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Human-centred AI/Robotics are quickly becoming important. Their core

claim is that AI systems or robots must be designed and work for the benefits

of humans with no harm or uneasiness. It essentially requires the realization

of autonomy, sociality and their fusion at all levels of system organization,

even beyond programming or pre-training. The biologically inspired core

principle of such a system is described as the emergence and development

of embodied behaviour and cognition. The importance of embodiment, emer-

gence and continuous autonomous development is explained in the context of

developmental robotics and dynamical systems view of human development.

We present a hypothetical early developmental scenario that fills in the very

beginning part of the comprehensive scenarios proposed in developmental

robotics. Then our model and experiments on emergent embodied behaviour

are presented. They consist of chaotic maps embedded in sensory–motor

loops and coupled via embodiment. Behaviours that are consistent with

embodiment and adaptive to environmental structure emerge within a few

seconds without any external reward or learning. Next, our model and exper-

iments on human fetal development are presented. A precise musculo-skeletal

fetal body model is placed in a uterus model. Driven by spinal nonlinear

oscillator circuits coupled together via embodiment, somatosensory signals

are evoked and learned by a model of the cerebral cortex with 2.6 million

neurons and 5.3 billion synapses. The model acquired cortical representations

of self–body and multi-modal sensory integration. This work is important

because it models very early autonomous development in realistic detailed

human embodiment. Finally, discussions toward human-like cognition are

presented including other important factors such as motivation, emotion,

internal organs and genetic factors.

This article is part of the theme issue ‘From social brains to social robots:

applying neurocognitive insights to human–robot interaction’.
1. Introduction
Human-centred AI/robotics [1–3] are rapidly becoming important as the real-

world application of AI/robotics is boosted by recent technological advances.

Their core claim, also shared with related/similar concepts such as beneficial

AI [4,5], human-friendly robotics [6] and human–robot symbiosis [7,8], is

that AI systems or robots must be designed and work for the benefits of

humans with no harm or uneasiness.

In other words, the systems should be able to handle open-ended situations

and tasks, reliably achieving effects in alignment with human values, safely and

in a manner acceptable to humans. They should also be able to communicate

with humans about self-behaviour/reasoning and human intention/values/

emotion/feelings. And these capabilities must be unified and maintained

even in unexpected circumstances beyond the range of pre-programming or
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pre-training. In short, achieving autonomy, sociality and their

fusion [9] at any time under any circumstances is fundamen-

tally important for intelligent systems in the real world.

It has been pointed out over the past three decades that a

robust (i.e. effective in a wide range of situations) intelligent

system for the real world cannot be built by combining

independent information processing units [10] for recognition,

action, decision-making, language, etc. This is mainly because

the internal representations (i.e. symbols/numbers defined by

the system designer to represent certain world/cognitive states

and convey the input/output between the units) can mean

different things to different units depending on various

real-world situations, often leading to inconsistencies.

(a) Embodiment
The early proposed solution [11,12] was to build a robot system

as a collection of parallel independent units all directly inter-

faced to the world through perception and action, without

internal representations. The units are effectively integrated

by interacting with the environment (surrounding world rel-

evant to the system) through a shared body, in the sense that

the outputs drive the body and its affecting objects, complying

with physics and geometric constraints, entailing an integrated

effect as well as consistent changes on the sensor inputs that in

turn change the outputs.

Such characteristics of the body–environment system are

called embodiment [13]. It casts stable constraints on, and

shapes, an open-ended interaction between the system and

environment [14]. A simple example is when you swing

your arm, its postural trajectories can take infinite variations

but always constrained by the distances between the joints.

The constraints are orthogonal to the system–environment

interaction in the sense that they do not specify individual

states/actions but impose a set of conditions/relations that

the involved states/actions and their temporal derivatives

must always satisfy.

Therefore, the embodiment is important in dealing with

open-ended interactions including unexpected ones, because

it does not specify or depend on individual input/output like

supervised learning of convolutional neural networks

(CNNs) widely used as core components of modern deep

learning AI systems. Moreover, when the embodiment of a

robot is somewhat common with humans, it provides ‘sensi-

bility’ to its type of behaviour in the sense that it complies

with the partial common constraints with humans and there-

fore cannot be totally bizarre, in just the same way that we

regularly make sense of dog behaviour. And embodiment

even ‘shapes the way we think’ [15]. This sets the ground

for fusing autonomy and sociality.

(b) Development
The above early solution works for low-level behaviours like

those of insects but is not likely to scale up to higher cogni-

tion such as thoughts and communication that certainly

requires internal representations. The symbol grounding pro-
blem [16] states the essential difficulty of always connecting

such representations correctly to the real-world entities/

events. However, researchers have pointed out that the pro-

blem may disappear if we look at the problem from the

perspectives of natural evolution or ontogenetic development

and have shown how representations and language can

emerge from agent–environment/inter-agent interactions
[17–20]. Developmental robotics, aka. epigenetic robotics or

autonomous mental development [21–25], attempts to model

ontogenetic development of human cognition and beha-

viour through robots accommodating knowledge from

developmental sciences.

Some important developmental events, such as acquisition

of behaviour imitation capability [26–29], object knowledge/

affordances (knowing what actions can be done about it)

[30–32], joint attention (attention shared with another) [33,34],

concepts and language [19,20] have been modelled and demon-

strated by robots. However, if we end up with independent

learning models for different cognitive/behavioural functions,

we will be stuck again with another integration problem similar

to the one discussed at the beginning of this section. Therefore,

it is very important to achieve continuous autonomous devel-

opment [25,35,36] in which the same system acquires one

function after another from the very bottom up to high cogni-

tion. If this is realized with the integration of details on

individual developmental events as referenced above, it will

solve all the problems discussed so far. It will start from trivial

sensory–motor interaction via embodiment and gradually

acquire new/higher cognitive/behavioural functions up to

human-like cognition while the entire system is in action,

always assuring the integrity, consistency and grounding to

embodiment [37]: fusing autonomy and sociality.
(c) From the beginning
A dynamical system view of human development [38] empha-

sizes continuous autonomous development as a change within

a complex dynamical system, emerging from many interactions

occurring in real time. A divide and conquer, or reductionist

approach does not work for such a target. As discussed

before, functional decomposition or temporal decomposition

(into individual developmental events) should be avoided.

An alternative approach is to begin with the following un-

answered question: Where and how does it start? This is

crucial for constructing a single system capable of continuous

autonomous development, as discussed above.

As the first-order approximation, the dynamical system

aspect of continuous autonomous development can be

viewed as an ‘autonomous’ dynamical system described by

a fixed (time-invariant) differential equation with initial

conditions, which are as yet unknown. Observing and analys-

ing the temporal development of the system is one way to

infer the governing equation. This may correspond to devel-

opmental psychology. Then the obtained hypothesis should

be tested by running the hypothetical system and observing

the result. In more general terms, we should hypothesize

the minimum set of generative principles referring to

developmental sciences, embed them in embodiment, let

complex interactions take place, observe how the system

develops and compare it with the target, i.e. human develop-

ment, modify the starting set to reduce the observed

difference and repeat the cycle (figure 1). This approach, con-
structive developmental science, will provide us with a crucial

understanding of the core principles driving the continuous

autonomous development.

Since the equation will be high-dimensional and nonlinear,

its temporal development will be very complex and can sub-

stantially deviate over time on errors and perturbations. This

is also a good reason to look at the very beginning of the tem-

poral development, the fetal period, in human development.
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The uterine environment, although very complex in reality, is

still simpler and has fewer external perturbations (stimuli and

interactions) compared to the outer world.

(d) Emergence of sensory – motor interaction
The minimum starting set definitely includes embodiment.

Then what is appropriate as the initial driving principle for

generating various sensory–motor interactions? Commonly

used methods are either predefined (or parametrized) ‘primi-

tive’ actions [30] or random motor signals for ‘motor

babbling’ [31]. However, the former will generate only fixed

or very limited interactions [39] and the latter will be very inef-

ficient owing to the vast variety of motor patterns to be

explored [40]. And neither one has the function of adapting

to the dynamics of embodiment. What is desired is a single

simplest mechanism/principle that has both explorative and

adaptive functionality. A promising candidate, embodiment-
coupled chaotic maps, is presented in the next section.

(e) Somatosensory-guided early development to self –
other cognition (a hypothesis)

Human behaviour and cognition start from the fetal period.

Initially, the muscles are driven by the spinal circuit, in

the way discussed above, evoking proprioceptive and tactile

signals that are the fundamental sensory modality for

embodied behaviour and cognition [41,42]. Continuous

autonomous development from such sensory–motor experi-

ences to the cognition of self [43] and other will be the

minimum requirement for fusing autonomy and sociality.

Saegusa et al. [44] provide one such scenario with robotic

experiments. In the following, we present a more detailed

scenario with an emphasis on realistic human fetal/infant

embodiment.

1. Initial prenatal environment: Simple and continuous sen-

sory–motor correlation is provided by the amniotic

fluid’s resistance to moving body parts. Simple synaptic
plasticity, i.e. Hebbian learning or STDP (spike-timing-

dependent plasticity) can directly capture the correlational

structure. Basic body map and motor control are acquired.

Our model and experiments on this phase will be

presented in §3.

2. Middle to term prenatal environment: As the fetal body

grows, less free space is available in the uterus. The

body movements are constrained by the uterine wall.

The limbs frequently touch the wall, body and umbilical

cord. When a limb swings to hit something, weak and con-

tinuous somatosensory signals owing to the fluid

resistance are followed by a short blunt peak on hitting

flesh. Learning this particular temporal structure can be

done using the circuit learned in phase 1 above, and

may serve as a basis for handling causality and prediction.

The self-touch provides a special type of sensory pat-

terns called ‘double-touch’: synchronized tactile signals

from two different body parts. This can be learned in a

neural layer receiving inputs from the previously estab-

lished body map. Associated with motor signals, self-

touch behaviour can be enhanced, leading to touch

exploration of the fetus’ own body. Integration of these

gives rise to a body schema [45], a sensory–motor rep-

resentation of self. And non-self objects (i.e. the uterine

wall and umbilical cord) are assigned separate sensory–

motor representations that become the basis for various

object representations.

3. Postnatal environment: Drastically different sensory–

motor patterns are provided. When a limb moves to hit

something, no tactile signals are received while the limb

is moving in the air, followed by an instantaneous peak

on hitting an object, quite sharp for rigid ones. Treating

this as a unified temporal pattern is rather difficult because

temporally distant events have to be correlated. However,

the proprioception (and vision) has a partially similar tem-

poral structure to before (i.e. continuous during the

movement). And it may facilitate the tactile correlation. Inte-

gration of tactile, proprioception, motor and also visual

signals at another layer may lead to learning a unified

representation of the event and reaching behaviour [46].

More importantly, touching by other humans constitutes

completely novel experiences. This provides tactile stimuli

that are non-contingent with self-motor/proprioception sig-

nals. If the previous step 2 of sensory–motor learning is

complete with predictive functionality, forming the basis

of ‘sense of agency’ [47], these novel stimuli present signifi-

cant prediction errors. This evokes learning [48,49] in the

neural layer sending out the predictive signals from effer-

ence copy (of motor signals), which requires formation of

a new circuit that feeds ‘phantom’ motor signals to the

predictive circuit to cancel the errors. This may trigger the

self–other distinction with regard to the switching of

the input between efference copy and phantom motor

signals, and a more complete sense of agency.

The new circuit has to emulate the motor signals of the

target person. It may be created first by ‘free-riding’ a part

of the self-motor control/monitoring system because many

of the necessary functions are there. This may be the

mirror neuron system [50] that treats self and others’

action as identical, exhibiting primitive forms of motor imi-

tation. Because it is crucial for achieving the goals of actions

to discriminate the signals and models of the self and other,

sense of agency is integrated with the models and goal
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Figure 2. Robot behaviour generation by chaotic maps in sensory – motor loops coupled via embodiment. (a) Sensory signals si are fed to chaotic elements whose
output ui are fed to motors. In addition, there is weak self feedback and input mixing (broken arrows) (reprinted from [52], Fig. 1, with permission). (b) The ‘insect’
type robot with a symmetric structure. It has 12 legs, that can move in radial directions. (c) Each leg is suspended by the springs with elastic constant K. The angle
u is fed as a sensor signal to the corresponding chaos map and its output is linearly mapped to torque t driving the leg (reprinted from [52], Fig. 13, with
permission). (d ) An emergent locomotive trajectory, starting from (0, 0), of the centre point of the locomoting insect-type robot on a horizontal plane with
X- and Y-axes measured in metres (reprinted from [52], Fig. 14, with permission). (e,f ) Adaptive locomotion. ( f ) The insect-type robot is placed on a flat
square area surrounded by walls. (e) The robot locomoted toward a wall and after hitting it, the robot autonomously changed the direction of locomotion.
(g) Temporal trace of the outputs of the 12 chaos maps. After the contact (the time indicated with the black triangles) of the robot with the wall, the so-
far stable phase relationship collapsed and became chaotic. But after about 2.5 s, a new phase relationship emerged, resulting in a different leg coordination
pattern. And the robot autonomously changed its direction of locomotion adapting to the wall (reprinted from [53], Fig. 3, with permission).
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representation, and further enhanced to form self-aware-

ness.

Eventually, the new circuit will be able to infer what the

other person sees/feels and why they act in a particular

way from observations and the model of self. This is a

model of another person’s mind, aka. theory of mind

(ToM, [51]), which plays a core role in social cognition.

2. Emergence of embodied behaviour
As a single simplest mechanism that has both explorative

and adaptive functionality, we proposed and have been

investigating embodiment-coupled chaotic maps.

In [52], we reported a series of experiments on robots with

each actuator (motor) driven by an output of a chaotic map of

an input from a sensor embedded in the actuator (figure 2a).

In this model, a chaotic map is represented by logistic func-

tion: f(x) ¼ 1 2 ax2, which generates a chaotic time series

for 2 � a � 1.4011. . . when its output is fed as the input

in the next time step and so on, starting from some initial

value. The time series is not divergent but aperiodically

oscillating. Also, the map has (quasi-)attractors that vary

with a.

Our base model assumed no explicit signal interconnec-

tions among the maps. A limited amount of symmetric

internal connections could be mixed in. The maps were effec-

tively coupled together via body dynamics: the outputs of

the maps drove the actuators whose effects were integrated

into the body dynamics and affected the sensor readouts

depending on each sensor location. Since the body physically

interacted with the environment, the body–environment inter-

action was also integrated into the body dynamics and affect

the coupling. The model was inspired by the work by

Kaneko & Tsuda [54] on coupled chaotic maps that exhibited
various (partially) ordered states. Our model introduced embo-

diment as the coupling field that was temporally varying and

nonlinear.

The robot (see figure 2b,c, for example) exhibited various

emergent behaviour patterns such as legged locomotion

(figure 2d) and even adaptation to an abrupt change in the

environment structure such as avoiding a wall (figure 2e,f)
[53]. The transients from the initial random movement to a

regular locomotion and from wall hitting to a regular loco-

motion in a new direction were completed in just a few

seconds (figure 2g) [53]. Note that the robots were provided

with no explicit descriptions (programmes or pre-training

results) of any part of the resulting behaviour. The internal

connections are symmetric and do not specify any particular

coordination. Therefore, the observed behaviour was emer-

gent. The diversifying property of chaos and entrainment

property by the (quasi-)attractors gave rise to spontaneous

exploration and self-stabilization of various oscillatory

modes of the body–environment system. The exploration

and stabilization emerge as the intrinsic properties of the

whole embodied dynamics without distinct functional

components, learning or rewards.

Recently, Shim & Husbands [55,56] greatly enhanced the

generality and effectiveness of the framework by introducing

sensory adaptation and dynamic order parameters. Der &

Martius [57] proposed an alternative framework using a

novel synaptic learning mechanism with very similar aims.
3. Modelling fetal development
We have been modelling a human fetus in utero undergoing

spontaneous sensory–motor interactions and learning [58].

A learning and self-organizing neural network (the brain

model) was embedded in a realistic physical model of the
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human fetal body in the uterus, driven to generate spon-

taneous movements in a similar way to the insect model

presented earlier. In terms of sensory–motor interaction,

the intrauterine environment is far less complex than

the postnatal extrauterine (outside) environment, making

it a comparably more feasible target of modelling and

experimenting.

Yamada et al. [59] report our current version of the model

and initial experiments, summarized in the following.

(a) Embodiment
A musculo-skeletal model of an average human fetus at 32

weeks of gestation is shown in figure 3a. It has 21 rigid

bodies, 20 joints, 390 muscles with embedded proprioceptive

receptors (spindles and Golgi tendon organs) and skin with

3000 tactile mechanoreceptors (Merkel cells). It was based

on multiple sources of anatomical data including magnetic

resonance imaging (MRI) data of historical specimens, CT

scan data of skeleton replica and experimental data [60] on

the characteristics of the muscles and receptors. The accuracy

of the model is particularly important as it defines the embo-

diment. The fetus body model was placed in a uterus model,

an elastic damping membrane sphere filled with simula-

ted amniotic fluid providing buoyancy and resistance to

movements. In some of the experiments, the vision was simu-

lated using simple camera models placed in the head

providing 16�16 pixel images for left/right fields of view.

The model was placed in a physical dynamics simulator

(Open Dynamics Engine [61]). When signals were given to

the muscles, they exerted forces according to the muscle

dynamics model, driving the skeleton to generate bodily

movements and giving rise to receptor responses such as

muscle contraction/elongation and fluid resistance on the skin.

(b) Spinal circuit
A minimum model of the spinal circuit consisting of a and g

motor neurons, sensory interneurons and neural oscillators

was constructed (figure 3b). A neural oscillator is a nonlinear

oscillator represented with Bonhoeffer–van der Pol (BVP, or

FitzHugh–Nagumo) equation. It is widely used to model

the central pattern generator (CPG [62]) in the spine and/or

brainstem of vertebrates generating regularly repetitive

movements such as locomotion, swimming and respiration.

It is also known that a coupled nonlinear oscillator system

exhibits chaotic behaviour in a range of conditions [63,64].
And we confirmed that the model can be used as a biologi-

cally realistic replacement [65] of the chaotic map presented

in the previous section. An important point is that unlike

other work using CPGs, we deliberately avoided any cross-

muscle interconnections. Each muscle was driven by a corre-

sponding neural oscillator and the receptors embedded in the

muscle fed back signals to the neural oscillator. The sensory–

motor dynamics of multiple muscle-circuits were coupled via

embodiment in the same way as the chaotic map-driven

robots in the previous section.

When the spinal circuit model drove the musculo-skeletal

model, a variety of spontaneous bodily movements, or

emergences of embodied behaviour, were observed ([59], video).

The validity of the resulting movements (limb trajectories)

was confirmed by comparing multiple features with those

of the human fetus in literature, in terms of Lyapunov

exponents, fractal property (long-range correlation), phase-

synchronization indices, participating body parts and their

movement directions.

(c) Cortical model
Signals from sensory interneurons in the spinal circuit were

fed to the model of the cerebral cortex (figure 3c). Leaky

integrate and fire (LIF) spiking neuron model with STDP,

a standard model of a biological neuron, was used. A net-

work of 2.6 million neurons, the number of excitatory

neurons being five times that of inhibitory, with 5.3 billion

synaptic connections was placed on the surface (grey

matter with undulations) of a three-dimensional model of

cerebral cortex with random local connection and cortical

connectivity based on MRI and diffusion tensor imaging

(DTI) data of 15 preterm human neonates. This version

had no grey matter layer structure, area-specific character-

istics or subcortical structures. The somatosensory and

visual signals were fed into corresponding areas of the

primary sensory cortex.

The validity of the model was confirmed by comparing

multiple statistical and dynamical features of the spon-

taneous (resting state) activity without inputs, in terms of

lognormal firing rate distribution, excitation–inhibition

firing rate balance, greater depolarizations of the average

membrane potentials relative to the resting potentials, corre-

lations between structural and functional connectivity

across cortical regions and responsiveness to single spikes.

In some of the earlier experiments, we adopted a different,

simpler cortical model that will be described in §3f.
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(d) Experiment on body map acquisition
The integrated model was run for 1000 s in each learning

session. After each session, the cortical responses were exam-

ined by stimulating all body parts and their combinations.

For comparison, an identical fetus model was placed on a

flat plane, simulating an extreme version of preterm birth,

for the same experimental procedure. We obtained clear

results in which the cortex learned in the normal condition

exhibited strong and well segregated (body-part wise)

responses, which contrasted with much weaker unsegregated

responses in the ‘preterm’ (extrauterine learning) version

(figure 3d ).

This contrast was clearly owing to the different structur-

ing of sensory information. When the fetus moved slowly

in the fluid, the movement of each body part took place

often independently, resulting in lower somatosensory corre-

lations between the body parts, and the continuous fluid

resistance on the moving limbs entailed higher correlation

within each of them. On the other hand, when moving in

the air, the continuous tactile correlation owing to fluid resist-

ance disappeared. And when moving on the flat plane, a

movement of one body part often affects the other, such as

when a leg pushes against the ground plane, the ground reac-

tion force on the back of the trunk changes. In summary, the

modularity and stability of the correlational structure of the

somatosensory signals are higher in the uterus, allowing

the cortex to learn a clearly segregated body representation.

This fills in the first step of the hypothetical developmental

scenario presented earlier.

(e) Experiment on multi-sensor integration
Multi-modal sensory integration is an important step in early

cognitive development. Developmental studies suggest a

possibility that somatosensory learning during the fetal

period is an important prerequisite for achieving integration

in the postnatal period [66]. In order to test this hypothesis,

we examined visual–somatosensory multi-modal responses

in our embodied brain models.

After learning under the two conditions in the same way

as the first experiment, the cortical models were transplanted

on to identical bodies whose parameters were set to 40

weeks’ gestational age and laid on the flat plane. This was

to simulate neonates, one of which underwent intrauterine

learning and another, extrauterine. A multi-modal sensory

input was generated from the arm movement in front of

the eyes. The synchronized visual, proprioceptive and tactile

signals were fed to the cortical models and the responses

were examined. A significantly stronger multi-modal

response was observed in the cortex that learned in the

uterus. This supports the hypothesis that intrauterine learn-

ing facilitates postnatal multi-sensory integration, which

serves as the basis for further cognitive development.

( f ) Closed-loop experiments
In the above experiments, the cortex was passively learning

somatosensory/visual inputs. No cortical motor control

was assumed because of the immature myelination of the

cortico-spinal tract at the target gestational age [67].

However, learning sensory–motor loops is essential for con-

tinuous development. In the uterus, the nervous system of a

fetus first learns the sensory–motor patterns arising from its
spine-driven movements. It then starts to induce its output,

modifying the movement patterns and generating new

sensory–motor patterns for further learning. This can be the

basic process contributing to the motor development observed

with human fetuses.

In order to examine such a process, closed-loop exper-

iments were carried out with an earlier version of our

fetus model [68]. In this version, the body model was much

simpler and less accurate, and the nervous system adopted

a continuous non-spiking neuron model. Full connections

(many to many) from the cutaneous tactile receptors to

the a motor neurons and neural oscillators were introduced

with Hebbian learning as a coarse generic model of

spinal learning. We investigated whether the following

well-known events observed with human fetal motor

development [69] emerge in our sensory–motor learning

model without explicit programming/training: (1) increase

in ‘jerky’ (with high acceleration–deceleration) limb move-

ments, (2) increase in hand–face contacts, (3) the two

events occur in this order. The experimental results were

summarized as follows.

1. Significant increase in jerky limb movements was observed.

Comparing the model with a human-like tactile receptor

distribution, i.e. dense on face/hands/feet but coarse else-

where, with a non-human distribution (uniform), the

former exhibited significantly more increase. This was

because the higher tactile density on the hand gives rise

to much stronger tactile–muscle correlation during arm

movement than the uniform case, resulting in a stronger

positive feedback loop.

2. Significant increase in hand–face contacts was observed.

The human-like tactile distribution case exhibited

significantly more increase compared to the non-human

distribution case. Again, this was because the former case

provided a very strong correlation between the high-den-

sity tactile sensation from both the hand and face and the

muscle activation pattern for the hand–face contact.

3. Event 1 consistently preceded event 2 throughout the sys-

tematic change (tripled) of connection gains from the

tactile receptors to a motor neurons.

The above results suggest (1) the embodied sensory–motor

learning loop can reproduce some of the early fetal

movement characteristics; and (2) it also partially accounts

for the emergence of the global developmental order. The

reason for the emergence of such order would be the follow-

ing: (1) the hands often came near the face in the natural fetal

posture imposed by the muscle arrangement and their natu-

ral lengths, and (2) the increase in jerky limb movements

increased the possibility of the hands actually hitting the

face. It is important to note that our model reproduced

the development of at least two distinct behaviour patterns

continuously on a single system without explicit mechanisms

or conditions specific to each. As discussed before, this is a

necessary condition for a valid model of development.

4. Further issues toward human-like cognition
The above model fills in the very beginning part, with a pre-

cise human-like embodiment, of the entire developmental

scenario constructed by developmental robotics discussed

earlier. So far, our discussions have been focused on

sensory–motor interactions. However, there are also other
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very important factors, such as motivation, emotion, intero-

ception, autonomic nervous system and genetic factors.

Intrinsic motivation (IM), which is generated within an

agent and independently of external rewards, is typically

defined as a tendency to prefer exploratory actions that

have outcomes that are neither too predictable nor too

unpredictable [70], with a predictive power that is increased

by learning the outcomes. Experiments showed that a

system endowed with IM can exhibit continuous develop-

ment through different cognitive stages [71], suggesting it

as an important core mechanism for driving continuous

autonomous development [35].

Emotion is particularly important in the context of our

discussion because it provides the basis of the value

system, an essential component of sociality. Here again, the

similar developmental approach to that discussed earlier

would be necessary to reveal the principles for general and

robust systems. The emotional system is grounded on intero-

ception [49] of internal organs and the autonomic nervous

system that controls them [72]. Although there have been

numerous studies on modelling human emotion for AI/

robots, most of them do not address such deep structures.

A few exceptions are WAMOEBA project [73], which con-

structed robotic emotion based on a self-preservation

function defined in terms of battery-level, heat, etc. and

internal robotics [74], which presented evolutional models of

basic drives such as hunger/thirst, pain, illness [74] and

emotional circuit [75]. But neither accounted for continuous

development in detailed human embodiment.

It naturally follows from our earlier discussion that

we should start from a fetus model with internal organs, auto-

nomic nervous system and more detailed subcortical circuits,

exploring emergence and development of emotion, which is

an extremely challenging and cumbersome endeavour. If it is

realized, it can be a testbed for the comprehensively integrated

view [76] of early human development toward social cognition,

which integrates the autonomic nervous system, interoception,

sleep, motor control, exteroception, emotional system and
others into a hypothetical model of the developmental process

from the early fetal period to emergence of social functions

such as empathy, and how they may be disrupted resulting

in autism spectrum disorder (ASD).

Another important issue is the emergence of human qual-

ities such as morals. A recent work [77] showed that even

preverbal human infants (6 and 10 months) exhibited a

sense of morality. This suggests a possibility of the emergence

of human morality being partially grounded on early

sensory–motor and emotional development. If such a pro-

cess can be modelled, it can suggest how to embed

morality and humanity as generative principles deep at the

base of an intelligent system, not as a superficial rule-based

or data-based mechanism with limitations discussed earlier.

Together with the approaches discussed before, this will

provide a crucial means to realize human-centred AI/robots.

Needless to say, genetic factors play crucial roles in human

development. Vast amounts of knowledge on cognition-

related genes have been accumulated. Some of the genetic

constraints are already reflected indirectly as structures and

parameter settings of the body and nervous system of our

model. Precise modelling of genetic effects will require a com-

prehensive gene network model, possibly extended from an

early work [78], and a molecular-level physiological model

to be integrated into our current model. Before that, abstracted

causal rules on environmental or activity-dependent effects on

the body and nervous system can be incorporated. Testing

their effects on the embodied interacting/developing model

may provide new insights about the impact of the target

genes in the context of behaviour and development.
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