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Abstract 

Eukaryotic microorganisms, or “protists,” while often inconspicuous, play fundamental roles in the Earth ecosystem, 
ranging from primary production and nutrient cycling to interactions with human health and society. In the backdrop 
of accelerating climate dysregulation, alongside anthropogenic disruption of natural ecosystems, understanding 
changes to protist functional and ecological diversity is of critical importance. In this review, we outline why protists 
matter to our understanding of the global ecosystem and challenges of predicting protist species resilience and fragil-
ity to climate change. Finally, we reflect on how protistology may adapt and evolve in a present and future character-
ized by rapid ecological change.
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Protists: hidden and fundamental contributors 
to global ecology
The vast majority of earth’s biodiversity is microbial. 
Single-celled organisms (bacteria, archaea, viruses, and 
protists), while first visualized by humans in 1677 pre-
date us by billions of years [1, 2]. Protists, or eukaryotic 
microorganisms, are found across all habitats [3], rang-
ing from the deep sea to the stratosphere [4, 5], and from 
hypersaline geothermal springs to the polar ice-caps [6, 
7]. Protists are taxonomically far more diverse than mul-
ticellular eukaryotes, belonging to multiple supra-king-
dom level groups that are distinct from animals, plants, 

and one another [8, 9]. Protists are furthermore function-
ally heterogeneous, comprising phototrophs and hetero-
trophs, aerobes and anaerobes [10, 11], single-celled and 
colonial forms [12, 13], and free-living species and obli-
gate symbionts in mutualistic, commensal, and parasitic 
interactions [14, 15]. These are underpinned by diverse 
genomes, with individual lineages separated from one 
another over one billion years of evolution with histories 
punctuated by gene gains, losses, and endosymbiotic and 
horizontal acquisitions [16–18]. Many remain anony-
mous, with some groups only starting to enter laboratory 
study [19–21].

In all these habitats, protists perform essential ecosys-
tem functions. Photosynthetic protists, or “algae,” which 
possess chloroplasts, are responsible for nearly half of 
all planetary primary production [2, 22] and form the 
trophic basis of worldwide fish stocks [23, 24]. These 
include essential symbionts of macrofauna, e.g., in coral 
reefs [25, 26]. Many algae are mixotrophs, i.e., can per-
form both phototrophy and heterotrophy, and have 
roles both in carbon fixation and predation [11]. Some 
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phototrophs (diatoms, coccolithophores) are biominer-
alizers and contribute to the sedimentation and burial of 
dissolved silicon and calcium respectively [27, 28]. Oth-
ers form symbiotic interactions with bacteria that per-
form nitrogen fixation or synthesize vitamin  B12 from 
dissolved cobalt [29, 30], and their photosynthetic activ-
ity thus supports the incorporation of these nutrients 
into biological systems.

Heterotrophic protists play important roles in decom-
posing and recycling organic carbon and nitrogen. Ter-
restrial heterotrophs support global soil cycles [3, 31], 
with some (e.g., plasmodiophorids) integral components 
of the plant rhizosphere [32, 33]. By consuming and col-
lating nutrients from primary producers, aquatic het-
erotrophs contribute to the biological carbon pump, 
removing organic matter from the surface and allow-
ing burial in sediment [11, 34]. The respiratory activity 
of both photosynthetic and heterotrophic protists can 
change the availability of limiting nutrients in terrestrial 
and aquatic ecosystems, either by competitive uptake 
and occlusion or by recycling reserves stored in prey [35, 
36]. Protist metabolism can even directly impact on pre-
cipitation, e.g., the production of cloud-nucleating DMSP 
(dimethyl-sulfonopropionate) by some dinoflagellates 
[37, 38].

Protists have important and often under-realized 
potentials in industry and agriculture. Algae may serve 
as a chassis for biofuel, nutriceuticals, feedstock, fertilizer 
and food production, and even green carbon capture 
[39–41]. These applications are appealing given the lower 
demands of algal bioreactors than traditional biofuel and 
fodder crops for productive arable land [42]. Other pro-
tists may act as biomarkers of ecosystem health, exclud-
ing pathogens [43–45].

Yet, other protists have harmful impacts on human 
society. Protist-borne diseases include malaria, caused by 
Plasmodium spp., and African sleeping sickness, caused 
by Trypanosoma brucei [46, 47]. Some protist pathogens 
(e.g., Naegleria fowleri, Balamuthia mandrillaris) remain 
essentially untreatable with high mortality rates [48, 49]. 
Protist pathogens of animals (Babesia bovis, Babesiosis), 
crops (Phytophthora infestans, late potato blight), and 
trees (Phytophthora ramorum, sudden oak death) can 
have equally grave impacts on food security and on for-
estries [50–52]. Harmful bloom-forming algae (HABs) 
are severely detrimental to coastal aquaculture [53–56], 
although they may otherwise be important to marine car-
bon fixation [11, 34].

Finally, even protists with limited industrial applica-
tions may provide important reserves of genetic infor-
mation for understanding cell metabolism [56, 57]. 
Careful study of protist diversity can change our view of 

the genetic composition, and synthetic potential, of life 
[58]. Reflecting their multifaceted centrality to planetary 
ecology, protists are implicated in over half the UN Sus-
tainable Development Goals [59] (Fig. 1).

The threats of the climate and ecological crisis 
to all living systems
As a result of human activity, the Earth biosphere is mov-
ing irreversibly to a new state, termed the Anthropocene 
[61, 62]. The anthropogenic release of  CO2, enriched 
from pre-industrial atmospheric levels of < 280 to > 420 
parts per million in 2024, and other greenhouse gasses 
(methane, nitrous oxide) has caused global heating [63, 
64]. This is accelerating rapidly and will escalate as feed-
back loops and tipping points are initiated [65].

Anthropogenic heating is projected to have multiple 
impacts on different ecosystems. In marine ecosystems, 
heating increases thermal stratification, which severely 
reduces the available nutrients in the surface layer [66], 
and can even change the marine light field due to deepen-
ing of the euphotic zone [67]. Changes to marine cycling, 
brought in part by melting of polar ice caps [68, 69], can 
further alter the abundance and distribution of nutrients 
in the ocean. The enrichment in atmospheric  CO2 drives 
marine acidification, and negatively impacts on nutrient 
availability [70].

In freshwater, warming may conversely drive eutroph-
ication, e.g., by augmenting local precipitation, and 
increasing runoff of soil nutrients and mineralization of 
groundwater [71, 72]. Changing rainfall directly affects 
soil hydration and nutrient availability and indirectly 
impacts on terrestrial nutrient cycling via changes in 
vegetation [73, 74]. Pollution (e.g., nitrates, phosphates, 
particulates, plastics) has dramatically changed nutrient 
availability and toxicity, in particular in coastal, freshwa-
ter, and terrestrial ecosystems [75, 76].

The climate crisis sits at the center of a wider bio-
spheric crisis [77]. This relates to the erosion of wild hab-
itats (vegetation, aquatic and soil ecosystems) that have 
fundamental roles in regulating the planetary ecosys-
tem. Biodiversity collapse, as an irreversible process with 
unknown consequences, may itself pose a much greater 
danger to the long-term survival of humanity (e.g., ena-
bling the emergence of novel infectious diseases) [78] and 
have top-down impacts on the functions of individual 
ecosystems [79]. Habitat turnover, and the anthropogenic 
introduction of non-native species, has also changed the 
distribution of harmful algal blooms and pathogenic pro-
tists, both of which have consequent impacts on ecosys-
tem composition and function [80–83].

As of 2023, six of the nine Stockholm Planetary Bound-
aries that constitute a safe operating space for humanity 
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have been surpassed [84, 85]. The impacts are felt glob-
ally but unequally; no region will be immune to systemic 
risks as these continue to mount [86]. These changes and 
instabilities naturally implicate protists- and the biolo-
gists that study them.

Bench‑to‑field approaches for understanding 
protist biology
Protists include many appealing models for eukaryotic 
cell biology (e.g., Paramecium, Tetrahymena, Dictyoste-
lium, Chlamydomonas, Phaeodactylum) [87–90]. These 

species are characterized by easy cultivability and 
amenity to laboratory manipulation, via comparative 
physiological, transcriptomic, and metabolic profiling 
[91–93]; analysis of adaptation through experimen-
tal evolution [94]; and reverse genetics in the growing 
number of protists amenable to transformation [95]. 
To some extent, the ongoing isolation of cultivable 
strains [20] and deposition of these in culture collec-
tions [7, 96] continue to close knowledge gaps in our 
understanding of protist evolutionary diversity. Even 
in the past decade, the description of new phylum- and 

Fig. 1 Importance of protists to the global earth ecosystem. The inner wheel of this figure shows 8 UN Sustainable Development Goals (SDGs), 
adapted freely from [59]. The outer wheel shows drawings of representative protists, adapted freely from [60], overlaid over SDGs to which they are 
particularly relevant. For clarity, each protist is only shown once even if it is relevant to multiple SDGs, and the visual organization of the drawings 
are independent of taxonomic affiliation, for which the reader is directed to [60]
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kingdom-level protist clades (e.g., Rapphephyceae, 
Provora, CRuMS) has substantially changed our view 
of the eukaryotic tree of life [97–99]. Beyond classical 
taxonomy by morphological description, this has been 
enabled by the sequencing of an ever-greater range of 
protist genomes, with multigene phylogenies largely 
supplanting single-gene trees for reconstructing protist 
taxonomy [8, 22, 100].

Nonetheless, bench studies provide limited insights 
into the biology of uncultured protists (e.g., MASTs, 
MALVs, and MOCHs), many of which are important 
to global ecology [20, 101]. Bench studies likewise pro-
vide no information into protist responses to biotic and 
abiotic changes in the wild [55]. Here, the use of meta-
genomic approaches (direct sequencing of environmental 
samples) allows us to study protists within their natural 
habitats at a correlative level. This includes the enumera-
tion of species abundances and distributions, using clas-
sical meta-barcoding (e.g., 18S, 16S rDNA), primer-free 
approaches such as psbO meta-transcriptomics [19, 102], 
or high-throughput imaging [15, 103]. The recent devel-
opment of single-cell genomics and genome-quality 
assemblies from environmental data, i.e., metagenome-
assembled genomes (MAGs), continues to illuminate 
protist orders not yet in culture [21, 104]. Meta-genomic, 
meta-transcriptomic, and meta-metabolomic approaches 
allow us to understand protist physiology in the wild, 
and predict gene phenotypes that can be validated at a 
laboratory level [26, 93, 105]. In all of these approaches, 
measured physical and environmental conditions allow 
us to reconstruct protist ecological niches and functions, 
and to predict future species distributions [104, 106].

On longer time-scales, paleontological records (includ-
ing fossils, isoprenoid biomarkers, and ancient DNA) 
[107, 108] and monitoring programs may provide infor-
mation into protist community changes across the Hol-
ocene or beyond [109–111]. These approaches can be 
used in conjunction with more speculative techniques, 
e.g., experimental evolution [94, 112], and biologically 
grounded or theoretical mathematical modeling [109, 
113], to predict protist evolutionary trajectories in an 
uncertain future.

Known unknowns in protist adaptations 
to changing climates
Climate change is causing disruptions to ecosystem com-
position, including protists. Evaluating these impacts 
poses both conceptual and technical problems, reflect-
ing both the complexity of these changes and the rapid-
ity with which they are occurring. Typically, the growth 
of microorganisms in culture typically follow an “Eppley 
envelope,” i.e., with increasing exponential-phase growth 
rates with temperature up to a critical mortality threshold 

[114, 115]. Beyond enhanced growth, however,  the 
impacts of heating on microbial physiology are complex. 
For example, diatom algae show decreases in cell volume, 
moderate increases in photosynthesis and large increases 
in respiration [116–119], amidst remodeling of lipid and 
nitrogen metabolism [120, 121] at elevated, sublethal 
temperatures. Mixotrophic algae (e.g., chrysophytes) 
increasingly rely on heterotrophy [91, 122], and miner-
alizing ones (e.g., haptophytes) demonstrate changes in 
elemental stoichiometry [123, 124], under heating con-
ditions.  CO2 enrichment (including acidification) have 
similarly complex impacts on protist physiology and are 
likely to have neutral or detrimental impacts on primary 
production [79, 112].

Both long-term monitoring and ecosystem modeling 
of protists suggest poleward migrations in the Anthro-
pocene, with an expansion of tropical species to higher 
latitudes, and increased biodiversity in polar regions [24, 
104, 125, 126]. These changes are associated with redis-
tributions of primary production and nutrient cycling 
[127, 128]. Time-series observations have noted that the 
migratory speeds of protists are slower than the rate at 
which planetary isotherms are moving [107, 129, 130], 
i.e., average temperatures are changing too fast for pro-
tists to avoid, with heating likely to incur species loss. 
Specific ecosystems are changing beyond bounds associ-
ated with recent earth history, e.g., the tropics, impacted 
by more frequent extreme heatwaves and temperatures 
that go beyond previously known maxima [131], and the 
Arctic, impacted by the rapid loss of sea-ice, which may 
both curtail summer productivity and allow the incur-
sion of novel algal blooms in the autumn [132–135]. 
Heating can also perturb the biotic structure of protist 
ecosystems, disrupting trophic interactions [106, 136, 
137]. Multicellular predators of protists may have more 
restricted distributions [104, 130] and respond more 
slowly to environmental changes than their prey [24, 
110, 129]. Changes to these connections may cause cata-
strophic “top-down” ecological cascades on protist com-
munities [79, 138].

Nonetheless, the long-term consequences of global 
heating for protists remain poorly understood. Below, we 
outline work on algal temperature sensitivity from our 
groups, considering lab (growth rate) and field (meta-
genomic distribution) evaluations. Figure  2 focuses on 
taxonomically diverse algae indigenous to the Arctic 
Ocean [8], and Fig.  3 focuses on geographically diverse 
strains of haptophyte algae [22, 139]. We do not pre-
tend that these data, which relate primarily to free-living 
marine phototrophs, provide an exhaustive overview of 
the future distributions of protists from other functional 
groups and habitats. Instead, we use them to illustrate 
the limitations of culture-based or ecosystem analyses in 
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isolation and the need for complementary approaches to 
understand protist responses to climate change.

What can fieldwork tell us that laboratory experiments 
cannot?
Laboratory experiments, despite allowing precise under-
standing of individual physiological responses, may not 
be able to recreate the nuances of natural ecosystems. 
Micro-organisms cultured at the bench often show 
growth temperature optima several degrees above those 
of their native habitats [54, 141]. The Arctic algae in Fig. 2 

are restricted within environmental data to polar (Arc-
tic and Southern Ocean) sites with temperatures below 
5 °C, despite some diatoms demonstrating growth at 12 
°C (e.g., Attheya sp. RCC7856) or even 19 °C (Chaetoc-
eros sp. RCC7850) in laboratory culture. This discrepancy 
may relate to a thermal safety margin that buffers their 
sensitivity to heating in the wild [142, 143]. Alternatively, 
the highly non-naturalistic light regimes, nutrients (i.e., 
eutrophication in standard growth media), and popu-
lation bottlenecks (regular dilution of cultures) of the 

Fig. 2 Temperature optima of phylogenetically distant Arctic algae from experimental and field data. The strains in this figure are derived 
from the NCMA and RCC culture collections [96, 140], alongside new ones (RCC7840-7856) isolated from seawater collected during the 2021 
Amundsen Darkedge expedition. Top: heatmap of measured exponential growth rates, over seven temperatures (from 0 °C to 32 °C) under 35‰ 
salinity, and three additional salinities (from 14‰ to 3.5‰) at 4 °C. Species are shaded by taxonomic affiliation. Double-lined boxes show strains 
that show > 99% 18S rRNA sequence identity to one another and can be considered as species. Bottom: plot of Tara Oceans 18S v4 ribotype relative 
abundances of the most abundant diatom (Chaetoceros sp. RCC7850) and flagellate (Pyramimonas sp. RCC7841) shown relative to station latitude 
and temperature. Complete data for all distributions are provided in Table S1
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laboratory may change protist physiology, such that we 
overestimate their tolerance of temperature stress [101].

Protist distributions in the wild are constrained by 
multiple factors, including temperature, nutrients, light, 
and rainfall [23, 73–75, 144]. For example, heating of the 
Arctic changes not only seawater temperature but also 
salinity, via increased precipitation and sea-ice loss [132, 
133]. Within Figs. 2 and 3, Arctic chrysophytes and chlo-
rophytes (e.g., Ochromonas sp. RCC7855, Pyramimonas 
sp. RCC7841) are viable only at low temperatures (< 4 
°C) but are tolerant of salinities as low as 3–4‰. These 
species show overlapping field distributions with more 
thermotolerant diatoms and may outcompete them in 
meltwater-impacted conditions despite being more sen-
sitive to heating. Moreover, bench studies in axenic or 
single-strain cultures provide limited insights into protist 
biotic interactions [106] with viruses [134], parasites, and 

predators [75, 79]. By “scaling up” bench experiments to 
ecosystems, field data allow us to consider the impacts of 
these biotic and abiotic changes collectively [79, 145].

What can laboratory experiments tell us that fieldwork 
cannot?
While meta-barcoding can provide insights into global 
species ranges, it provides less insight into population 
variation in thermal tolerance [22, 139]. For example, 
the six Imantonia strains in Fig.  3 have identical 18S 
rDNA meta-barcodes but show distinct temperature 
growth relationships over a range of 0 to 24 °C. Strain-
specific genetic differences (horizontal gene transfers, 
gene duplications and loss, chromosome rearrange-
ments, individual point mutations) that underpin such 
trait variations are detectable in pan-genomes of cul-
tured protists [8, 100, 146, 147]. While single-celled 

Fig. 3 Temperature optima of and collection sites of phylogenetically close but geographically distant haptophytes. This figure shows (top) 
measured growth rates and (bottom) collection sites of 15 haptophyte strains from the genera Pavlova and Imantonia/ Pseudohaptolina, shown 
as per Fig. 2. Tara Oceans distributions for all strains are provided in Table S1
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and meta-genome-assembled genomes may allow us 
to understand the population genomics of wild protists 
[148, 149], these are currently only achievable for abun-
dant species.

Reconstructing species distributions from environmen-
tal data principally allows us to explore physical param-
eters currently observed in the field. For example, the 
maximum temperature of the subtropical ocean is cur-
rently around 29–32 °C [150, 151], and it is still largely 
unknown what protists will survive in hotter condi-
tions [54, 104, 152]. Some of the Pavlova strains in Fig. 3 
(e.g., RCC2550, RCC6257) show tolerance in culture up 
to 32 °C, and we may be able to explore their biology 
beyond environmental maxima at the bench. Simulat-
ing extreme heating in the field is possible, e.g., in meso-
cosms, although to our knowledge, it has principally been 
applied to soil protists [25, 74, 144, 153]. Similarly, under-
standing protist trophic fluxes in the field, e.g., via sta-
ble isotope labeling [92, 154] is possible but depends on 
physiological priors established within cultured species.

Which protists need the most future study?
While some protists and protist ecosystems are well 
represented in culture collections and meta-genomics 
datasets, others are not [155, 156]. Knowledge gaps in 
our understanding of protist diversity limit our ability to 
conserve them; to our knowledge, no comprehensive “red 
list” of endangered protists yet exists [157, 158]. Protists 
may be understudied due to low cultivability (e.g., open 
ocean algae) [45, 159], inaccessibility of the ecosystems 
they inhabit (e.g., polar and mountain glacier ice) [160, 
161], or both (e.g., the aerosphere, deep-sea hydrother-
mal vents and the abyssal plain), limiting their study to 
meta-genomics [5, 162, 163]. The rare protist biosphere, 
encompassing new groups present at low levels in envi-
ronmental data, may conversely be best studied in-lab 
via enrichment-based techniques [20, 164]. These rare 
species may be sensitive to ecosystem disruption or play 
increasingly important roles due to changes in dominant 
overlying taxa [165, 166].

In general, protists that live as commensals of other 
organisms remain globally understudied [79, 106, 156]. 
These may form cryptic reserves of biodiversity, with 
conservative estimates of termite protist symbionts sug-
gesting no more than a tenth are known to science [14]. 
Protists that live in other animal guts are even less well 
studied and may be particularly vulnerable to co-extinc-
tion alongside their hosts [44, 167]. Some endosymbiotic 
protists are also pathogens of humans (e.g., Plasmodium 
as a mosquito endosymbiont) [168, 169], and the destruc-
tion of wild habitats may cause more frequent con-
tact between their vectors and humans [170, 171], with 

disproportionate impacts on marginalized peoples [172, 
173].

Alongside describing where protists are found in the 
wild, more information is generally needed on when 
protists are abundant in their habitats. Time-series and 
long-term observation studies, ranging from classi-
cal morphology [55, 109] to meta-genomic and remote 
sensing [174, 175], have described recent changes to the 
amplitude and timing of protist abundances over annual 
cycles. These changes relate not only to abiotic factors 
and predator and vector distributions [176] but also to 
protist life-cycles, e.g., resting stages induced by extreme 
heating [177, 178] or implicated in the dispersal of inva-
sive protist species into new habitats [179, 180]. With suf-
ficient input data, we may be able to train detailed global 
systems models that can integrate protist life-cycles and 
seasonality into future distributions [24, 55, 67, 126].

More information is also needed concerning pro-
tist acclimation and adaptation to heating over longer 
time-scales [181]. Here, protists may be valuable mod-
els for experimental evolution, for themselves and for 
macro-eukaryotes, given their small cell sizes, rapid 
generation times, and large populations at laboratory 
scales [112, 182–184]. Nonetheless, it is difficult to gen-
eralize evolutionary trajectories anticipated from bench 
experiments to wild communities, with mutation rates 
varying between species and physiological conditions 
[185]; genome content and physiology varying at popu-
lation scales [186, 187]; and adaptive responses to tem-
perature dependent on the magnitude, direction, and 
fluctuation of stresses [188]. Long-term observation data 
[189, 190], alongside theoretical [113, 191] and phylody-
namic modeling of speciation and extinction [19, 107], 
may allow us to translate experimental evolution into 
real-world biology.

Finally, we note the importance of continued research 
into applied protist biology, including the development 
of green technologies from model photosynthetic spe-
cies [39, 40], and therapeutic strategies for parasitic pro-
tists emerging as a result of global heating and ecosystem 
breakdown [48, 49]. These challenges nonetheless require 
a comprehensive understanding of protist biology and 
evolution. For example, new treatments of protist para-
sites may depend on cell organelles (e.g., the apicoplast 
of Plasmodium [192]) or organelle trafficking complexes 
[193] identified in these organisms, but missing from 
humans.

“No research on a dead planet”: protistology 
in the era of climate breakdown
Protistology research remains valuable in a rapidly 
changing world, providing insights into the diversity of 
life and opportunities to confront global challenges [40, 
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57, 155]. At the same time, for our research to continue 
and its potential to be realized, we are dependent on the 
functioning of socio-ecological systems that are exis-
tentially threatened by the climate and ecological crisis. 
This is an uncomfortable truth and one that the scientific 
research community has been slow to confront [194]. 
Many of us are, consciously or unconsciously, navigating 
a paradox of pursuing a life science career in an escalat-
ing biospheric emergency that may not be compatible 
with organized human society [195, 196]. The tensions 
inherent in performing research in the era of climate col-
lapse, at the expense of recognizing and taking action 
to address these threats, may feel particularly acute for 
younger researchers [197, 198].

Questions and considerations for sustainable protistology 
research
Having reflected on what protistology questions are in 
most pressing need of further research, we invite you 
to consider how research science activities, cultures, 
and communities can—and must—evolve in the light of 

the climate and ecological crisis (Fig.  4). These consid-
erations are not unique to protistology but will shape 
how our research is performed in the future, reflect-
ing that life science research practices are often gener-
ally resource- and carbon-intensive [199]. Some of their 
negative impacts can be—albeit only partially—mitigated 
through shifts such as reducing consumption of single-
use plastics or replacement with glassware [200, 201]; 
minimizing energy-intensive bioinformatics via software 
upgrades and new programs with lower computational 
requirements [202, 203]; and repairing, sharing, reusing, 
and recycling laboratory equipment [203, 204]. There are 
multiple open-access tools and organizations that can 
support the evaluation of research carbon footprints and 
development of management plans (e.g., GES 1point5, 
PyJoules) [205, 206].

More systemic changes are required to avoid or mini-
mize harm associated with research activities and to 
enable genuinely sustainable alternatives. Typically, 
the largest contributor to the researcher carbon foot-
print, usually outstripping that of heating and cooling 

Fig. 4 Roles and actions for the protistologists of the Anthropocene. Different actions that the protistology community might consider taking, 
within and beyond our research. These are divided into what we study, how this research is performed, and actions we can take beyond scientific 
research to advocate for planetary ecology
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laboratories, is air travel [207, 208]. Alongside rational-
izing how often, how far, and which researchers travel, 
we can facilitate and incentivize the use of less-pollut-
ing modes of transport and move to hybrid and online 
conference formats [209, 210]. Access to networking or 
learning opportunities that require international travel 
is inherently unequal with respect to intersecting demo-
graphic and personal factors including wealth, national-
ity, health, safety, and caring responsibilities, with the 
expectation that scientists from high-income econo-
mies can and should travel for research, and researchers 
from elsewhere must travel to train (i.e., “parachute sci-
ence”), both socially and environmentally unsustainable 
[211–213]. Environmentally conscious fieldwork necessi-
tates greater involvement of, and exchange of knowledge 
with, Indigenous communities that are stakeholders in 
the ecosystems concerned [214–216]. Similarly, support-
ing ambitious protistology projects (e.g., pan-genomes 
[217, 218]) led by researchers in under-resourced settings 
complements and reinforces progress towards equitable 
and anti-colonial research science.

Ultimately, designing sustainable research involves 
careful evaluation of the balance between its ecological 
“footprint” and its contribution to our ability to under-
stand, communicate, and educate for change [219]. If our 
work considers protist evolutionary diversity or environ-
mental trends, can it be useful in mitigating harm, con-
serving, or restoring ecosystems [157, 159]? If our work 
deals in innovative bio-based “solutions,” can we ensure 
their promise is not used to delay necessary actions (such 
as decarbonization) or support an unsustainable status 
quo [220]? Does our research engage democratically with 
the public and global research community [221–223] in a 
way that will be listened to and acted upon [224]? What-
ever the focus of our research, are we content that the 
pursuit of that knowledge justifies the—often substantial 
[225–227]—environmental cost?

Advocating for protists beyond research
As protistologists, we advocate for often-overlooked 
organisms which are diverse, essential, and influential 
[9, 155]. Amidst growing calls for academic practice to 
engage with the biospheric emergency [219, 228, 229], 
that role now requires co-creating conditions where the 
study of life will remain possible (Fig.  4). Through our 
teaching and mentoring roles [221, 230], we have oppor-
tunity—and arguably responsibility—to discuss climate 
and ecosystem breakdown and challenge the prioriti-
zation of traditional metrics of “success” (publications, 
awards) over impactful, collaborative work [219, 231]. 
Moreover, the skills of researchers have broad transfer-
ability and actionability beyond science [224]. Scientists 

can play valuable supportive and public roles in political 
and social movements, from providing advice to partici-
pating in non-violent civil disobedience [228, 232, 233].

We know that intersecting crises—caused by people—
are changing the global biosphere, with much greater dis-
ruption ahead. In parallel, scientists, like the life we study, 
must adapt, confronting uncomfortable realities, shift-
ing mindsets, and showing leadership in realigning our 
actions. We hope that our communities will empower 
one another to respond to the demands of the Anthropo-
cene, for people, planet, protists, and protistology.

Methods
Cultures
Haptophyte and Arctic strains shown in Figs.  2 and 3 
were maintained in an enhanced seawater (ES) base with 
k/2 amendment (https:// rosco ff- cultu re- colle ction. org/ 
medium- id/ k2-i), under 50 μE  m−2  s−1 cool white LED 
light, following [93].

Novel species included in this study (Arctic strains 
RCC7840-7856) were isolated from seawater harvested 
from the surface chlorophyll maximum (SCM) of the 
CCGS Amundsen during the October 2021 DarkEdge 
campaign in Baffin Bay [234]. Species were isolated by 
serial dilution until only individual strains could be iden-
tified by light microscopy. New strains were barcoded 
using consensus eukaryotic primers (see below), and only 
strains producing clean sequences corresponding to one 
unique species were used for future study. All strains 
included in this study have been deposited in the Roscoff 
Culture Collection [96].

Tara Oceans distributions
The 18S V4 rDNA relative abundances of each strain was 
mapped to complete meta-barcode data from the Tara 
Oceans and Tara Polar Circle expeditions using a pre-
viously defined phylogenetic technique [8]. Briefly, this 
involved extracting genomic DNA from each strain using 
a DNeasy Plant Pro Kit (Qiagen), amplifying the com-
plete 18S sequences from extracted DNA of each strain 
using consensus eukaryotic primers (e.g., EAF3: TCGAC 
AATCT GGTTG ATCCT GCCAG and BR: TTGAT 
CCTTC TGCAG GTTCA CCTAC) using a previously 
defined protocol [235], purification with a Macherey–
Nagel PCR cleanup kit, and Sanger sequencing of ampli-
fied products (Eurofins Genomics).

The amplified sequences were compiled against previ-
ously generated sets of 18S nucleotide sequences from 
cultivated members of the same algal order [8]. Next, 
complete Tara Oceans V4 ribotypes that corresponded 
to the same order were searched against the cultured spe-
cies reference dataset using BLASTn [236]. Ribotypes 

https://roscoff-culture-collection.org/medium-id/k2-i
https://roscoff-culture-collection.org/medium-id/k2-i
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that retrieved a given strain within the best five hits were 
retained and aligned against the cultured strain refer-
ence data using mafft v 7.2 under the –auto setting [237]. 
Cultured strains with > 99% identity to one another and 
their corresponding ribotypes were pooled for this analy-
sis. Finally, reference trees were built for each ribotype-
enriched alignment using RAxML version 8.0, 350 
bootstrap replicates and automated best-scoring tree 
finding [238]. Ribotypes that resolved as monophyletic 
to given strains to the exclusion of all others (typically 
with > 97% pairwise sequence identity) were assigned to 
that strain.

Species relative abundances were calculated as the 
total proportion of ribotypes at each Tara Oceans sta-
tion that reconciled to each strain, with each depth and 
size fraction treated as separate data. Barcode sequences, 
alignments, phylogenetic trees, and complete ribotype 
relative abundances as well as averages obtained across 
all depths and size fractions for each station are provided 
in Table S1.

Growth measurements
Exponential phase growth rates (expressed as relative 
number of doublings per day) were measured for each 
strain across 7 different growth temperatures (0 °C, 4 °C, 
12 °C, 19 °C, 24 °C, 28 °C, 32 °C). Growth measurements 
were performed at 0  °C and 4  °C under continuous illu-
mination and at 19 °C, 24 °C, 28 °C, and 32 °C under 12 h 
light:12 h dark cycling. Growth measurements for strains 
at 12 °C were performed under both continuous illumina-
tion (Arctic species) or light–dark cycling (haptophytes), 
with little observed difference in growth kinetics for spe-
cies (e.g., Pavlova sp. RCC1539, Imantonia sp. RCC4501) 
where both conditions were tested (Table S1).

Typically, growth curves were started with an ini-
tial density of 10,000 cells  ml−1, as diluted from optical 
density counts evaluated using a Malassez hemocytom-
eter, and counted with a ParTec flow cytometer, follow-
ing [93]. At least two replicates were performed for each 
strain: condition combination with three in most cases. 
Cell growth rates were calculated by taking the rate of 
change in the  log2 cell concentrations from densities of 
50,000 cells  ml−1 with a minimum of three successive 
time measurements used for each rate calculation. The 
linear correlation of the  log2 concentration was calcu-
lated against time, with only time intervals producing 
correlation values r > 0.9 used to calculate growth rates. 
Complete growth data including individual rate calcu-
lations for each experiment replicate are provided in 
Table S1.

Accession numbers
18S and 16S chloroplast rDNA sequences for new 
strains described in this study are provided in GenBank 
OR840005-OR840020.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12915- 024- 02077-8.

Additional file: Table S1. Calculated growth rates and mapped environ-
mental distributions of cultivated Arctic and haptophyte algae.
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