroplasmonic properties. These 
dimers with scissor-like conformation were utilized for the 
bioanalysis of a cancer biomarker prostate-specific antigen 
and environmental pollutant microcystin-LR (Fig. 15). Here, 
the Au NPs and Ag NPs were modified with anti-microcys-
tin-LR (MCLR) corresponding antibodies and BSA-anti-
microcystin-LR, respectively, mixed together so that bridged 
heterodimers were formed. These heterodimers produce two 
prominent CD signals. The existence of plasmonic nano-
particle enhanced the chirality via coupling of angled con-
formation with circularly polarized light. The advantage of 
this study over previously studied cases is the explanation of 
the origin of chiral signals in heterodimers. The occurrence 
of chirality in bridged dimers depends on dihedral angle, θ. 
The toxin MCLR results in the formation of dimers, which 
exhibit bisignate CD signal between 526 nm ad 399 nm. The 
LOD (Table 1) for MCLR is 250 times lower as compared to 
ELISA assay. In addition to this, the chiroplasmonic method 
was extended to the detection of prostate-specific antigen. 
The intensity of CD signal increases with concentration of 
PSA because of the assembly of heterodimers [87].

Plasmonic Au NPs were self-assembled with lantha-
nide-doped upconversion nanoparticles in the proximity 
of suitable DNA frame. The assembled pyramids exhibit 

Table 1  Summary of chiral plasmonic gold nanostructure-based assays for various detection targets

Target Nanomaterial Real sample Linear range Detection limit Ref

Avian influenza A H4N6 
virus

Antibody conjugated 
self-assembled gold nano 
structure and CdTe NPs

Chicken blood 100–0.01 HAU/50µL 0.0315 HAU/50 µL [82]

Fowl adenoviruses-9 
(FAdVs-9)

Antibody conjugated 
self-assembled gold nano 
structure and CdTe NPs

Chicken blood 33.64 PFU  mL−1 [82]

Bronchitis virus (IBV) Antibody conjugated 
self-assembled gold nano 
structure and CdTe NPs

Chicken blood 102–104 EID/50µL 47.91 EID/50 µL [82]

Tropomyosin Chiral Au NP trimer Shell fish 0.1–15  ngmL−1 21 pgmL-1 (S/N = 3) [83]
DNA Au heterodimers N/A 160 zM–1.6 pM 17 zM [86]
Prostate-specific antigen Functionalized Ag NP-Au 

NP heterodimers
Serum 1 ×  10–9 to 1 ×  10–6 5 ×  10–10 ng/mL [87]

MCLR Functionalized Ag NP-Au 
NP heterodimers

Water from lake 0.002 to 0.5 ng/mL 0.0008 ng/mL [87]

miRNA Gold-upconversion nano-
particle

HeLa cells 0.073 to 43.65 fmol/10 
µgRNA

0.03 fmol/10 µgRNA [32]

ATP Gold nanoparticle heter-
odimers

live cell 1.5 to 4.2 mM 0.2 mM [89]

Zn2+ Au@AuAg yolk-shell 
nanorods

human SH-SY5Y cells 76.6 ×  10–6 M/106 cells to 
211.5 ×  10–6 M/106 cells

38.7 ± 0.3 ×  10–6 M/106 
cells

[90]
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chiroptical properties in the visible region, whereas the 
luminescence of upconversion nanoparticles get quenched 
by the LRET [88]. In the presence of miRNA, the DNA 
frame undergoes complete dissociation resulting in the sepa-
ration of Au NPs and upconversion nanoparticle. The chi-
roplasmonic DNA-driven gold-upconversion nanopyramids 
exhibit dual signals of strong CD at 521 nm and remarkable 
luminescence in 500–600 nm. The nanoprobe was applied 
for the real-time detection of intracellular micro-RNA in 
living cells (Table 1). The intensity of CD spectra gets 
decreased, whereas that of fluorescence gets increased as 

the concentration of miR-21 gets increased in the cells. The 
sensitivity of CD detection is 4 times stronger than that of 
fluorescence detection. The CD signals are more prominent 
than luminescent signals, owing to the plasmonic enhance-
ment via intrinsic chirality of DNA molecule and spin angu-
lar momentum of photon of the nanopyraminds [32].

A chiral-aptasensor based on Au NP heterodimer could 
be used to quantify intracellular ATP levels. The chiral 
nanoassembly exhibit special CD signal with high back-
ground intensity and avoid optical interference with auto-
fluorescence of cellular organelles. The decay of CD peak 

Fig. 14  Schematic illustration 
of a PCR-assembled HDs and b 
sequential post-assembly depo-
sition of Ag and Au shell(s). 
“Reprinted with permission 
from Ref. 86. Copyright (2014) 
American Chemical Society”

Fig. 15  Schematic illustra-
tion for the assembly of NP 
hetero dimers and their use 
for biological analysis. A, B 
The NP dimer was assembled 
from Au NPs and Ag NPs, 
which were functionalized with 
complementary biomacromol-
ecules (A). For the detection 
of small peptides, exemplified 
by MCLR, the competitive 
immunorecognition assay was 
chosen to demonstrate its appli-
cability to biological analysis. 
It results in a decrease of the 
CD amplitude (B). For detec-
tion of the fairly large proteins, 
exemplified by PSA, we used 
sandwich immunoassay mode. 
C Schematics of the NP dimers 
bridged by immunocomplexes 
used in competitive and sand-
wich immunoassays. “Reprinted 
with permission from Ref. 87. 
Copyright (2013) American 
Chemical Society”
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of heterodimers at 523 nm gets enhanced in the presence of 
ATP, owing to the chiroplasmonic detection of ATP. This 
type of chiral Au NP sensors can be explored to monitor 
and investigate biological activity in living organisms [89].

The chiral Au@AuAg yolk-shell nanorods were syn-
thesized using chiral D- and L-penicillamines. The circu-
lar dichroism of plasmonic core-satellite superstructures 
depend on concentration of chiral molecules, hot spots 
in the nanogaps of Au NRs, aspect ratio of Au NRs and 
coulombic interaction between Au NRs and D- or L-pen-
icillamines. This superstructure with increased g-factor 
(0.021) and strong plasmonic CD intensity was employed 
as the photothermal probes for the quantitative detection 
of zinc ions in Parkinson’s cells (human SH-SY5Y cells). 
Here, the CD response of the nanoassembly originates 
from the coulombic interaction between Au NR and D/L-
penicillamines. The plasmonic CD also gets enhanced due 
to the formation of hot spots created between nanogaps 
in the nanoassembly. The biosensor is designed in such a 
way that the CD response of the nanoasembly at 530 nm 
and 740 nm decreases with increase in concentration of 
 Zn2+ ion in cells, suggesting the disassembly of the nano-
structure via the dissociation of DNAzyme by  Zn2+ ions. 
The nanoassembly shows good selectivity over other metal 
ions, negligible cytotoxicity and its CD response has no 
interference with proteins or peptides[90].

The chiroplasmonic active optical fibre probe was 
assembled with gold and silver layers followed by immo-
bilization of helicene enantiomers. The nanoassembly was 
able to produce chiroplasmonic waves via chirality transfer 
for helicene to plasmonic bands. The helicene used were 
rac-9-(3-pyridylethylnyl)[7]helicene, rac-9-(4-pyridy-
lethynyl)[7]helicene and racemic 2-(3-thienyl)[6]helicene. 
The complete information of a molecule in the solution 
was analysed with “cross” functionalization of the heli-
cene enantiomers. The nanoassembly was applied for the 
detection of β-lactoglobulin and glucose enantiomers. The 
probe works on the sensitive interaction of chiral plasmons 
with chiral environment [91]. The sensitivity is greater 
for conformation chirality possessed by β-lactoglobulin 
as compared to point chirality in glucose enantiomers. 
The achiral plasmonic Au NP–based substrate was used 
to detect the action of scorpion venom in human’s blood 
serum. A change in concentration of the venom casue a 
variation in the refractive index of the substrate. The CD 
signal depends on the lattice plasmon polaritons. It creates 
an action potential at the sample surface, which is unique 
for a particular neurotoxin [31].

Biodetection

A chiral assembly of sugammadex-Au NPs was used as a 
colorimetric chiral sensor for detecting lysine and asparagine 

enantiomers. In addition to this, it exhibits excellent catalytic 
activity towards the reduction of 4-nitrophenol with sodium 
borohydride [92]. The two-dimensional chiral arrangements 
of gold nanoprisms give strong second harmonic genera-
tion chiroptical effects, where chirality originates through 
inter-particle plasmonic interactions and mutual arrange-
ment. These “meta-molecules” could aid as building blocks 
for a novel “watermark”, which could be read-out encoded 
pattern by means of a sophisticated nonlinear microscopy 
technique. The chiral N-acetyl-L-cysteine-modified Au NPs 
were employed as a chiral selector for the enantioselective 
recognition of S-naproxen and R-naproxen[93].

The 3.3-nm chiral L-glutathione and D-glutathione-
capped Au NPs named as L3.3 and D3.3, respectively, were 
used for the chiral recognition of amyloid beta peptide and 
inhibition of Aβ42 fibrillation occurs in Alzheimer’s dis-
eases. The inhibition activity of Aβ42 fibrillization was 
greatly enhanced by glutathione stabilized Au NPs as com-
pared to pristine glutathione molecules. The conformational 
changes associated with the interaction of AuNPs with Aβ42 
were analysed using CD spectroscopy. The positive CD band 
at 195 nm and negative CD peak at 215 nm in the presence 
of D3.3 give a distinguished effect as compared to L3.3. It 
manifests the dependence of surface chirality of glutathione-
coated Au NPs. Here, the Au NP prevents the structural 
change of Aβ42 from its bare conformation to β-sheet con-
formation in solution. The chiral glutathione-stabilized Au 
NPs have opened a new era for bioanalysis toward the fatal 
Alzheimer’s diseases [94]. The L- and D-glutathione can act 
as a reducing agent for the synthesis of gold nanoclusters 
(Au NCs.) The positive surface charge of Au NCs is attained 
by using the cationic ligand, 4,6-diamino-2-pyrimidinethiol. 
The CD spectra of both L- and D-glutathione-based Au NCs 
consist of mirrored CD peaks. The D-glutathione-protected 
Au NCs are less toxic to cells as well as organs. Thus, the 
application of it in in vivo is safer than its L-glutathione-
based counterparts. The study was extended into mice and 
identified the superiority of D-form over L-form [95]. Sev-
eral stages of studies and modifications are necessary for the 
application of such nanoassembly in daily life.

The Au NPs were grafted with 2-mercaptoacetyl-L(D)-
valine (L(D)MAV) and poly(acryloyl-L(D)-valine (L(D)-
PAV) chiral molecules. The PAV-Au NPs give strong CD 
signals as compared to MAV-Au NPs because of the pres-
ence of a greater number of carboxyl groups in PAV-Au 
NPs. The mirror image CD spectra of L-PAV-Au NPs and 
D-PAV-Au NPs appear between 190 and 300 nm region. The 
internalization of chiral D-PAV-Au NPs in A549 and HepG2 
cells were significantly greater than MAV-Au NPs and 
L-PAV-Au NPs. This chiral selective interaction arises as a 
result of preferable interaction between D-PAV molecules 
on Au NPs and L-phospholipid-based cell membrane [96].
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The plasmonic hot spots chiroptical activity of DNA-
bridged chiral Au NPs/Au NRs dimers concede one to 
monitor the internalization of it in mammalian cells. The 
CD peaks in the visible region get reversed from negative 
to positive owing to the variation in the conditions of the 
dimers (Fig. 16a) inside and outside the cervical cancer 
HeLa cells, which is in good agreement with simulated CD 
spectra. The chirality reversal arises due to the variation 
in the elastic, electrostatic and van der Waals interactions 
resulting in the conformational changes of DNA-bridged Au 
NR dimers. The image from biological transmission electron 
microscopy (bio-TEM) proved that the dimers are dispersed 
in the cytosol of HeLa cells (Fig. 16b). Cryo-TEM tomogra-
phy and its statistical analysis showed that the chirality of the 
dimers transformed from right-handed to left-handed confor-
mation: the average dihedral angles are − 12.5 ± 2° (inside) 
and + 9.6 ± 1° (outside) of the cells (Fig. 16c and d). The 
chiroplasmonic gold nanostructures can be used to extend 

its contribution in photodynamic therapy and quantitative 
estimation of nanoscale interactions [97].

The chiral Au NPs with high polarizability can interact 
with circularly polarized light (CPL), which may induce 
stringent cellular response to chiral photons. The Au NPs 
stabilized with D/L-cysteine and functionalized with 
single-stranded DNA (ssDNA). The DNA-bridged chi-
ral Au NPs were established for the distinction of neural 
stem cells (NCS) into neurons with the aid of CPL. The 
nanoassemblies enter the stem cells and trigger conforma-
tional changes, entangled with actin nanofibres. The nano-
particle denoted as  C30(D)S5-C20(L) or  C30(L)S5-C20(D) is 
fabricated by connecting 5-nm dangling nanoparticle with 
DNA-functionalized D- or L-cysteine-capped Au NPs hav-
ing 30 nm or 20 nm (L- and D- stands for handedness of 
cysteine). The  C30(D)S5-C20(L) nanoassemblies with a nega-
tive CD peak at 524 nm reconfigure to as  C30(D)-C20(L)S5 in 
the presence of Fox3mRNA with a positive CD. The CD of 
the nanoassemblies originates from the mirror asymmetry 

Fig. 16  Chiral geometry of NP 
dimers. a TEM image of NP 
dimers in cell culture media; 
scale bar, 100 nm. b Bio-TEM 
images of NP dimers in the 
HeLa cells; scale bars, 100 nm. 
c TEM tomography images 
(bottom) of NP dimers both 
outside and inside cells with 
schematics of dimers’ geom-
etry (top). d Statistical analysis 
of the dihedral angles θ for 
NP dimers inside and outside 
the cell as determined from 
cryo-TEM tomography images. 
The error bars correspond to 
the standard error of the mean 
(n = 3). The sign of the dihe-
dral angle in these nanoscale 
structures was chosen in accord 
with the IUPAC convention. e 
Simulated CD spectra of NP 
dimers intra- and extracellular 
localization of NP dimers based 
on geometries from d. “ Repro-
duced with permission from 
Ref. 97. Copyright © 2017, 
Springer Nature”
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of the nanoassembly [98][98]. The CPL impose polariza-
tion-reliant constrain on the nanofibres via nanoassemblies, 
owing to the differentiation of NCS. The biological effects 
of CPL based on Au NP–based nanoassemblies can be used 
for further exploration in bio detection applications [99].

The gold Janus nanoparticles capped with hydrophobic 
hexanethiolate ligands on one face and hydrophilic 3-mer-
capto-1,2-propanediol on the other face of the core. This 
Janus nanoparticle self-assembled into hollow vesicle-like 
nanostructures in both aqueous and organic phases. It exhib-
its circular dichroism absorption in the visible region, where 
the intensity of CD increases with increase in concentra-
tion of Au NPs. The gold Janus nanoparticle on interaction 
with L-alanine gives no change in plasmonic CD, whereas 
D-alanine shows negative plasmonic CD. The simulation 
study shows that a vertex formed on the Janus particle, 
which gives unique nature for it. The chiral vesicle-like Au 
NPs possess high enantioselectivity towards D-alanine com-
pared to L-alanine. These types of Janus nanosystem could 
be extended for the identification, separation and biosensing 
of various biomolecules [100].

A chiral carbon nanotube electropolymerized with dopa-
mine and loaded with Au NPs on it was utilized for the 
quantitative and qualitative electrochemical recognition of 
tryptophan and tyrosine isomers. Here, the dopamine directs 
the uniform dispersion of Au NPs on carbon nanotubes. The 
conductivity of Au NPs blended with chirality of carbon 
nanotube established as a novel chiral electrochemical bio-
sensing system for amino acids [101]. The chiral plasmonic 
Au NR–based biosensors were employed for the hydrogen 
bonding (Hb) and zwitterionic electrostatic interactions (Zw-
Es) between amine and carboxylic acid group in aqueous 
media. Such nanosensors are sensitive to conformations and 
selective to chirality at the nanoscale interfaces in Hb and 
Zw-Es interactions. The SERS technique could be coupled 
to chiral plasmonic sensors for developing multifunctional 
biosensors to investigate the chirality in biological systems 
[102].

Outlook of the bioanalytical applications

Chiral plasmonic gold nanostructure–based bioassay 
has been summarized in this section (Table 1). Several 
enhanced attributes of the chiral plasmonic gold nanostruc-
tures, including strong chiroptical effects, tuneable circular 
dichroism effect, polarization modulation, chiral recogni-
tion and handedness dependent plasmonic responses, make 
them fascinating chiroptical probes for various biosensing 
and biodetection applications. These platforms may attain 
accuracy in detection with size, morphology, composition, 
aspect ratio, nanogap and template-dependent variation in 
CD response. Despite the development that occurred in the 
past decade, chiral plasmonic gold nanostructures are still 

demanding improvements, which encumbers the biosensing 
translation of the advanced techniques into daily life. There-
fore, it is very important to combine several optical proper-
ties of chiral plasmonic nanomaterials including SPR effect, 
SERS effect and chirality along with CD response. The Au 
NP–based chiral plasmonic nanomaterial can be synthesized 
and functionalized with biocompatible surfactants/chiral bio-
molecules for utilizing it as a bioassay. The synthetic proce-
dures of citrate-stabilized Au NPs are simple, at which DNA 
template or biomolecules can be tailored to obtain chirality. 
Also, thiol-based linker molecules can effectively bind on 
Au NPs so that optimum separation between nanoparticles 
can be ensured. The rapid development in this field should 
impart chiral plasmonic Au NP–based probe with enhanced 
CD effect, well-explained mechanism, better detection limit, 
biocompatibility, sensitivity and reproducibility.

Conclusion

Plasmonic nanoparticles utilizing CD spectroscopy have 
vital role in bioanalytical applications, and therefore, the 
development of effective biosensors and biodetection probes 
is of great importance. Bioanalytical tools exhibit impor-
tance in various economic background. The progress in this 
field is forging ahead to offer effective contribution in bio-
analytical fields. The requirements for these include the fol-
lowing: (i) High selectivity. For many real samples such as 
pesticides containing vegetables, enantiomeric drugs, amino 
acids, peptides, proteins, genetic materials and cells, either 
broad-spectrum bioanalytical tools capable of unique iden-
tification or excellent target-specific probes are necessary. 
(ii) High sensitivity. The concentration levels of samples 
are generally below the detection limits of the bioanalytical 
tools, at which stage the biomolecules are usually undetect-
able using current platforms. The sensitive bioanalytical 
sensors allow us to investigate low concentration level of 
biomolecules. (iii) Low cost. The effectiveness of a bioana-
lytical probe depends on the extensive use of it among a 
large population, which is possible only if the probe is cost 
effective.

Importantly, the development of Au NP–based nanoprobe 
attains great improvements in bioanalytical field. Among the 
properties of Au NPs, chiroptical properties have attained 
much interest due to its high sensitivity and unique features. 
The interaction of chiral plasmonic Au NPs with electro-
magnetic radiation generates unique optical signatures. The 
CD responses of chiral plasmonic Au NPs depend on the 
interaction with different biomolecules and are distinctive 
like a finger print. Different types of chiral gold nanostruc-
ture produce a wide range of SPR wavelength. These opti-
cally tuneable nanosystems were functionalized with several 
biomolecules or synthetic molecules in various applications. 
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The combination of plasmonic properties and CD response 
of such nanoassembly could be utilized for fabricating bio-
analytical tools.

Although a great progress in Au NP–based chiroptical 
responsive system has been achieved, many confronting 
challenges remains. For example, in the case of hot spot for-
mation–based CD response, the practicability of maintaining 
distance between plasmonic nanoparticles using linker mol-
ecules in a macroscopic system is questionable. Secondly, 
the detection of large biomolecule-like proteins with the CD 
spectroscopy using plasmonic nanoparticle is difficult due to 
the possibility of decay of intensity of electric field between 
the nanoparticles. In addition to this, the mechanism of CD 
response is still not clear. Thirdly, the reproducibility of the 
detection systems is a challenging factor too. Moreover, the 
application of CD-responsive-based Au NPs in a point of 
care stage still demands interdisciplinary approach–based 
research by experts from various fields.
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