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Abstract

with the complex to examine their interactions.

internalisation.

Background: We aim to propose interactions between the parathyroid hormone-2 receptor (PTH2R) and its ligand
the tuberoinfundibular peptide of 39 residues (TIP39) by constructing a homology model of their complex. The
two related peptides parathyroid hormone (PTH) and parathyroid hormone related protein (PTHrP) are compared

Findings: In the model, the hydrophobic N-terminus of TIP39 is buried in a hydrophobic part of the central cavity
between helices 3 and 7. Comparison of the peptide sequences indicates that the main discriminator between the
agonistic peptides TIP39 and PTH and the inactive PTHrP is a tryptophan-phenylalanine replacement. The model
indicates that the smaller phenylalanine in PTHrP does not completely occupy the binding site of the larger
tryptophan residue in the other peptides. As only TIP39 causes internalisation of the receptor and the primary
difference being an aspartic acid in position 7 of TIP39 that interacts with histidine 396 in the receptor, versus
isoleucine/histidine residues in the related hormones, this might be a trigger interaction for the events that cause

Conclusions: A model is constructed for the complex and a trigger interaction for full agonistic activation
between aspartic acid 7 of TIP39 and histidine 396 in the receptor is proposed.

Findings

Background

The recent extension of the structural knowledge of
both class A and class B G-protein coupled receptors
(GPCRs) with the X-ray determination of the human
adrenergic B 2 receptor [1], the turkey adrenergic B 1
receptor [2], the human A2A Adenosine receptor [3]
and squid rhodopsin [4,5] coupled with the structures of
extra-cellular domains (ECDs) of several class B hor-
mone receptors [6-9], including the parathyroid hor-
mone-1 receptor (PTH1R), makes it possible to begin a
computational exploration of possible interactions of the
parathyroid hormone-2 receptor (PTH2R) [10] and its
natural ligand, the tuberoinfundibular peptide of 39 resi-
dues (TIP39) [11,12].
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The aim of the present study is to propose possible
interactions between the hormone and its receptor.
There are three related peptide hormones that interact
with the two PTH receptors. Parathyroid hormone
(PTH) binds and stimulates both receptors resulting in
intracellular cAMP release and Ca** signalling. TIP39
binds to both receptors, but to PTH2R a hundredfold
stronger than to PTHIR and only signal through
PTH2R. The parathyroid hormone related protein
(PTHrP) binds to and signals only through PTHI1R.
However, only TIP39 induces B-arrestin and protein
kinase CB mobilisation and receptor internalisation of
PTH2R [13]. A further objective of the study is to inves-
tigate how the related peptides can selectively bind to
and activate the receptors. The truncated TIP39(7 - 39)
is a high affinity antagonist for the PTH1R, while losing
much of its affinity for the PTH2R [14], which indicates
that the N-terminal portion is involved in both the
selectivity between the two receptors and affinity to
PTH2R.
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The function of the TIP39 - PTH2R system appears to
be diverse with primary sites of expression including the
nervous system [15], thyroid gland, pancreas, heart, vas-
cular muscle, the reproductive system and lung [16]. An
NO-dependent vasodilatory effect of TIP39 was demon-
strated if the PTHIR is desensitized by either exogen-
ously administered or endogenously released PTHrP
[17,18]. Knockout mice lacking the gene encoding
TIP39 are sterile, examination of the testes shows that
they contain no spermatids. By antibody labelling of the
chromosome spreads it was shown that spermatogonia
do not complete the prophase of meiosis I [19]. They
also display a more stress anxiety prone phenotype in
behaviour tests than wild type mice [20]. Another study
has shown that the TIP39 - PTH2R system is activated
in response to acoustic stress [21]. A recent report also
points out a connection to neuropathic pain, where
PTH2R was shown to be selectively localized on myeli-
nated A-fibers. Pharmacological studies showed that
TIP39 induced nociceptive responses that were
mediated by activation of Gy and cAMP-dependent pro-
tein kinase. It was found that nociceptive responses
induced by TIP39 were significantly greater following
partial sciatic nerve injury induced neuropathic pain,
without changes in PTH2R expression [22].

There is a possibility of using TIP39 as a tool to inves-
tigate the function of PTH2R in more detail by defining
its interaction sites with PTH2R and it may also be pos-
sible to use it as a source of antagonistic peptides as the
truncated TIP39(7 - 39) is for the PTHI1R. That possibi-
lity could be of interest to modulate the pain sensation
in neuropathic pain.

A class B GPCR of subfamily B1, a hormone receptor,
has an extracellular N-terminal domain (ECD), a trans-
membrane (TM) domain and an intracellular C-terminal
domain [23]. The fold of the TM region was revealed
when the first structure of a GPCR was crystallographi-
cally determined (bovine rhodopsin [24]) and it consists
of seven a-helices that form an anti-parallel seven-mem-
ber helical bundle. As the ECD of PTHIR has been crys-
tallized in complex with PTH it is possible to construct a
model which captures both the binding of the C-terminal
part of the hormone to the ECD and its interactions with
the transmembrane region of the receptor. As the current
structure of the TM region of GPCRs is from class A and
only distantly related to class B, it is reassuring that bio-
physical studies indicate that the eighth helix of the class
A GPCRs, which is positioned parallel to the membrane,
also is present among the class B GPCRs. However, no
apparent sequence homology is detected in that part of
the receptor [25]. In contrast to the available class A
structures, PTH2R has a large extracellular loop 1
(ECL1) between TM helix 2 and 3, which consist of 31
amino acid residues. In the case of ECL1, NMR
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experiments of the corresponding part of PTHIR have
indicated that it should form a central helix comprising
residues 256 - 264, which is shown to contact the hor-
mone with a centrally placed Leu261 binding to Lys27 of
the hormone [26]. As no structure has been publically
made available, the loop has been left to the prediction
scheme with the added notion that the prediction accu-
racy might be low for this region.

As the intracellular part of the receptor lacks a homo-
logue with known structure we do not attempt to incor-
porate that domain in the model.

NMR experiments of TIP39 indicate that it has two
helical regions comprising the residues 5 - 19 and 27 -
34, and that the two helical regions are tilted in relation
to each other [27]. Similar experiments of PTH frag-
ments 1 - 34 and 1 - 39 also indicate two helical regions
connected by a loop region consisting of His14 to Ser17
[28]. However, X-ray studies of PTH(1 - 34) show a sin-
gle slightly bent helical region comprising residues 3 -
33, with the bend located between residues 12 and 21
[29]. This is in accordance with previous studies of the
bioactive conformation of PTH, where lactam bridges
were used to trap the hormone in rigid helical confor-
mations and an increase of the activity was seen at con-
formations that were in compliance with the extended
helical model of the hormone [30]. The extended con-
formation of PTH was also used to construct a model of
PTH’s interaction with the PTHIR TM region, where
prominent interactions involve Serl and Lys13 of PTH
and Met425 and Argl86 of the receptor [29]. As the
ECD structures for class B GPCRs were not available at
the time of the modelling, the authors could not pro-
pose a model of that domain. NMR structures of PTHrP
(1 - 36) also show two helical regions, His5 - Leu8 and
GlInl16 - Leu27, connected by a loop region. Analysis of
the 30 conformations deposited in the protein databank
entry 1BZG [31] shows that 12 of the conformations
have an irregular helical conformation in the loop region
which leads us to the conclusion that the extended con-
formation shown to be bioactive for PTH might also be
active for TIP39 and PTHrP.

Methods

The sequences of TIP39, PTH2R and PTHrP were
retrieved from the Uniprot protein sequence database
with identifiers TIP39_ HUMAN [Swiss-Prot:Q96A98],
PTH2R_HUMAN [Swiss-Prot:P49190] and PTHR_HU-
MAN [Swiss-Prot:P12272] [32]. The first 24 amino acid
residues of PTH2R that form the signal peptide were
removed to yield the mature chain of PTH2R. The num-
bering of the PTH2R model is based on the full
sequence of the Uniprot entry PTH2R_ HUMAN [Swiss-
Prot:P12272], starting with 1 at the first residue of the
signal peptide.
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For the extracellular domain of PTH2R and TIP39, the
complex between PTHIR and PTH was used as tem-
plate [PDB:3C4M] [7]. The alignment of the ECD
domains was generated using MUSCLE [33].

The evaluation of the most appropriate template for
the TM region is performed by the method presented in
Worth et al. 2009 [34], which is based on the existence
of certain key structural features in each TM helix and
sequence similarity where multiple receptors has the
same structural feature. They also performed a struc-
tural alignment of the available GPCR X-ray structures
which we extracted from their paper for use in the eva-
luation process. The subfamily Bl of the human class B
GPCRs was aligned based on the alignment presented in
Harmar 2001 [23]. As profile - profile alignments are
shown to be more sensitive for transmembrane proteins
with decent alignment accuracy for proteins with
sequence identities of between 10 and 20% [35], a pro-
file - profile alignment of the two alignments was con-
structed using MUSCLE [33]. By following the
published scheme the following templates are suitable
for the different transmembrane helices, TM1: 2VT4
[PDB: 2VT4], TM2: 2RH1 [PDB: 2RH1], TM3: 2VT4
[PDB: 2VT4] or 2RH1 [PDB: 2RH1], TM4: 2VT4 [PDB:
2VT4], TM5: 1U19 [PDB: 1U19], TMé6: 2VT4 [PDB:
2VT4], TM7: 1U19 [PDB: 1U19]. As 2VT4 [PDB: 2VT4]
was the highest scoring template for four of the seven
helices it was selected as the most suitable template to
base a model upon.

The resulting alignment to the most similar template
was subsequently manually adjusted in the loop regions
to conserve disulfide bridges of the overall GPCR fold.
A crude model was built to inspect how the structure
was affected by insertions and deletions in the align-
ment. In cases were an insertion caused the amino acid
chain to create a bulge before continuing in the track of
the template, was the insertion extended in order to
sample a larger portion of the loop to find a low energy
conformation. For deletions, the major concern is that
the backbone will assume a strained conformation, thus
it may require that a few more residues are left una-
ligned at the edges of the deleted region. This procedure
is required due to the nature of the modelling procedure
where the software aims to preserve structural elements
derived from the template. Based on these operations
the resulting alignment deviates from the evolutionary
alignment for regions that have evolved to contain dif-
ferent structural characteristics than in the template.
This is evident by the artificially created gaps at posi-
tions 32-37, 144-145, 179-180, 244-245, 276-277, 283-
285, 322-323, 364-365, 390-392 to allow the modelling
software to perform an efficient sampling of loop con-
formations to find a low energy conformation for those
regions.
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The software used for the homology modelling was
ICM (Molsoft LLC, San Diego, CA, USA) [36]. The
modelling was performed using the Bioinfo module. The
procedure includes side-chain optimisation and loop
sampling performed according to the ICM scripts.

The structures of TIP39 and PTHrP(1 - 36) were
modelled on the X-ray structure of PTH(1 - 34) in
1ET1 [PDB:1ET1] [29], which subsequently were super-
imposed on the C-terminal part of PTH in the complex
of 3C4M [PDB:3C4M] [7]. Even though the sequence
identity is limited to 15%, common themes are evident
in the three related hormones TIP39, PTH and PTHrP.
The alignment was generated using MUSCLE [33].

The model of the PTH2R - TIP39 complex was con-
structed by placing the ECD model in such a manner
that TIP39 could reach into the transmembrane region
and interact with the top of TM3 and TM7, a region
which has been experimentally verified to discriminate
binding of PTHrP to PTH2R [37,38]. The sequence of
the ECD and the TM region of the PTH2R chain was
threaded through the placed parts and a combined
model was constructed. The construction of the model
in complex with TIP39 required an additional step of
refinement of ECL1 due to sterical clashes with the hor-
mone. Using the loop sampling feature of ICM, the
third highest ranking conformation was selected as it
was the most frequently visited conformation during the
sampling. The region between the ECD and the TM
region was also refined using loop sampling. The most
frequently visited conformation which also was the low-
est energy conformation was selected. Unfavourable
interactions in the complex were relieved by iterative
minimizations using restraints placed on the backbone
atoms of the TM region of the receptor.

The structural model of the TIP39 - PTH2R complex
is available in the Protein Model DataBase [39,40] under
the accession number PM0076250.

Complexes with the hormones PTH and PTHrP
and PTH2R were built by superimposing them upon
the TIP39 - PTH2R complex, followed by energy
minimisation.

Results
The scheme used to select template for the TM region
resulted in that 2VT4 [PDB:2VT4] was found to be the
most appropriate template, with chain b showing elec-
tron density for the largest portion of the residues and
2VT4 was therefore used. The overall sequence identity
to 2VT4 was 11%, the highest of available GPCRs with
known structure. The TM regions showed identities
ranging from 7 to 19%.

Figure 1A shows the alignment of PTH2R and the
templates used in the modelling. The ECD shows 50%
residue identity while the TM region shows only 11%.
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hydrophobic residues in the C-terminal portion of the alignment.
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Figure 1 Alignments. Black shaded residues are identical and grey shaded residues are similar according to PAM250 similarity matrix.
A: Alignment between PTH2R and the templates used for homology modelling; thick border box - extracellular domain; thin border box -
transmembrane region; no box - intracellular domain. B: Alignment of tuberoinfundibular peptide of 39 residues (TIP39), parathyroid hormone
(PTH) and parathyroid hormone related protein (PTHrP). The amphipatic nature of the peptides is visible through the pattern of conserved

20 30
[ I I [
RHWHENS YMHKLLVLDAP 39

Seven residues form the linker region between the ECD
and the TM region. It is noticeable that ECL1 (residues
179 - 205 in the mature chain of PTH2R) is longer than
in the template and thereby lacks a structural template.
ECL2 (residues 276 - 285) which contains the conserved
disulfide in the GPCR super-family is shorter than in
B1R, which contain a helical region.

The alignment of the hormones is shown in Figure 1B,
and even though the sequence identity is only 15%, sev-
eral common themes are evident in the three related
hormones TIP39, PTH and PTHrP. The amphipatic nat-
ure of the peptides can be traced through the conserved
pattern of hydrophobic residues in the C-terminal por-
tion of the alignment. Also worth noticing is the con-
served basic residues at positions 15 and 22 (using
TIP39 numbering).

The structure follows the general fold of the GPCR
family (see Figure 2) with the ECD positioned (coloured
khaki) above TM helix 1, directing the N-terminus of
the hormone into the central cavity of the TM helical
bundle (coloured white), making contact with the

extracellular ends of TM helices 3 and 7. The regions
without template, the seven residues between the ECD
and the TM region and the large ECL1 are coloured
blue. The loop sampling of the ECL1 indicated an unor-
dered structure with a central helical region flanked by
two loops connecting TM helix 2 and 3. A disulfide
bond is formed between Cys236 in the top of TM3 and
Cys306 in ECL2. As ECL2 is shorter than in the tem-
plate no helix can be formed and the loop has an
extended conformation.

The interactions with TIP39 and the receptor are
partly defined by polar interactions of basic, acidic and
polar residues (shown in blue, red and pink, respectively,
in Figure 3), and partly defined by hydrophobic interac-
tions (marked with yellow sticks in Figure 3).

Primary differences between the hormones TIP39 and
PTH that bind and at least partially activate PTH2R and
PTHrP which lacks binding affinity, include Phe23 in
PTHrP which corresponds to a Trp in the agonistic pep-
tides, interacting with a mainly hydrophobic environment
consisting of residues Ile10, GIn13, Ile14, Vall7 and Ile66
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Figure 2 Structure of predicted complex. The PTH2R model in ribbon representation, regions without template in blue, the extracellular
domain in khaki and the TM region in white and the tuberoinfundibular peptide of 39 residues in magenta. TM helix 1 is located to the right
and 4 to the far left.
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Figure 3 Close-up of the binding region between PTH2R and the tuberoinfundibular peptide of 39 residues. The extracellular domain
(ECD) in khaki, regions without template in blue, the TM region in white and the tuberoinfundibular peptide of 39 residues (TIP39) in magenta.
Residues in the binding interface of TIP39 and the receptor (within 3A distance of each other) are shown in sticks. Acidic residues are coloured
red, polar residues are coloured pink, basic residues are coloured blue and hydrophobic residues are coloured yellow. Residues in TIP39 are
labelled in red and residues in the receptor are labelled in gray. A. Interactions of the N-terminus of TIP39 with the TM region. B. Interactions of

the C-terminus of TIP39 with the ECD.

in the ECD (see Figure 4B), and His5 corresponding to
Asp in TIP39 and Leu in PTH and which is placed in the
vicinity of His396 of TM helix 7 (see Figure 4A).

Discussion

We have calculated a model of PTH2R based upon tem-
plate structures for the ECD and the TM region. The
most reliable region of the model is the ECD, as it is
modelled on the related PTHIR. A sequence identity of
50% can reliably give a model of good resolution. The
major difference in the alignment of the two parathyroid
receptors ECDs originates from that the shorter loop of
PTH2R of residue 32 - 37 is unaligned. This allows the
modelling software to find a low energy conformation
that connects the conserved structure elements prior to,
and after the loop. The low sequence identity within the
TM region is of course a challenge for the construction
of a reliable model. Previous studies of divergent protein
families with a common fold show that models can be
created for proteins with sequence identity as low as
20% [41]. Within the GPCR super-family, bovine

rhodopsin has 18% sequence identity to the human
adrenergic B 2 receptor, while still sharing the same fold
with an all-atom RMSD of 3 A for the TM region [34].
In Vohra et al. 2007 [42], a plant GPCR named GCR1
was used to construct an alignment of the TM region of
GPCR class A and B, as it had sequence similarity to
both classes. Their published alignment is in accordance
with our alignment of the TM regions [42], indicating
that the alignment of the TM helices may indeed be
correct.

An additional issue with the model is the large ECLI.
The loop sampling of ICM can not reliably predict such
large loops, although structural characterisation of ECL1
of the PTHIR has shown the existence of a central heli-
cal region of the loop that interact with PTH, hinting at
that some of the loops characteristics are found by the
modelling process [26].

The conformation of TIP39 is likely to be predicted
with a fair amount of precision. The template is the
parathyroid hormone, where both X-ray [29] and con-
strained helical analogues, which are forced to adopt a
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Figure 4 Interactions between PTH2R and the investigated hormones. Tuberoinfundibular peptide of 39 residues in magenta, parathyroid
hormone in pink and parathyroid related protein in yellow. A. The central interaction of Asp7, lle5, His5 with His396 of TM helix 7 of the
receptor. B. Trp25, 23 and Phe23 is shown with interacting residues lle34, GIn37, lle38, Val41 and 11e90 in the ECD of the receptor.

continuous helical conformation, indicate that a slightly
twisted single helix is the bioactive conformation of
PTH [30]. A previous study of the TIP39 structure
using a combined approach based on NMR and molecu-
lar dynamics indicates the presence of two helical
regions in TIP39, residues 5 - 19 and 27 - 34 with a
flexible linker joining them [27]. Similar findings are evi-
dent in NMR structures of PTH [28]. However, examin-
ing the ensemble of structures generated in the
experiments one can find examples of conformations
that display a single elongated helical region. In Jin
et al. 2000, the authors speculate that the discrepancy
between the solution structure and their X-ray structure
involves the fact that PTH is a hydrophobic peptide
which might need a more hydrophobic environment to
adopt its bioactive conformation [29]. A similar situation
could be envisioned for TIP39. Another indication that a
single helical conformation is plausible is that a
PSIPRED secondary structure prediction for TIP39 indi-
cates that it is a single helical structure ranging from
residue 4 - 35 (Figure 5) [43].

The model of the complex places the N-terminus of
the hormone in the central cavity of the TM helical
bundle, allowing its residues to be positioned in the TM
region and interact directly with the receptor. The
importance of the N-terminal part has been highlighted
by the fact that deletion of the six first residues makes
the remainder a potent antagonist of the PTHI1R, while
losing much of the strength of the binding to the
PTH2R [14,44]. In Figure 3A, one can see that the first
residues of TIP39 bind in a hydrophobic site in the cen-
tral cavity. The only polar residue in the N-terminus,
Serl in TIP39 are in position to form a hydrogen bond
with Ser403 in TM?7. Positions in PTH2R which have
been shown to be directly involved in the discrimination
between the PTH and PTHrP for PTH2R; Ile244 (inter-
acts with Leu2 and Ala3 in TIP39 in the model of the
complex) in TM3 and Cys397 (matched to Glul2 in
TIP39) and Phe400 (in proximity of Ala5 and Ala8 in
TIP39) in TM7 are in close contact with the placed
ligand [38]. The major mismatch of the TIP39 residues
in the central cavity are Asp6 which is positioned into a
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Figure 5 Secondary structure prediction for TIP39. Prediction of the secondary structure of tuberoinfundibular peptide of 39 residues by

cavity between TM helix 3 and 4, its closest match is
Asp198 in an otherwise hydrophobic environment.
His396 in TM7 are a more suitable interaction partner
for both Asp6 and Asp7, which could be accomplished
by a slight rotation of the hormone. A further interac-
tion is the salt bridge formed by Glul2 of TIP39 and
Argl43 and Argl99 of the receptor.

The interaction of the hormone with the ECD (see
Figure 3B) is characterised by hydrophobic forces of
Trp25, Leu26, Tyr29, Met30 and Leu 33 that interact
with a continuous surface made up by Val41, Leu70,
11e90 and Phe93 in the ECD. These interactions are sup-
ported by those of Arg22 and Arg23 in TIP39 with
Asp92 and Aspl32 in the receptor.

The modelling of the complexes of related peptides
hormones, TIP39, PTH and PTHrP with PTH2R show
that the mutationally verified importance of the Trp at
position 25 in TIP39 and at position 23 in PTH in bind-
ing to the receptor, while the smaller Phe in PTHrP can
not fill the binding site (see Figure 1B and 4B). Further
it can be noted that His5 of PTHrP is placed in contact
with His396 of the receptor, mutation of that position
to Ile, the corresponding residue of PTH, restores activ-
ity in combination of mutation of Phe23 to Trp [38].
Lingering on the interaction with His396, TIP39 has a
Asp at the corresponding site and as it causes the recep-
tor to internalize and activates further signalling path-
ways than PTH [13], it is tempting to speculate that
TIP39s possibility to evoke those signalling responses
lies in that acidic residue, unique for it among the
related hormones (see Figure 1B and 4A). The hypoth-
esis could be tested by the mutation of the Ile5 of PTH
to Asp in order to explore if that mutant can fully acti-
vate PTH2R. Of the 43 reported orthologues in the
ENSEMBL database to PTH2R, all except the one from

the nine-banded armadillo (Dasypus novemcinctus) have
a conserved His at that position, while the armadillo has
an Arg which still could interact with an acidic residue.
Unfortunately, there is no reported TIP39 sequence for
Dasypus novemcinctus, but all 23 reported TIP39 ortho-
logues have two aspartic acids at positions 6 and 7 [45].

Conclusions

In this work, we present a hypothesis of how TIP39
could bind to PTH2R and how the receptor may discri-
minate among the related peptides TIP39, PTH and
PTHrP. Furthermore, we propose that the peptide acti-
vates the receptor in a single helical conformation as
seems to be the case for PTH. We also propose a
mutant of PTH, Ile5Asp, which we speculate could act
as a full agonist and cause internalisation of the recep-
tor. We hope that this study may provide insight into
an interesting system that deserves more attention as its
full implications are just beginning to be unravelled.
The connection to neuropathic pain suggests a new
route to modulate the pain sensation via the TIP39 -
PTH2R system, which today is an area of great unmet
medical need.
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