
Determinants of Influenza Transmission in South East
Asia: Insights from a Household Cohort Study in Vietnam
Simon Cauchemez1,2*, Neil M. Ferguson2, Annette Fox3,4, Le Quynh Mai5, Le Thi Thanh5, Pham

Quang Thai5, Dang Dinh Thoang6, Tran Nhu Duong5, Le Nguyen Minh Hoa3, Nguyen Tran Hien5,

Peter Horby3

1 Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Paris, France, 2 MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease

Epidemiology, Imperial College London, London, United Kingdom, 3 Oxford University Clinical Research Unit - Wellcome Trust Major Overseas Programme, Hanoi,

Vietnam, 4 Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia, 5 National Institute of Hygiene and Epidemiology, Hanoi,

Vietnam, 6 Ha Nam Centre for Preventive Medicine, Ha Nam, Vietnam

Abstract

To guide control policies, it is important that the determinants of influenza transmission are fully characterized. Such
assessment is complex because the risk of influenza infection is multifaceted and depends both on immunity acquired
naturally or via vaccination and on the individual level of exposure to influenza in the community or in the household. Here,
we analyse a large household cohort study conducted in 2007–2010 in Vietnam using innovative statistical methods to
ascertain in an integrative framework the relative contribution of variables that influence the transmission of seasonal
(H1N1, H3N2, B) and pandemic H1N1pdm09 influenza. Influenza infection was diagnosed by haemagglutination-inhibition
(HI) antibody assay of paired serum samples. We used a Bayesian data augmentation Markov chain Monte Carlo strategy
based on digraphs to reconstruct unobserved chains of transmission in households and estimate transmission parameters.
The probability of transmission from an infected individual to another household member was 8% (95% CI, 6%, 10%) on
average, and varied with pre-season titers, age and household size. Within households of size 3, the probability of
transmission from an infected member to a child with low pre-season HI antibody titers was 27% (95% CI 21%–35%). High
pre-season HI titers were protective against infection, with a reduction in the hazard of infection of 59% (95% CI, 44%–71%)
and 87% (95% CI, 70%–96%) for intermediate (1:20–1:40) and high ($1:80) HI titers, respectively. Even after correcting for
pre-season HI titers, adults had half the infection risk of children. Twenty six percent (95% CI: 21%, 30%) of infections may be
attributed to household transmission. Our results highlight the importance of integrated analysis by influenza sub-type, age
and pre-season HI titers in order to infer influenza transmission risks in and outside of the household.
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Introduction

Three to five millions severe illnesses and 250,000 to 500,000

deaths worldwide are due to the influenza virus each year [1]. To

guide control policies, it is important that the determinants of

influenza transmission are fully characterized. Such assessment is

complex because the risk of influenza infection is multifaceted. For

each individual, it depends on immunity that was acquired

naturally or via vaccination; but also on the level of exposure to

influenza the individual has in the community or in the household,

which may vary by season, household and individual. Here, from

the analysis of original data and relying on new and innovative

statistical methods, we ascertain in a unifying and integrative

framework the relative contribution of variables that influence

these different mechanisms.

This task is challenging because both protection and exposure

are imperfectly characterized; and uncertainties about one may

affect estimates for the other. For example, for haemagglutina-

tion-inhibition (HI) assays which are extensively used in the

approval process for influenza vaccines [2,3], it is generally

accepted that a HI titer of 1:40 is associated with a 50%

reduction in the risk of infection [4,5]. However, it has long been

acknowledged that HI titers are only an imperfect correlate of

protection. For example, in 2009, the proportion of elderly

people estimated to be protected against H1N1pdm09 influenza

was much higher than had been suggested by pre-pandemic HI

titers [6]. In the first study that characterized the protective effect

of HI titers, Hobson et al [4] used a challenge design to ensure all

subjects in the study had the same level of exposure to influenza;

but such approach is expensive and can only be applied to

healthy adults. In non-experimental settings, however, it is harder

to control for heterogeneity in individual exposures to influenza

due to the difficulty to track down all potential sources of

infection.
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Case-ascertained household transmission studies have been

extensively used to quantify exposure in the household setting [7–

13]. In this design, community-based influenza cases, that are

labelled as index cases, are recruited via primary care practices or

outpatient clinics. Symptoms of the index case and their household

members are then monitored for one to two weeks following

symptoms onset in the index case; virological samples may also be

collected. However, since the follow-up of each household starts

with an influenza case, this approach cannot be used to reliably

quantify exposure from the community or to estimate the relative

contributions of households and the community in the general

epidemic. Furthermore, as index cases must have sufficiently

severe symptoms to make contact with a healthcare provider and

then have sufficiently high viral loads to be detected by laboratory

tests for influenza, there may be a selection bias towards more

infectious cases, which may lead the probability of transmission in

the household to be overestimated.

An alternative, less common design offers a more representative

view of the role of households in influenza transmission. It is based

on a cohort of households that are recruited prior to an epidemic

and followed up during the epidemic [14,15]. Although the timing

and source of infection is typically unobserved, collection of serum

samples at baseline and after the epidemic makes it possible to

determine serologically which subjects were infected. Statistical

methods exist to estimate from such data the probability of

transmission from other household members and from the

community [16–18]. However, they become cumbersome and

numerically intractable as the number of categories of individuals

(e.g. child/adult or low/intermediate/high HI titers) or the size of

the social unit of interest (e.g. here households) increase [17,19]. As

a consequence, to our knowledge, it has never been possible to

evaluate the protective effect associated with HI titers in such a

framework, preventing a more integrated analysis of the determi-

nants of influenza transmission.

Here, from the analysis of the large Ha Nam household cohort

study [20] conducted from 2007 to 2010 in Vietnam and relying

on new and innovative statistical methods [19], we ascertain in a

unifying and integrative framework the protective effects associ-

ated with HI titers and age, along with the relative contributions of

households and the community in influenza transmission. Differ-

ences by subtype are also investigated. The analysis makes it

possible to ascertain potential biases in case-ascertained household

transmission studies which are extensively used for early assess-

ment at the start of influenza pandemics [8,10–12]. The analysis

also documents influenza household transmission in South East

Asia, which has received somewhat less attention than in Western

countries [9,15,21–23].

Materials and Methods

Data
Samples were collected from a household-based cohort of 940

participants in 270 households in a single community in semi-rural

northern Vietnam as previously described [20]. None of the

participants had ever received influenza immunisation. Partici-

pants aged 5 years or older were asked to provide serial blood

samples at times when national influenza surveillance data

indicated that influenza circulation was minimal. The samples

described here were collected over a period of three consecutive

influenza seasons, from December 2007 through April 2010.

Serological samples were collected between 1st–7th December

2007 (bleed 1), 9th–15th December 2008 (bleed 2), 2nd–4th June

2009 (bleed 3), and on the 3rd April 2010 (bleed 4). This provided

three sets of paired samples either side of an influenza transmission

season: 548 paired samples for season 1 (2008), 501 paired samples

for season 2 (Spring 2009), and 540 paired samples for season 3

(Autumn 2009). In season 1, the influenza A virus strains detected

in the cohort through ILI surveillance were A/H1N1/Brisbane/

59/2007-like and A/H3N2/Brisbane/10/2007-like; in season 2,

they were A/H1N1/Brisbane/59/2007-like and A/H3N2/Perth/

16/2009-like; and in season 3, it was A/H1N1/California/7/

2009-like. There was co-circulation of influenza B Yamagata

lineage and Victoria lineage in both season 1 and season 2, with a

predominance of Yamagata lineage in season 1 and Victoria

lineage in season 2.

For each season and subtype, analysis was restricted to

households with at most 1 individual for whom paired serum

samples were missing.

Laboratory methods
Influenza hemagglutination inhibition (HI) assays were per-

formed according to standard protocols [WHO 2011 manual].

The seasonal influenza A viruses used were isolated from

participants’ swabs or from swabs taken from patients presenting

in Ha Noi in the same season and propagated in embryonated

hen’s eggs or in MDCK cells (ATCC). A reference antigen

supplied by WHO (A/H1N1/California/7/2009-like) was used to

assess season 3/pandemic sera. A single influenza B virus isolated

from a participant during 2008 was used to assess serum for both

the first and second seasons. The virus had a titer of 320 with B/

Wisconsin/1/2010 (Yamagata) reference antisera and of ,10 with

B/Brisbane/60/2008 (Victoria) antisera. Each virus was first

assessed for haemagglutination of erythrocytes from chickens,

guinea pigs and turkeys then titrated with optimal erythrocytes.

Serum was treated with receptor destroying enzyme (Denka

Seiken, Japan) then heat inactivated and adsorbed against packed

erythrocytes. Eight 2-fold dilutions of serum were made starting

from 1:10 and incubated with 4 HA units/25 ml of virus.

Appropriate erythrocytes were added and plates read when

control cells had settled. Virus, serum and positive controls were

included in each assay. Pre- and post-season sera were tested in

pairs. Each serum was tested in a single dilution series. The HI

titer was read as the reciprocal of the highest serum dilution

causing complete inhibition of RBC agglutination, partial agglu-

tination was not scored as inhibition of agglutination. If there was

Author Summary

Influenza causes an estimated three to five million severe
illnesses worldwide each year. In order to guide control
policies it is important to determine the key risk factors for
transmission. This is often done by studying transmission
in households but in the past, analysis of such data has
suffered from important simplifying assumptions (for
example not being able to account for the effect of
biological markers of protection like pre-season antibody
titers). We have developed new statistical methods that
address these limitations and applied them to a large
household cohort study conducted in 2007–2010 in
Vietnam. By comparing a large range of model variants,
we have obtained unique insights into the patterns and
determinants of transmission of seasonal (H1N1, H3N2, B)
and pandemic H1N1pdm09 influenza in South East Asia.
This includes estimating the proportion of cases attributed
to household transmission, the average household trans-
mission probability, the protection afforded by pre-season
HI titers, and the effect of age on infection risk after
correcting for pre-season HI titers.
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no inhibition of HI at the highest serum concentration (1:10

dilution) the titer was designated as 5.

Case definition
Influenza virus infection was defined as a $4-fold increase in

antibody titer from pre-season to post-season titers, with post

season titers $40. For the purposes of analysis low, intermediate,

and high pre-season HI titers were defined as #1:10, 1:20–1:40,

and $1:80 respectively.

Notations
Data were collected for 3 different seasons s = 1…3: 2008 (s = 1),

Spring 2009 (s = 2) and Autumn 2009 (s = 3). We classify the

influenza virus into 4 different categories v = 1…4: seasonal

A(H1N1) (v = 1); seasonal A(H1N1) (v = 2); seasonal B (v = 3);

pandemic A(H1N1) (v = 4). A set of k = 1…K households are

under study. Household k ( = 1…K) is of size nk. Individuals are

categorized in two types: children i.e. aged $5 to #15 y.o. and

adults.

Transmission model
A subject may be infected by influenza subtype v in the

community (i.e. outside the household) or by another household

member. Here, we define a generic model for the occurrence of

these events.

During season s, the probability that subject i from household k
has contacts in the community that would lead to infection by

influenza subtype v is defined as 1{exp {li,k,v,s
C

n o
. The force of

infection from the community li,k,v,s
C is modelled as:

li,k,v,s
C ~cv,s

C :c
adult
Sus adulti,kð Þ:ctiters

Sus titersi,k,v,sð Þ

where cv,s
C measures the force of infection for subtype v during

season s, cage
Sus agei,kð Þ captures the susceptibility of adults relative

to children (i.e children are the reference group) and

ctiters titersi,k,v,sð Þ captures the effect of pre-season titers, with 3

categories low (#10), intermediate (20–40) and high ($80)

(reference category: #10).

The probability that subject i gets infected if household member

j is infected is defined as 1{exp {l
j?i,k,v,s
H

n o
with

l
j?i,k,v,s
C ~b nkð Þ:cadult

Inf adultj,k

� �
:cadult

Sus adulti,kð Þ:ctiters
Sus titersi,k,v,sð Þ

where b nkð Þ measures the transmission rate as a function of

household size nk (the rate can be inversely proportional to nk [7]

or independent of nk, depending on model variant), cadult
Inf adultj,k

� �
captures the infectivity of adults relative to children (i.e. children

are the reference group).

Inference
It is challenging to estimate parameters of the transmission

model from final size data because the chains of transmission are

not observed. Here, we consider a simplified version of the

approach developed by Demiris and O’Neill [19] to tackle the

problem. A household of size n is represented by a random

directed graph with n vertices (Figure 1). Each vertex represents a

household member. Edges are added to represent the unobserved

chain of transmission. Two types of edges are possible. If there is

an edge between subject j and subject i, it means that subject i is

infected if subject j gets infected. If there is an edge between the

community and subject i, it means that subject i gets infected.

For a given digraph, it is possible to derive the likelihood

function [19]. However, since the chains of transmission are

unobserved, different configurations for the edges of the digraph

may be consistent with the final size data (Figure 1). The digraph

is therefore considered as ‘augmented data’ [24]. The joint

posterior distribution of parameters and augmented data is

explored by Markov chain Monte Carlo sampling. The algorithm

explores the set of digraphs consistent with the data and estimates

therefore correctly capture uncertainty about the digraph (see Text

S1 for technical details).

We use a Uniform prior U([0; 10,000]) for all parameters

except those characterising relative infectivity or relative suscep-

tibility (i.e. to a reference group). For this latter class of parameters,

following [8], we choose a log-Normal prior LN(0,1). This prior

satisfies the invariance condition that for example the ratio (adult

susceptibility/child susceptibility) has the same prior as the ratio

(child susceptibility/adult susceptibility). In particular, it gives

equal probabilities to the relative susceptibility of children versus

adults being larger or smaller than 1.

Since the households under study represent only a fraction of

households in the study area [20], we assume here that households

are independent of each other. The assumption of independence,

which is standard in this type of analysis [8,14,16,25,26],

substantially reduces the computational burden compared with

that of the more general model of Demeris et al [19].

A simulation study was carried out to investigate the perfor-

mances of the statistical approach.

Model comparison
Once the model structure has been defined and methods to

estimate the parameters of the model from that data are available,

different model variants may be considered. For example, the

effect of pre-season HI titers may be the same for all subtypes, may

vary by subtype, by age group etc… Here we consider a large

number of possible model variants. Each of them is fitted to the

data and we determine the model variant that provides the best fit

to the data. This model comparison exercise is essential to better

characterize key dependencies in household transmission. We use

the Deviance Information Criterion (DIC) for model comparison

[27]. The smaller the DIC, the better the model. A DIC difference

of 5 is considered to be a substantial improvement.

For each variable of interest, we explore the following variants:

N Effect of pre-season HI titers on susceptibility: i) no effect; ii)

one threshold value (i.e. intermediate and high HI titers have a

different effect than low titers); iii) two threshold values (i.e.

low, intermediate and high HI titers each lead to a different

protective effect). We also consider model variants in which the

effect of pre-season HI titers varies with age.

N Effect of age on susceptibility: i) no effect; ii) age effect similar

for all subtypes; iii) age effect different for seasonal and

pandemic influenza; iv) age effect different for each subtype.

N Effect of age on infectivity: i) no effect; ii) age effect similar for

all subtypes.

N Effect of household size on the household transmission rate b:

i) b is independent of the household size; ii) b is inversely

proportional to the household size. We also consider models in

which b varies with the subtype.

N Risk of community infection of children with low pre-season

HI titers: i) constant; ii) varies by season; iii) varies by subtype;

iv) varies by season and subtype.

The Determinants of Influenza Transmission
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In general, no satisfying version of the criterion exists for data

augmentation frameworks such as the one used here [28]. This is

because the likelihood of the observed data is not available. To

solve this problem, we use importance sampling [29] to estimate

the likelihood of the observed data and be able to derive the DIC.

The likelihood is derived as follows. For each household, we

simulate N = 2,000 epidemics in the household. The contribution

of a household to the likelihood is then equal to the proportion of

simulations where simulated infection statuses in the household

perfectly match the observed ones (to avoid computational issues

of likelihoods equal to zero, we assume that the sensitivity Se and

specificity Sp of the diagnostic is not perfect, i.e. Se = 0.999 and

Sp = 0.999).

Estimating the proportion of cases attributed to
household transmission and the average household
transmission probability

In order to estimate the proportion of influenza cases that may

be attributed to household transmission, we simulate epidemics in

households where i) all parameters are drawn from the posterior

distribution and ii) all parameters are drawn from the posterior

distribution except the within household transmission rate which is

assumed to be null. The case counts difference between i) and ii)

gives the proportion of cases that may be attributed to household

transmission.

For each pair of case-household contact in the dataset, we

calculate the associated probability of transmission under the

assumption that the case was the first or the only infected in the

pair and derive the average household transmission probability

across all pairs.

Model adequacy
We compare the observed final size distribution with the one

simulated with parameters drawn from the posterior distribution.

Ethics statement
The research was approved by the institutional review board of

the National Institute of Hygiene and Epidemiology, Vietnam; the

Oxford Tropical Research Ethics Committee, University of

Oxford, UK; and the Ethics Committee of the London School

of Hygiene and Tropical Medicine, UK. All participants provided

written informed consent.

Figure 1. Final size data and methods to estimate transmission parameters. A. Example of final size data for a household of size 4. Subjects
1 and 4 were infected; subject 3 was not; diagnostic for subject 2 was missing. B. Example of digraph consistent with the final size data. For inference,
data are augmented with a digraph (blue arrows) that informs on the transmission process. If there is an edge from the community to subject i,
subject i was infected (this is the case for subject 1). If there is an edge from subject j to subject i, it means that if subject j was infected then subject i
was infected too. C. Another example of digraph consistent with the data. We note that certain digraphs may allow more than 1 possible route of
transmission. For example, subject 4 could have been infected in the community or by subject 2. D. Example of digraph that is not consistent with
the data. This is because this digraph would imply that subject 3 was infected but subject 4 was not.
doi:10.1371/journal.ppat.1004310.g001

The Determinants of Influenza Transmission
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Results

Between 140 and 155 households (439–502 subjects including

95–121 children and 344–393 adults) were eligible for analysis,

depending on the season and subtype. The average household size

was 2.9.

Of all the model variants explored in our extensive model

comparison exercise, Figure 2 summaries the characteristics of the

model that had the best fit based on the DIC. The best fitting

model had the following properties. The community risk of

infection of children with low pre-season titers varied both with the

subtype and the season (Figure 2A). It was minimum for H3N2 in

2008 and maximum for A(H1N1)pdm09 in Autumn 2009. The

DIC substantially worsened if the community risk of infection of

children varied with the subtype but was assumed to constant from

one season to the next (DDIC = 24.7).

We found that high pre-season titers were protective against

infection, with a reduction in the hazard of infection of 59% (95%

CI, 44%–71%) for intermediate titers (20–40) and 87% (95% CI,

70%–96%) for high titers ($80) (Figure 2B). DIC substantially

worsened if the number of titer categories was reduced to 2

(DDIC = 20.8) or if pre-season titers were not accounted for

(DDIC = 44.0).

Even after correcting for pre-season titers, we found that adults

had half the risk of acquiring infection in the household compared

to children (reduction in the hazard of infection of adults relative

to children: 50%; 95% CI 32%–63%) (Figure 2C). Adding an age

effect for each subtype did not improve the fit (DDIC = 0.2).

Distinguishing pandemic versus seasonal influenza only provided a

marginal improvement to the DIC (DDIC = 24.0) (reduction in

the hazard of infection of adults relative to children for seasonal

influenza: 41%, 95% CI 15%–58%; reduction in the hazard of

infection of adults relative to children for pandemic influenza:

68%, 95% CI 42%–82%). Assuming the effect of age varied by

subtype did not improve the fit (Figure S1; DDIC = 0.2). Ignoring

the effect of the age of the subject on the risk of infection

substantially worsened the fit (DDIC = 37.7). Assuming that

infectivity changed with the age of the case did not improve the

fit (DDIC = 13.2). Assuming the effect of pre-season HI titers could

change with age, we found that a rise in HI titers had a slightly

more pronounced effect on children than on adults (Figure S2).

However, the fit of this model was not as good as that of our best

fitting model (DDIC = 6.9).

The probability of transmission from an infected individual to

another household member was 8% (95% CI, 6%, 10%) on

average, and varied with pre-season titer, age and household size.

In a households of size 3, the probability of transmission from an

infected individual to a child with low, intermediate and high pre-

season titers was estimated to be 27% (95% CI 21%–35%), 12%

(95% CI, 8%, 17%) and 4% (95% CI, 1%, 9%), respectively.

These probabilities dropped to 15% (95% CI 9%–23%), 6% (95%

CI 4%–11%) and 2% (95% CI 0–5%), respectively, if the recipient

was an adult. As has been found in studies of households in

Western developed countries [7,8], the best fitting model assumed

Figure 2. Determinants of influenza transmission in and out of
the household. A. Probability of influenza infection from the
community for children with low pre-season titres. The season is
indicated by the color (blue: 2008; pink: Spring 2009; red: Autumn
2009). B. Relative risk of infection for intermediate (1:20–1:40) and high
($1:80) pre-season HI titres relative to low (#1:10) pre-season HI titres
(in the household and in the community). C. Relative risk of infection of
adults relative to children after correcting for pre-season HI titres (in the
household and in the community).
doi:10.1371/journal.ppat.1004310.g002
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that household transmission hazard decreased with increasing

household size. Ignoring this dependency worsened the fit

substantially (DDIC = 40.7). After correcting for these variables,

estimating an effect of subtype on the probability of transmission in

the household did not improve the fit (DDIC = 13.1). We

estimated that 26% (95% CI: 21%, 30%) of cases may be

attributed to household transmission. Figure S3 shows the

prevalence of infection along with the estimated contribution of

household transmission by season and subtype (NB: Figure 2A

captures only partially variations in the prevalence of infection as

the distribution of pre-season HI titers vary for each season and

subtype and by age group).

The fit of the model to the data was adequate (Table 1).

In a simulation study we found all parameters could be

estimated from the data and no important systematic bias was

detected (Table S1). Out of 10 simulated datasets and 11

parameters, there was 94% probability that the simulation value

was in the 95% CI.

Discussion

We have characterised the determinants of transmission of

seasonal (H1N1, H3N2, B) and pandemic H1N1pdm09 influenza

from a household cohort study conducted in 2007–2010 in

Vietnam.

We estimated that the household Secondary Infection Risk

(proportion of household contacts infected by an index case, SIR)

was approximately 8% on average. This is broadly consistent with

estimates of SAR derived from case-ascertained studies, when

diagnosis of contact cases is based on RT-PCR laboratory

confirmation (median SIRPCR: 8%; range: 3%, 38%; n = 12) or

on a clinical case definition of Febrile Acute Respiratory Illness

(median SARFARI: 11%; range: 3%, 37%; n = 18) [12]. Lau et al

[12] also reported two estimates of the proportion of household

contacts who seroconverted of 20% [30] and 27% [31]. As

expected, these proportions are larger than 8% since they capture

transmission from the index case but also from the community for

the whole duration of the epidemic. The similarity between our

estimates and those derived from case-ascertained studies validates

the use of case-ascertained studies as a way to obtain represen-

tative estimates of influenza household transmission. Overall, we

estimated that 26% (95% CI: 21%, 30%) of influenza infections

may be attributed to household transmission. This is consistent

with other estimates in the literature [32].

We also estimated the risk factors for household transmission

and the risk of infection. Pre-season titer and age had a strong

impact on the risk of infection. An HI titer of 40 is generally

accepted to give a 50% reduction in the risk of infection [5]. Here

we found a slightly more subtle effect of pre-season titer, with the

risk of infection decreasing incrementally with HI titer and the

reduction being as high as 90% for HI titer $80. Even after

correcting for pre-season titers, we found that adults had half the

risk of acquiring infection compared to children. This supports the

idea that HI titer is an imperfect correlate of protection. There is

growing evidence that antibodies directed at the stalk domain of

the HA protein may be important mediators of protection that

accumulates with repeated exposure to influenza viruses but which

is not detectable by the HI assay [33]. Consistent with other

studies [7,8,34], we found that the household person-to-person

transmission probability decreased with increasing household size.

Ours is the only contemporary study to prospectively assess the

transmission of influenza in a random selection of all households

(including those without children) in an unimmunised community

over multiple seasons. The use of a final-size model based on

serology minimizes the under-ascertainment inherent in studies

that detect only symptomatic cases. As such we believe these

results are the best available assessment of the risk of acquisition of

influenza in the household and the community.

The earlier analysis of this dataset [20] simply reported

empirical infection rates by age based on a four-fold or greater

increase in HI titers between paired sera, and did not estimate any

other transmission parameters nor influences on the probability of

transmission. The analysis presented in this manuscript therefore

adds substantial new insights including estimates of the probability

of transmission from an infected individual to another household

member, the proportion of infections acquired in the household

and the community, and how the probability of infection is

affected by pre-season HI titers, age and household size

This study has some limitations. First, the HI assay has

imperfect sensitivity and specificity [35,36]. As a consequence,

the infection status of some individuals may be incorrectly

classified. The use of microneutralization assay to detect pH1N1

seroconversions would have increased the sensitivity. The average

number of households per season was relatively small (about 150).

However, the study was run over 3 seasons and looked at multiple

different subtypes (H1N1, H3N2, B, H1N1pdm09), for a total of 6

pairs season/subtype. This means that the amount of information

contained in these data is roughly that of a study of 66150 = 900

households run over 1 season and for 1 subtype. This explains why

the credible intervals for most parameters are relatively narrow.

We were unable to assess transmission risks in children aged less

than 5 years, since serum samples were not obtained from these

subjects.

Here, we disentangled the relative contributions of households

and the community in the risk of influenza infection. This was

made under the assumption that households were independent of

each other and that all individuals of an age group were exposed to

the same risk of infection in the community. Although standard in

such analyses [8,14,16,25,26], in practice, the risk of infection in

the community may have a spatial component, potentially leading

to higher transmission rates between households that are close to

each other. However, we were unable to test this assumption here

since our dataset was not spatially structured. Estimating the effect

of space on influenza transmission will be an important step

forward. This can for example be done from the analysis of

household serological cohort studies in which the spatial location

of each household is be documented [37]. Ideally, one would like

to integrate such analysis in the framework of Demiris and O’Neill

[19], so that the contributions of households and space can be

characterized in a single and coherent framework. This is an

important subject for future research.

This study considerably extends previously limited evidence on

influenza transmission in non-Western countries. It also validates

the use of case-ascertained studies as a way to obtain represen-

tative estimates of influenza household transmission. This has

important implications for early assessment of household trans-

mission in future pandemics, as case-ascertained studies are the

only household design that can be used close to real-time.

Supporting Information

Figure S1 Relative risk of infection of adults relative to
children for the different subtypes, after correcting for
pre-season HI titres.

(PDF)

Figure S2 Comparison of the risk of infection of
children and adults with low (L), intermediate (I) and
high (H) HI titres in two different models. The best fitting
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model (blue) assumes that the effect of pre-season HI titres is

similar across age groups while the alternative model (pink)

assumes it may vary by age group. Children with low pre-season

HI titres correspond to the reference group.

(PDF)

Figure S3 Proportion of subjects infected and contribu-
tion of households. A–B: Proportion of adults (A) and of

children (B) infected for each season and subtype. The black bar

indicates the proportion of subjects estimated to be infected in the

household. C–D: Proportion of adult (C) and child (D) cases

estimated to be infected in the household. These proportions are

given for H1N1, H3N2 and B in 2008 and Spring 2009 (2009 Spr)

and for H1N1pdm09 in Autumn 2009.

(PDF)

Table S1 Simulation study to investigate the perfor-
mance of the statistical approach. Ten datasets with a

structure similar to that of the original data were simulated with

parameter values equal to their posterior mean in the best fitting

model. Each dataset was analyzed with our approach. For each

parameter, the table gives the simulation value, the mean of point

estimates, the average length of 95% CI, the number of times the

simulation value is in the 95% CI.

(PDF)

Text S1 Description of the MCMC algorithm.

(PDF)
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