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Abstract

Ribonucleic acid (RNA) secondary structures and branching properties are important for

determining functional ramifications in biology. While energy minimization of the Nearest

Neighbor Thermodynamic Model (NNTM) is commonly used to identify such properties (number

of hairpins, maximum ladder distance, etc.), it is difficult to know whether the resultant values

fall within expected dispersion thresholds for a given energy function. The goal of this study was

to construct a Markov chain capable of examining the dispersion of RNA secondary structures

and branching properties obtained from NNTM energy function minimization independent of a

specific nucleotide sequence. Plane trees are studied as a model for RNA secondary structure,

with energy assigned to each tree based on the NNTM, and a corresponding Gibbs distribution

is defined on the trees. Through a bijection between plane trees and 2-Motzkin paths, a Markov

chain converging to the Gibbs distribution is constructed, and fast mixing time is established by

estimating the spectral gap of the chain. The spectral gap estimate is obtained through a series of

decompositions of the chain and also by building on known mixing time results for other chains

on Dyck paths. The resulting algorithm can be used as a tool for exploring the branching structure

of RNA, especially for long sequences, and to examine branching structure dependence on energy

model parameters. Full exposition is provided for the mathematical techniques used with the

expectation that these techniques will prove useful in bioinformatics, computational biology, and

additional extended applications.
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1. Introduction

Computational and mathematical applications play a critical role in the analysis of the

structure and function of biological molecules, including ribonucleic acid (RNA). RNA is

an essential biological polymer with many roles including information transfer, regulation

of gene expression, and catalysis of chemical reactions. The primary structure of an RNA

molecule may be understood as a sequence of amino acids: arginine, urasil, guanine, and

cytosine. As is standard, we frequently abbreviate these as A, U, G, and C, respectively.

RNA molecules are single-stranded and may therefore interact with themselves, forming

A–U, G–U, and G–C bonds. The secondary structure of an RNA molecule is a set of such

bonds.

The determination of secondary structure is an important step to understanding an RNA

molecule’s full shape and therefore its function [1,2]. Accordingly, secondary structure

information is commonly used in tertiary structure prediction algorithms, see, e.g., [3–6].

Identifying the secondary structure of RNA is crucial to understanding its function and

mechanism in a cell [7]. Thus, the structure of RNA is critical to the development of

biological and pharmaceutical therapeutics. Biologists use inexpensive and expedient means

to sequence RNA, but the experimental determination of structure is more difficult and

time-consuming. Therefore, computational methods are the primary means to determine

possible RNA secondary structures.

For decades, one of the main computational approaches for examining RNA structure

and branching properties has been thermodynamic free energy minimization using Nearest

Neighbor Thermodynamics Modeling (NNTM) [8–10]. This free energy is in turn used in

algorithms to predict secondary structure given an RNA sequence, see, e.g., [11–13]. Under

the NNTM, the free energy of a structure is computed as the sum of the free energy of

its various substructures. Many common programs (e.g., mFold, RNAFold, RNA Structure,

sFold, Vienna RNA, etc.) intake a single sequence to produce secondary structures based

on NNTM energy minimizations performed via dynamic programming. Nearest neighbor

parameter sets include both a set of rules, referred to as equations or features, and a set

of parameter values used by the equations. Separate rules exist for predicting stabilities of

helices, hairpin loops, small internal loops, large internal loops, bulge loops, multi-branch

loops, and exterior loops. Other branching properties of interest include, but are not limited

to, average ladder distance, maximum ladder distance, maximum branching degree, average

contact distance, average branching degree, degree of branching at the exterior loop, number

of multi-loops with n braches, etc. The online nearest neighbor database (NNDB) archives

and stores complete nearest neighbor sets, including rules and corresponding parameter

values [14].
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A common challenge is inferring whether the predicted results of NNTM for a set of RNA

structural features or branching properties are within expected dispersion thresholds for

a given energy model. For example, is the number of hairpins more than 2–3 standard

deviations greater than the expected mean for a given energy model? This challenge is

particularly vexing if the sequence is relatively long (greater than 1000 nucleotides). If

structural features or branching properties are determined to exceed expected energy model

dispersion thresholds, it relays potential scientific and/or mechanistic insight. Continuing

with our hairpin example, what if an NNTM model produces a result where the number of

hairpins seems rather large for the given sequence length? If the number of hairpins exceeds

the expected dispersion of the NNTM model, it might be inferred that the greater number of

hairpins is evidence of natural selection.

The primary objective of the present study is to enable mathematical determination of the

dispersion of RNA secondary structural features for a given sequence length. We present

a Markov-based algorithm to provide samples of the branching structure under the NNTM

and Gibbs distribution, but without reference to a particular sequence of nucleotides. The

algorithm enables the determination of where the predicted feature or branching property for

an actual sequence falls within this distribution, which in turn enables the determination of

whether the predicted NNTM feature or branching property is within expected dispersion

limits.

In particular, this work investigates RNA substructures called multi-loops, the places

where three or more helices join. Though multi-loops are crucial to the overall shape of

a secondary structure, the models used to predict them algorithmically do not produce

accurate results [15]. This investigation builds on an existing model of RNA branching

[16] and provides a theoretical grounding for a Markov chain which may be used

to algorithmically investigate branching properties of secondary structure models. The

investigational foundation is a model for RNA secondary structure developed by Hower

and Heitsch [16], in which secondary structures are in bijection with plane trees and the

minimal energy structures of the model have been previously characterized. The present

study characterizes the full Gibbs distribution of possible structures. Notably, Bakhtin and

Heitsch [17] analyzed a very similar model and determined degree sequence properties of

the distribution of plane trees asymptotically. However, the present study utilizes a Markov

chain-based sampling algorithm to investigate the Gibbs distribution in the finite case. A

full explanation of the plane tree model as well as the derivation of the energy functions is

provided in Section 2.1.

2. Methods

The methods are divided into an overview of the RNA secondary structure NNTM plane

tree model and energy functions (Section 2.1) and an all-encompassing explanation of the

mathematical preliminaries that lay the foundation for the derived results and corresponding

algorithms (Section 2.2).
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2.1. Derivation of Energy Functions

The energy function studied here is derived from the Nearest Neighbor Thermodynamic

Model (NNTM). The numerical parameters from the NNTM can be found in the NNDB

[14]. In calculating energy functions for the sequences, we consider thermodynamic

parameter values published by Turner in 1989 [8], 1999 [9], and 2004 [10].

The plane trees that we study in this paper come from two combinatorial RNA sequences,

both of the form A4(Y5ZA4YZ5A4)n. The sequences of interest have (Y, Z) = (C, G) or (Y,

Z) = (G, C). For both of these sequences, the set of maximally-paired secondary structures

is in bijection with the set of plane trees of size n [18]. Figure 1 shows one example of a

secondary structure and corresponding plane tree.

These specific combinatorial sequences are chosen because they allow for the study of the

relationship between NNTM multiloop parameters and the branching behavior of secondary

structures without interference from the energy contributions have specific base pairing

combinations. In particular, the only places where the free energy differs between different

secondary structures (for the same sequence) is in the type and number of multi-loops, the

branching at the exterior loop, the number of hairpins, and the number of internal nodes. All

of these energies directly relate to branching, not to specific base pairs. This simplification

achieved by focusing only on multi-loops and branching both creates a model that is more

amenable to theoretical analysis and speed computation.

Note that these secondary structures should not be considered representative of naturally

occurring secondary structures. Instead, the only properties of interest in these structures are

branching-related properties.

Three constants determine the free energy contribution of multiloops under NNTM, a, b,

and c. The value of a encodes the energy penalty per multiloop. The constant b specifies the

energy penalty per single-stranded nucleotide in a multiloop. The value of c gives the energy

penalty for each helix branching from a multiloop.

In addition to the multiloop parameters a, b, c discussed above, we must account for the

energy contributions of stacking base pairs, hairpins, interior loops, and dangling energy

contributions. The energy of one helix is given by h. The energy associated with a hairpin

is f, and the energy contribution of an interior loop is i. Finally, the parameter g encodes

the dangling energy contributions. All of these values can be computed directly from the

parameters found in the NNTM.

We wish to compute the energy of the structure corresponding to plane tree t having (down)

degree sequence d0, d1, …, dn−1 and root degree r. Note that the down degree of a node x is

equal to the number of children of x, and, in the down degree sequence, di is the number of

non-root nodes with exactly i children. The energy contribution of all hairpin loops will be

d0 f, and similarly, the total energy of all interior loops will be d1i. For a multi-loop having

down degree j, the energy contribution will be a + 4b(j + 1) + c(j + 1) + (j + 1)g, and so the

contribution of all multi-loops is given by ∑j = 2
n dj(a + 4b(j + 1) + c(j + 1) + g(j + 1)). Te root

vertex of the tree corresponds to the exterior loop and has energy contribution gr. Finally,
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our structure has n helices, each with energy h. Summing all of these components gives the

total energy.

d0f + d1i + ∑
j = 2

n
dj(a + 4b(j + 1) + c(j + 1) + g(j + 1)) + nℎ + gr (1)

= f − a − 4b − c − g d0 + i − a − 8b − 2c − 2g d1 + −4b − c r
+ a + 8b + 2c + ℎ + 2g n, (2)

where we have used the facts ∑k = 0
n − 1 dk = n and ∑k = 0

n − 1 kdk = n − r.

Set α = f − a − 4b − c − g, β = i − a − 8b − 2c − 2g, γ = −4b − c, and δ = a + 8b + 2c + h +

2g. Then, the energy function is αd0 + βd1 +γr +δn. Since n will be fixed, we disregard the

term δn, giving

E(t) = αd0 + βd1 + γr . (3)

Though we study these energy functions for arbitrary values of (α, β, γ), numerical

values for both the input energy parameters from NNTM and the resulting energy function

coefficients are given in Table 1.

2.2. Mathematical Preliminaries

Section 2.2 of this manuscript provides the necessary mathematical background, including

a formal introduction of combinatorial objects and a review of the relevant Markov chain

mixing results used to construct our resultant sampling Markov chain and corresponding

mixing time proof in Section 3.

2.2.1. Combinatorial Objects—A plane tree is a rooted, ordered tree. We will use Tn
to denote the set of plane trees with n edges. It is known that Tn  is given by the nth Catalan

number Cn = 1
n + 1

2n
n . In a plane tree, a leaf is a node with down degree 0, and an internal

node is a non-root node with down degree 1. For a given plane tree t, we will use d0(t) to
denote the number of leaves and d1(t) to denote the number of internal nodes.

For a plane tree t, the energy of the tree is given by

E(t) = αd0(t) + βd1(t), (4)

where α and β are real parameters of the energy function. Note that this function is a

simplification of the model due to Hower and Heitsch [16] discussed in Section 2.1. Making

this simplification effectively disregards the energy contribution of the exterior loop, which

is small in comparison to the total energy of a structure, especially for the longer sequences

that are of interest to us. Other authors have made similar simplifications, e.g., [17].
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For our purposes, we consider α and β to be arbitrary but fixed. We will consider a Gibbs

distribution g on the set Tn, where the weight of each tree t is given by

g(t) = e−E(t)

Z , (5)

where Z = ∑y ∈ Tne−E(y) is a normalizing constant.

A Motzkin path of length n is a lattice path from (0, 0) to (n, 0), which consists of steps

along the vectors U = (1, 1), H = (1, 0), and D = (1, −1) and never crosses below the

x-axis. We can also represent Motzkin paths as strings from the alphabet {U, H, D} where,

in any prefix, the number of Us is greater than or equal to the number of Ds. The number of

Motzkin paths of length n is given by the Motzkin numbers Mn where

Mn = ∑
k = 0

n/2 n
2k Ck . (6)

Motzkin numbers and Motzkin paths have been well-studied in the combinatorics literature,

see, e.g., [20–24].

A Dyck path is a Motzkin path with no H steps. It is easy to see that a Dyck path must have

even length, so we will use Dn to denote the set of Dyck paths on length 2n. It is well known

that Dn = Cn (see, e.g., [25]).

A 2-Motzkin path is a Motzkin path in which (1, 0) steps are given one of two

distinguishable colors. Let Mm
2  be the set of all 2-Motzkin paths of length m. We can also

represent 2-Motzkin paths as strings from the alphabet {U, H, I, D}, where, as before, the

number of Ds never exceeds the number of Us in any prefix. In a such a string x, we denote

by |x|a the number of times the symbol a appears in x, where a ∈ {U, H, I, D}. Notice that

we always have |x|U = |x|D. For any x ∈ Mn
2 and k ∈ {1, · · ·, n}, let x(k) denote the symbol

at index k in the string representation of x. Additionally, the skeleton of a 2-Motzkin path x
is the Dyck path of Us and Ds which results from removing all Hs and Is from x. We will

denote the skeleton of x by σ(x).

2.2.2. A Bijection Between Tn and Mn − 1
2 —We will use the particular bijection

Φ:ℑn Mn − 1
2  between plane trees and 2-Motzkin paths from Deutsch [26], which neatly

encodes information about d0 and d1. For clarity, we will overview the bijection here.

For a given plane tree t with n edges, assign a label from the set {U, H, I, D} to each edge e
according to the following rules:

• If e is the leftmost edge off a non-root node of down degree at least 2, assign the

label U.
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• If e is the rightmost edge off a non-root node of down degree at least 2, assign

the label D.

• If e is the only edge off a non-root node of degree 1, assign the label I.

• If e is an edge off the root node, or if e is neither the leftmost nor the rightmost

edge off its parent node, assign the label H.

Now, if we traverse t in a preorder reading off these labels, we get a 2-Motzkin path of

length n. However, this path will always begin with H, so we define Φ(t) to be the 2-Motzkin

path of length n − 1 after this initial H is removed. Figure 2 gives an example of this labeling

process. From Deutsch, we know not only that Φ is a bijection, but also that if x = Φ(t) then

|x|I = d1(t) and |x|U + |x|H + 1 = d0(t).

Using this bijection, it is natural to extend our energy function to 2-Motzkin paths. We

define the energy of a 2-Motzkin path x to be

E(x) = α x U + x H + 1 + β x I , (7)

and we extend our definition of the distribution g to Mn
2 accordingly. We note that, while this

energy function does not capture all possible weightings on 2-Motzkin paths, it does capture

all weightings possible under our simplification of the model due to Hower and Heitsch [16]

after applying the bijection due to Deutsch [26].

2.2.3. Markov Chains—A Markov chain ℳ is a sequence of random variables X0, X1,

X2, · · · taking values in a state space Ω subject to the condition that

Pr Xt + 1 = y ∣ Xt = x, Xt − 1 = st − 1, ⋯, X0 = s0 = Pr Xt + 1 = y ∣ Xt = x . (8)

All Markov chains that we consider will be implicitly time-homogeneous (meaning Pr(Xt+1

= y | Xt = x) does not depend on t) and finite (meaning |Ω| < ∞). The transition matrix of a

time-homogeneous Markov chain is the matrix P: Ω × Ω → [0, 1] given by

P (x, y) = Pr Xt + 1 = y ∣ Xt = x . (9)

It is easy to see that if X0 has distribution vector x, then Xt has distribution vector Ptx.

A finite Markov chain with transition matrix P is said to be ergodic if it has the following

two properties.

1. Irreducibility: For any x, y ∈ Ω, there is some integer t ∈ ℕ for which Pt(x, y) > 0.

2. Aperiodicity: For any state x ∈ Ω, we have gcd t ∈ ℕ:P t(x, x) > 0 = 1.

It is well-known that if ℳ is ergodic, then there exists a unique distribution vector π, the

stationary distribution, such that Pπ = π, and limt→∞ Pt(x, y) = π(y) for any states x, y ∈ Ω.

Additionally, we call ℳ reversible if for all states x, y ∈ Ω, we have π(x)P(x, y) = π(y)P(y,

x).

Kirkpatrick et al. Page 7

Math Comput Appl. Author manuscript; available in PMC 2022 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For ϵ > 0, the mixing time τ(ϵ) of ℳ is given by

τ(ϵ) = min t ∈ ℕ: ∀s ≥ t, min
x ∈ Ω

1
2 ∑

y ∈ Ω
P s(x, y) − π(y) < ϵ . (10)

Intuitively, the mixing time gives a measure of the number of steps required for ℳ to get

sufficiently close to its stationary distribution from any starting state.

Let ℳ be a finite ergodic Markov chain over a state space Ω with transition matrix P. Let the

eigenvalues of P be λ0, λ1, …, λ|Ω|−1 such that 1 = λ0 > |λ1| ≥ … ≥ |λ|Ω|−1|. The spectral

gap of ℳ is given by Gap(ℳ) = 1 − λ1 . As is standard, it will be convenient to denote the

inverse of the spectral gap by relaxation time τrel(ℳ): = 1/Gap(ℳ).

Additionally, the spectral gap is given by the following functional definition [27].

Gap(ℳ) = inf
f

∑x, y ∈ Ω f(x) − f(y) 2π(x)P (x, y)
∑x, y ∈ Ω f(x) − f(y) 2π(x)π(y)

, (11)

where the infimum is taken over all non-constant functions f :Ω ℝ. A direct consequence

of this definition of the spectral gap is the following lemma.

Lemma 1.: Let ℳ1 and ℳ2 be ergodic Markov chains over Ω with the same stationary

distribution. Let P1 and P2 be the transition matrices of ℳ1 and ℳ2 respectively. If for all x,

y ∈ Ω and for some constant c > 0 we have P1(x, y) ≤ cP2(x, y), then Gap ℳ1 ≤ cGap ℳ2 .

Additionally, spectral gap is related to the mixing time by the following lemma [28].

Lemma 2.: Let ℳ be an ergodic Markov chain with state space Ω, and let λ0, λ1, …, λ|Ω|−1

be the eigenvalues of the transition matrix P as defined above. Then, for all ϵ > 0 and x ∈ Ω,

we have

λ1
Gap(ℳ)log 1

2ϵ ≤ τ(ϵ) ≤ 1
Gap(ℳ)log 1

π(x)ϵ . (12)

We say that a Markov chain ℳ, whose state space depends on a variable n ∈ ℕ, is rapidly

mixing if τ(ϵ) is bounded above by some polynomial in n and log(ϵ−1). For the specific

chains studied in this manuscript, we will show that τ(ϵ)(ℳ) is bounded by a polynomial in

n and log(ϵ−1) if and only if τrel(ℳ) is bounded by a polynomial in n and log(ϵ−1). Our next

lemma presents sufficient conditions.

Lemma 3.: Let ℳ be an ergodic Markov chain with state space Ω and let λ0, λ1, …, λ|Ω|−1

be the eigenvalues of its transition matrix. Let ϵ > 0. If τ(ϵ) is bounded by a polynomial
in n and log(ϵ−1), then τrel is also bounded by a polynomial in n and log(ϵ−1). Further,
suppose we have log(1/π(x)) bounded by some polynomial q(n) for all x ∈ Ω. Then, τrel(ℳ)
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being bounded by a polynomial in n and log(ϵ−1) implies that τ(ϵ) is also bounded by some
polynomial in n and log(ϵ−1).

Proof.: Suppose that τ(ϵ) ≤ p(n, log(ϵ−1)), where p is a polynomial. Beginning with the left

hand side of Lemma 2, note that

λ1
1 − λ1

log 1
2ϵ = τrel(ℳ) − 1 log 1

2ϵ .

Then, applying Lemma 2 and the bound on τ(ϵ),

τrel(ℳ) ≤ τ(ϵ)
log((2ϵ)−1)

+ 1 ≤ p(n, log(ϵ−1))
log((2ϵ)−1)

+ 1 ≤ p′(n, log(ϵ−1)),

where p′ is again a polynomial in n and log(ϵ−1).

Turning now to converse, suppose that we have τrel ≤ p(n, log(ϵ−1)), for some polynomial p.

Additionally suppose log(1/π(x)) ≤ q(n) for all x ∈ Ω, for some polynomial q.

Applying Lemma 2,

τ(ϵ) ≤ τrel(ℳ)log 1
π(x)ϵ ≤ p(n, log(ϵ−1))log(ϵ−1)q(n) ≤ p′(n, log(ϵ−1)),

where p′ is some polynomial. □

2.2.4. Coupling—A coupling of a Markov chain ℳ on Ω is a chain Xt, Y t t = 0
∞  on Ω × Ω

for which the following properties hold.

1. Each chain Xt t = 0
∞  and Y t t = 0

∞ , when viewed in isolation, is a copy of ℳ, given

initial states X0 = x and Y0 = y.

2. Whenever Xt = Yt, we have Xt+1 = Yt+1.

Formally, the first item above requires that the joint distribution of (Xt, Yt) (given (Xt−1,

Yt−1)) should satisfy the property that the marginal of Xt (and also Yt) is consistent with the

probability transitions of ℳ. We define the coupling time T to be

T = max
x, y ∈ Ω

E min t:Xt = Y t ∣ X0 = x, Y 0 = y . (13)

The following lemma [29] is useful in bounding the coupling time T.

Lemma 4.: Suppose that Xt, Y t t = 0
∞  is a coupling of a Markov chain M. Let φ be an

integer-valued distance function on Ω × Ω taking values in the range [0, B], and suppose that
φ(x, y) = 0 if and only if x = y. Let φ(t) = φ(xt, yt). Suppose that the coupling satisfies E (φ(t
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+ 1) − φ(t)|Xt, Yt) ≤ 0. Additionally, suppose that whenever φ(t) > 0, E |φ(t + 1) − φ(t)|2|Xt,

Yt ≥ V. Then, the expected coupling time satisfies E (Tx,y) ≤ φ(0)(2B − φ(0))/V.

Coupling time and mixing time are then related by the following theorem [28].

Theorem 1.: A Markov chain M with coupling time T has mixing time τ(ϵ) bounded by

τ(ϵ) ≤ Telogϵ−1 . (14)

2.2.5. Decomposition—We use two disjoint decomposition methods for bounding the

spectral gap, one developed by Martin and Randall [30], and a very recent one given by

Hermon and Salez [31], building on the work by Jerrum, Son, Tetali and Vigoda [32]. We

use both theorems because, while the latter gives better bounds, the former has more relaxed

conditions, which is necessary in one of our applications. The setup for both methods is the

same.

Let ℳ be an ergodic, reversible Markov chain over a state space Ω with transition matrix P
and stationary distribution π. Suppose Ω can be partitioned into disjoint subsets Ω1, …, Ωm.

For each i ∈ [m], let ℳi be the restriction of ℳ to Ωi, which is obtained by rejecting any

transition that would leave Ωi. Let Pi be the transition matrix of ℳi Additionally, we define

ℳ to be the projection chain of ℳ over the state space [m] as follows. Let the transition

matrix P  of ℳ be given by

P (i, j) = 1
π Ωi

∑
x ∈ Ωi
y ∈ Ωj

π(x)P (x, y) .
(15)

One can check that ℳ is reversible and has stationary distribution

π(i) = π Ωi ,

while each ℳi has stationary distribution

πi(x) = π(x)
π(i) .

With this notation, we have the following theorem by Martin and Randall [30].

Theorem 2.: Defining ℳi and ℳ as above, we have

Gap(ℳ) ≥ 1
2Gap(ℳ) min

i ∈ [m]
Gap ℳi . (16)
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The theorem due to Hermon and Salez obtains better bounds if, for each pair (i, j) ∈ [m]

× [m] with P (i, j) > 0, we can find an effective joint distribution (often referred to as a

“coupling”) κij : Ωi × Ωj → [0, 1] of the distributions πi and πj. In other words, we must

have

∀x ∈ Ωi, ∑
y ∈ Ωj

κij(x, y) = πi(x),
(17)

∀y ∈ Ωj, ∑
x ∈ Ωi

κij(x, y) = πj(y) .
(18)

The quality of the joint distribution κ is defined as

χ : = χ(κ): = min π(x)P (x, y)
π(i)P (i, j)κij(x, y) , (19)

where the minimum is taken over all (x, y, i, j) with x ∈ Ωi, y ∈ Ωj for which P (i, j) > 0 and

κij(x, y) > 0. Hermon and Salez [31] prove the following.

Theorem 3.: With P, P , Pi, and χ defined as above,

Gap(ℳ) ≥ min χGap(ℳ), min
i ∈ [m]

Gap ℳi . (20)

The utility of these decomposition theorems is that they allow us to break down a more

complicated Markov chain into pieces that are easier to analyze. If we can show that the

pieces rapidly mix, and the projection chain rapidly mixes, then we may conclude that the

original chain rapidly mixes as well.

Additionally, to aid with the analysis of some projection chains, we will need another lemma

from [30].

Let ℳM be the Markov chain on [m] with Metropolis transitions PM(i, j) = 1
2Δmin{1,

π Ωj
π Ωi

}

whenever P (i, j) > 0, where Δ is the maximum degree of vertices in the transition graph of

M. Let ∂i(Ωj) = {y ∈ Ωj : ∃x ∈ Ωi with P(x, y) > 0}. Then we have the following

Lemma 5.: With ℳM as defined above, suppose there exist constants a > 0 and b > 0 with

1. P(x, y) ≥ a for all x, y such that P(x, y) > 0.

2. π(∂i(Ωj)) ≥ bπ(Ωj) for all i, j with P (i, j) > 0.

Then Gap(ℳ) ≥ ab ⋅ Gap ℳM .

In order to help analyze the mixing time of ℳM, we will also require the following two

lemmas. Note that Lemma 6 is used only in the proof of Lemma 7.
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Lemma 6.: Let ai i = 1
m  be a log concave sequence, with ai > 0 for all 1 ≤ i ≤ m. Then,

ai + 1
ai

≥ aj + 1
aj

(21)

for all 1 ≤ i ≤ j ≤ m.

Proof.: In order to use induction, we will slightly reframe the statement. We will prove

ai + 1
ai

≥
ai + 1 + k

ai + k

for all i + k ≤ n.

We now proceed by induction on k. The base case, k = 0, is trivial.

Now fix l > 0 and suppose that the induction hypothesis is true for k = l − 1, that is,

ai + 1
ai

≥
ai + l

ai + l − 1
.

By log concavity ai + l
2 ≥ ai + l − 1ai + l + 1, or, equivalently,

ai + l
ai + l − 1

≥
ai + l + 1

ai + l
.

Therefore,

ai + 1
ai

≥
ai + l

ai + l − 1
≥

ai + l + 1
ai + l

,

where the first inequality follows from the induction hypothesis, and the second inequality

follows from log concavity. □

Lemma 7.: Let π be a probability distribution on [m]. Let ℳ be a Markov chain on [m] with
the transition probabilities

P (i, j) =
1
4min 1, π(j)

π(i) if i − j = 1

0 if i − j > 1
(22)

and the appropriate self-loop probabilities P(i, i). If π(i) is log-concave in i, then ℳ has
mixing time (and hence also relaxation time) O(m2).

Proof.: We define a coupling (Xt, Yt) on ℳ as follows. If Xt ≠ Yt, then at time step t + 1, flip

a fair coin.
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• If heads, set Yt+1 = Yt. Let l be either 1 or −1, each with probability 1/2. If

possible, let Xt+1 = Xt + l with probability 1
2 min 1,

π Xt + l
π Xt

. Otherwise, let Xt+1

= Xt.

• If tails, set Xt+1 = Xt, and update Yt+1 the same way as we did for Xt+1 in the

previous case.

Now, suppose that for some t we have Xt = i and Yt = j for i ≠ j. WLOG, assume that i < j.
Let φ(t) = φ(Xt, Yt) = j − i, and let Δφ(t) = φ(t) − φ(t − 1). Note that we have two moves, with

probabilities P(i, i − 1) and P(j, j + 1), which will increase the distance φ by 1 and similarly

two moves, with probabilities P(i, i + 1) and P(j, j + 1), will decrease the distance by 1. Then

we have

E(Δφ(t)) = − P (i, i + 1) + P (i, i − 1) + P (j, j + 1) − P (j, j − 1) .

By the log-concavity of π(i) and Lemma 6, we have P(i, i + 1) ≥ P(j, j + 1) and P(i, i − 1) ≤

P(j, j − 1). Therefore, the expected change in φ(t) is always non-positive. We also have

E (Δφ(t))2 ∣ Xt, Yt = P (j, j + 1) + P (i, i + 1) + P (j, j − 1) + P (i, i − 1)

= 1
4 min 1, π(j + 1)

π(j) + min 1, π(i + 1)
π(i) + min 1, π(j − 1)

π(j) + min 1, π(i − 1)
π(i) .

We claim that E (Δφ)2 ∣ Xt, Y t ≥ 1
4 . Suppose, for contradiction, that the expectation is less

than 1
4 . Then, for each of the minimum functions in the above expression, 1 must be the

larger argument. Equivalently, π(i − 1) < π(i), π(i) > π(i + 1), π(j − 1) < π(j), and π(j) > π(j
+ 1).

Therefore, π(i) is not unimodal in i and is therefore also not log-concave in i, contradicting

our hypothesis. Therefore we have E (Δφ)2 ∣ Xt, Y t ≥ 1
4 , as desired. □

3. Results

Here we present the constructed Markov chain and corresponding algorithms devised for

the sampling task and the proof of an upper bound on the relaxation time—that the chain

mixes rapidly. Collectively, the results illustrate an analytical approach to calculate the

dispersion of the secondary structure and corresponding branching properties of RNA based

on the NNTM energy function minimization and without reference to a specific nucleotide

sequence.

3.1. Our Markov Chain on Mm
2

We define a Markov chain ℳ = X0, X1, X2, ⋯ on Mm
2  to sample 2-Motzkin paths as a

representation of plane trees. Here, we use m = n − 1 to denote the length of the 2-Motzkin

paths corresponding to plane trees with n edges.
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We define each step of ℳ as follows. First, pick a random element l uniformly from {1, 2, 3,

4}. Now choose y as follows.

• If l = 1, pick a random pair of consecutive symbols in Xt, and call this pair s. If

s is UD or HH, let s′ be either UD or HH with probabilities 1
1 + e−α  and e−α

1 + e−α

respectively. Let y be the string Xt with s replaced by s′. Otherwise, let y = Xt.

• If l = 2, pick i uniformly from {1, · · ·, m}. If Xt(i) is H or I, choose a symbol c to

be either H or I with probabilities e−α
e−α + e−β  and e−β

e−α + e−β  respectively. Let y be

the 2-Motzkin path given by changing the symbol in Xt(j) to c. Otherwise, we let

y = Xt.

• If l = 3, pick i and j each uniformly from {1, · · ·, m}. If each of Xt(i) and

Xt(j) are either U or D, let y be the string Xt with the symbols at indices i and j
swapped. Otherwise, let y = Xt.

• If l = 4, pick a random pair of consecutive symbols in Xt, and call this pair s. If s
is of the form ab or ba for some a ∈ {U, D} and b ∈ {H, I}, let s′ be the reverse

of s, and let y be the string Xt with s replaced by s′. Otherwise, let y = Xt.

If y is a valid 2-Motzkin path, set Xt+1 = y with probability 1
2 . Otherwise, set Xt+1 = Xt.

One can see that ℳ is irreducible by noting that every path can be transformed to the path

consisting of all H’s. To make this transformation, first use the l = 4 rule to move all H’s and

I’s to the end of the path. If there are any U’s in the path, we must now have at least one

consecutive pair UD. Use the l = 1 rule to convert the UD to a HH. From here we can repeat,

again moving all H’s to the end and replacing UD with HH, until only H’s and I’s remain.

Finally, we can use the l = 2 rule to convert all I’s to H’s. Since all of these steps can also be

taken in reverse, this gives a procedure to move between two arbitrary paths, demonstrating

irreducibility. We can also conclude that ℳ is aperiodic, due to the existence of self-loops.

Combined with irreducibility, this establishes that ℳ is ergodic.

We claim that ℳ is reversible with respect to the stationary distribution π(x) = e−E(x)
Z , where

Z = ∑y ∈ Mm2 e−E(y). This can be easily verified by considering the four move types listed

above. For example, for the first move type given above (transforming UD to HH and vice

versa), let x and y be the states of interest. Suppose that y has the consecutive symbols HH
where x contains UD. Then,
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π(x)P (x, y) = e−α x U + x H + 1 − β x I
Z ⋅ e−α

1 + e−α

= e−α y U + 1 + y H − 2 + 1 − β y I
Z ⋅ e−α

1 + e−α

= e−α y U + y H + 1 − β y I
Z ⋅ 1

1 + e−α
= π(y)P (y, x) .

One can verify that similar computations hold for the remaining three types of moves.

Therefore, we conclude that the chain ℳ has stationary distribution π(x) = e−E(x)
Z .

The Markov chain ℳ can be implemented in pseudocode as in Algorithm 1. Here, the Ber(p)

function returns true with probability p, and false otherwise. We also use the addition of

strings to denote concatenation.

Additionally, in order to convert the 2-Motzkin path Xt into a plane tree, we use the

algorithm in Algorithm 2, which assumes the existence of a Node object with children and

parent attributes.

3.2. Mixing Time Results

Our main result is to prove the rapid mixing of the Markov chain defined in Section 3.1. An

upper bound on the relaxation time is achieved by bounding the spectral gap from below.

A spectral gap bound for the complex chain at hand is obtained through the use of multiple

decomposition theorems, which give bounds on the spectral gap of the complex chain in

terms of the spectral gaps of multiple simpler chains. The disjoint decomposition theorem

due to Martin and Randall [30] provides a flexible approach to the decomposition of Markov

chains. Very recent work by Hermon and Salez [31], building on the work of Jerrum, Son,

Tetali, and Vigoda [32], proves a decomposition theorem with tighter bounds but stronger

hypotheses.

Since this proof involves multiple decomposition steps, we provide an overview here. The

primary tools used in this proof are the two decomposition theorems presented in Section

2.2.5. We first partition the state space of all 2-Motzkin paths by the number of Us in the

path. The projection chain from this first decomposition is linear and is proved to be rapidly

mixing using a result of Martin and Randall [30] (Lemma 8). Each of the restriction chains

are decomposed again, this time by the pattern of H and I symbols. The projection chains

for this second decomposition are shown to be rapidly mixing by coupling (Lemma 9). The

restriction chains are decomposed a third time, this time according to the skeleton of U and

D steps. The projection chains for this third decomposition are shown to be rapidly mixing

by comparison to the classic mountain valley moves chain on Dyck paths (Lemma 10). This

last set of restriction chains are found to be rapidly mixing by isomorphism to the chain

consisting of adjacent transpositions on binary strings (Lemma 11). Finally, starting from the

most restricted chains, we use the decomposition theorems to obtain a bound on the spectral

gap of the original chain (Theorem 4).
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Algorithm 1:

The main Markov chain algorithm. This pseudocode calculates Xt given X0.

Require: X0 is a valid 2-Motzkin path of length m.

 x ← X0

 for s = 1 → t do

  y ← x

  l ← randInt(1, 4)

  if l = 1 then

   i ← randInt(1, m − 1)

   if x[i: i + 1] = UD and Ber e−α
2 1 + e−α  then

    y[i: i + 1] ← HH

   else if x[i: i + 1] = HH and Ber 1
2 1 + e−α  then

    y[i: i + 1] ← UD

  else if l = 2 then

   i ← randInt(1, m)

   if x[i] = I and Ber e−α
2 e−α + e−β  then

    y[i] ← H

   else if x(i) = H and Ber e−β
2 e−α + e−β  then

    y[i] ← I

  else if l = 3 then

   i ← randInt(1, m)

   j ← randInt(1, m)

   if (x[i] ∈ {U, D} and x[j] ∈ {U, D}) and Ber 1
2  then

    y[i] ← x[j]

    y[j] ← x[i]

    if y is not a valid 2-Motzkin path then

     y ← x

  else if l = 4 then

   i ← randInt(1, m − 1)

   if (x[i] ∈ {U, D} and x[j + 1] ∈ {H, I}) or (x[i] ∈ {H, I} and x[j + 1] ∈ {U, D}) and Ber 1
2  then

    y[i: i + 1] ← x[j + 1] + x[j]

  x ← y

 return x

We now proceed with a formal presentation. We will use a series of decompositions of ℳ.

We will first decompose our state space Mm
2  into S0, ⋯, S m/2 , where
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Sk = x ∈ Mm2 : x U = k .

Let ℳk denote the Markov chain ℳ restricted to the set Sk, and let ℳ be the projection

chain over this decomposition as outlined for Theorem 2.

Additionally, we will decompose each Sk into the sets {Tk,q : q ∈ (H + I)m−2k}, where (H +

I)m−2k denotes the set of strings with length m − 2k from the alphabet {H, I}. We define Tk,q

to be the set of 2-Motzkin paths x ∈ Sk such that the substring of H and I symbols in x is q.

Let ℳk, q denote the chain ℳk restricted to Tk,q, and let ℳk be the projection chain of ℳk
over this decomposition.

Finally, we decompose each Tk,q into the partition Uk, q, s:s ∈ Dk  based on the skeletons of

the 2-Motzkin paths. For each s ∈ Dk, we define

Uk, q, s = x ∈ Tk, q ∣ σ(x) = s .

As before, we let ℳk, q, s be the Markov chain ℳk, q restricted to Uk,q,s, and let ℳk, q be

the appropriate projection chain. For clarity, this four-level decomposition is summarized in

Figure 3.

Algorithm 2:

Algorithm to convert a sampled 2-Motzkin path to a plan tree. The pseudocode calculates

φ−1(x).

Require: x is a valid 2-Motzkin path of length m.

 root ← new Node()

 // u will be where a new node will be added for an H or D symbol

 u ← root

 // v will be always the last node added

 v ← new Node()

 // the stack will keep track of previous values of u

 stack = new Stack()

 root.children.append(v)

 for i = 1 → m do

  node ← new Node()

  if x[i] = U then

   v.children.append(node)

   stack.push(u)

   u ← v

  else if x[i] = I then

   v.children.append(node)

  else if x[i] = H then
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   u.children.append(node)

  else if x[i] = D then

   u.children.append(node)

   u ← stack.pop()

  v ← node

 return root

Lemma 8.—ℳ has relaxation time τrel(ℳ) = O m4 .

Proof.—The chain ℳ is a linear chain with states k in {0, …, ⌊m/2⌋}, and with stationary

distribution

π(k) = π Sk =
Ck
Zm

⋅ ∑
i = 0

m − 2k m
2k

m − 2k
i e−α(k + i + 1) − β(m − 2k − i)

= e−α(k + 1)
Zm

m
2k Ck ⋅ e−α + e−β m − 2k,

where π is defined as in Section 2.2.5. Notice that transitions in ℳ which move between

the Sk sets are those which change a HH substring into a UD or DU substring, or vise

versa. Thus, the transitions in ℳ only increase or decrease k by at most 1. We seek to apply

Lemma 5. To choose a, notice that for x ∈ Sk and y ∈ Sk±1 with P(x, y) > 0, we have

P (x, y) = 1
4(m − 1)

1
1 + eα or P (x, y) = 1

4(m − 1)
1

1 + e−α .

Note that the factor 1/4 comes from the choice l = 4, and the factor 1/(m − 1) comes from the

fact that there are m − 1 adjacent pairs to pick from. Then,

P (x, y) ≥ 1
4(m − 1) 1 + e− α ) .

Thus, we pick a = 1
4(m − 1) 1 + e− |α| .

To pick b, we let

∂− Sk = y ∈ Sk: ∃x ∈ Sk − 1, P (x, y) > 0

for k ∈ {1, · · ·, ⌊m/2⌋}, and we let

∂+ Sk = y ∈ Sk: ∃x ∈ Sk + 1, P (x, y) > 0

for k ∈ {0, · · ·, ⌊m/2⌋ − 1}.
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Additionally, let Ak for k ∈ {1, · · ·, ⌊m/2⌋} be the subset of Sk consisting of the 2-Motzkin

paths in which the first D symbol appears immediately after a U. Let Bk for k ∈ {0, · · ·,

⌊m/2⌋ − 1} be the subset of Sk consisting of the 2-Motzkin paths in which a pair of adjacent

H symbols occur before all other H or I symbols. It is easy to see that Ak ⊂ ∂−(Sk) and Bk ⊂
∂+(Sk). We have

π Ak =
Cke−α(k + 1)

Zm
m − 1
2k − 1 e−α + e−β m − 2k,

as there are Ck ways to arrange the U and D symbols and 
m − 1
2k − 1  ways to insert m − 2k H

or I symbols (treating H and I as being identical for now) without placing anything between

the first D and the U immediately before it. The energy contribution of the U and D symbols

is given by e−α(k+1), and the energy contribution of the H and I symbols is (e−α + e−β)m−2k.

The required normalizing constant is Zn. Similarly, we also get

π Bk =
Cke−α(k + 3)e−2β

Zm
m − 1

2k e−α + e−β m − 2k − 2

because there are Ck ways to arrange the U and D symbols and 
m − 1

2k  ways insert m − 2k

− 1 H or I symbols (treating the initial pair of H’s as a single symbol gives us only m − 2k
− 1 symbols to insert). The energy contribution of the U’s, D’s, and the initial two H’s is

given by e−α(k + 3)e−2β, and the energy contribution of the remaining H’s and I’s is (e−α +

e−β)m−2k−2. Finally, Zm is again a normalizing constant.

Hence combining these two results, we have

π ∂− Sk
π Sk

≥
π Ak
π Sk

= 2k
m

and

π ∂+ Sk
π Sk

≥
π Bk
π Sk

= m − 2k
m

e−αe−β
e−α + e−β

2
.

Thus, we may let b = 1
m

e−αe−β
e−α + e−β

2
.

Applying Lemma 5, we get that Gap(ℳ) ≥
Gap ℳM

O m2 . Additionally, one can check that

π(i) is log concave in i. Hence, using Lemma 7, we get τrel ℳM = O m2 , and in turn

τrel(ℳ) = O m4 , as claimed. □

Lemma 9.—ℳk has mixing time τ ℳk = O(m log m), for all k.
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Proof.—Notice that ℳk appears as a chain with states q in the set Q = (H + I)m−2k.

Additionally, transitions in ℳk only occur between strings in Q that differ at only one

index. The stationary distribution of ℳk is given by πk(q) ∝ e(β − α) |q|H, where we have

intentionally used the constant of proportionality to remove all dependence on k, which we

consider, in this context, to be fixed.

Additionally, for q1, q2 ∈ Q which differ at exactly one index, we have the transition

probability

Pk q1, q2 =

(m − 2k)e−α
4m e−α + e−β if q2 H = q1 H + 1

(m − 2k)e−β
4m e−α + e−β if q2 H = q1 H − 1

.

We may show that ℳk rapidly mixes by a simple coupling argument. Let Xt, Y t t = 0
∞  be our

coupled Markov chain on Q × Q. We define one step in this coupled chain as follows.

1. With probability 1 − m − 2k
4m , set (Xt+1, Yt+1) = (Xt, Yt).

2. Otherwise, pick a random index j ∈ [m − 2k]. Let a ∈ {H, I} be a random symbol

such that Pr(a = H) = e−α
e−α + e−β  and Pr(a = I) = e−β

e−α + e−β . Now let Xt+1 and Yt+1

be Xt and Yt respectively, each with the jth symbol changed to a.

One can check that each of (Xt)t and (Yt)t are indeed copies of ℳk. Additionally, notice

that we will have Xt = Yt after all m − 2k possible indices j have been updated.

By the Coupon Collector Theorem, we have the coupling time of this chain to be

Tℳk = 4m
m − 2k ⋅ O((m − 2k)log(m − 2k)) = O(mlogm). Thus, using Theorem 1, we have the

mixing time (and the relaxation time) also O(m log m). □

Lemma 10.—ℳk, q has relaxation time τrel ℳk, q = O m2 , for all pairs (k, q).

Proof.—Notice that all x ∈ Tk,q have equal energy, and that Uk, q, s = m
2k  for all s. Thus,

ℳk, q has a uniform stationary distribution. If we represent each set Uk,q,s by the Dyck path

s, we can think of ℳk, q as a chain over Dk. Since all the transitions in ℳk, q that move

between the Uk,q,s sets are moves that exchange the positions of a U and a D, the transitions

in ℳk, q are simply the moves on elements of Dk which exchange a U with a D. We call

these moves on the elements of Dk, transposition moves.

For each s1, s2 ∈ Dk that differ by a transposition move, the transition probabilities in our

projection chain are given by
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Pk, q s1, s2 = 1
π Uk, q, s1

∑
x ∈ Uk, q, s1
y ∈ Uk, q, s2

π(x)P (x, y) = 1
Uk, q, s

∑
x ∈ Uk, q, s1
y ∈ Uk, q, s2

P (x, y)

= 1
m
2k

∑
x, y

P (x, y) > 0

1
4m2 = 1

4m2 .

The last equality above relies on counting the number of terms in the sum. Notice that for

each x ∈ Uk, q, s1, there is a unique y ∈ Uk, q, s2 for which P(x, y) > 0. Therefore, the number

of terms is simply Uk, q, s1 = m
2k . Compare this chain to the traditional mountain valley

Markov chain on Dk, which we will denote by ℳ′. The transition probabilities of ℳ′ are

given by P ′ s1, s2 = 1
k2  for each pair (s1, s2) which differ by a mountain-valley move. It is

known from Cohen [33] that Gap ℳ′ = 1
O k2 . Thus, applying Lemma 1 to ℳk, q and ℳ′, we

see that Gap ℳk, q = 1
O m2 . □

Lemma 11.—ℳk, q, s has relaxation time τrel ℳk, q, s = O m3 , for all valid triples (k, q, s).

Proof.—Notice that transitions in ℳk, q, s consist only of moves which involve swapping an

H or an I with an adjacent U or D. Additionally, all 2-Motzkin paths in Uk,q,s have equal

energy, so for all x, y ∈ Uk,q,s such that P(x, y) > 0, we have P (x, y) = 1
8(m − 1) .

To determine the mixing time of ℳk, q, s, consider an isomorphic chain. Let U′ be the set

of all binary strings of length m with 2k zeros and m − 2k ones. Let ℳ′ be the Markov

chain on U′ where each step does nothing with probability 7/8 and swaps a random pair of

adjacent (potentially identical) digits with probability 1/8. From Wilson [34], we know that

the spectral gap of ℳ′ is 1
O m3 . □

Finally, we can combine our bounds on the spectral gaps of all of these chains to prove our

main result.

Theorem 4.—The Markov chain ℳ has relaxation time τrel(ℳ) = O m7 , for all α, β ∈ ℝ.

Proof.—We use Lemmas 11 and 10 with Theorem 3 to obtain a bound on Gap ℳk, q .

We define a coupling κs1, s2 for each pair s1, s2 ∈ Dk × Dk with Pk, q s1, s2 > 0. For each

such pair, notice that the set of pairs (x, y) ∈ Uk, q, s1 × Uk, q, s2 with P(x, y) > 0 is a perfect

matching. Thus, we may set
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κs1, s2(x, y) =

1
m
2k

if P (x, y) > 0

0 P (x, y) = 0

.

To compute χ, we begin by observing π(x) = π(y) for all x, y ∈ ℳk, q. Note also

Uk, q, s = m
2k  for all skeletons s of length 2k. Before computing χ, we start by finding

P s1, s2 .

P s1, s2 = 1
π Uk, q, s1

∑
x ∈ Uk, q, s1, y ∈ Uk, q, s2

π(x)P (x, y)

= 1
π Uk, q, s1

∑
x ∈ Uk, q, s1, y ∈ Uk, q, s2

π(x)
1
4

m
2

= 1
π Uk, q, s1

Uk, q, s1
4π(x)

m
2

= 4
m
2

.

We now proceed with the calculation of χ. Recall that the minimum is taken over all tuples

x, y, s1, s2 where P s1, s2 > 0 and κ01, s2(x, y) > 0.

χ = min π(x)P (x, y)
π s1 P s1, s2 κs1, s2(x, y)

= min

π(x) 4
m
2

π Uk, q, s1
4
m
2

1
m
2k

=

m
2k
m
2k

= 1.

Theorem 3 then gives

Gap ℳk, q ≥ min χGap ℳk, q , min
s

Gap ℳk, q, s

min 1
O m2 , 1

O m3

= 1
O m3 .
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Similarly, we define a coupling κq1, q2 for each pair (q1, q2) ∈ (H + I)m−2k × (H + I)m−2k

with Pk q1, q2 > 0 to apply Theorem 3 to Mk. Notice that once again, the set of pairs

(x, y) ∈ Tk, q1 × Tk, q2 for which P(x, y) > 0 forms a perfect matching. Thus, we take

κq1, q2(x, y) =

1
m
2k Ck

if P (x, y) > 0

0 P (x, y) = 0

.

To compute χ for this coupling, we again begin with a few preliminary computations. In

all of the following, let x ∈ Tk, q1, y ∈ Tk, q2 with P q1, q2 > 0. Note that q1 and q2 have the

same length and differ at only one index. We will show the computations for the case where

q1 has a I where q2 has a H. The computations for the other case are nearly identical.

Note that P (x, y) = e−α
e−α + a−β . Note also

π q1 = π Tk, q1 = π(x) Tk, q1 = π(x)Ck
m
2k

and

P q1, q2 = 1
π Tk, q1

∑
x′ ∈ Tk, q1, y′ ∈ Tk, q2

P x′, y′

= 1
Ts, q1

⋅ e−α
e−α + e−β Ts, q1

= e−α
e−α + e−β .

Now we can compute

χ = min π(x)P (x, y)
π q1 P q1, q2 κq1, q2(x, y)

= min
π(x) e−α

e−α + e−β

π(x)Ck
m
2k

e−α
e−α + e−β ⋅ 1

Ck 2k
m

= 1.

Applying Theorem 3 then gives
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Gap ℳk ≥ min χGap ℳk , min
q

Gap ℳk, q

= min 1
O(mlogm) , 1

O m3

= 1
O m3 .

Unfortunately, we have not been able to find a useful coupling for ℳ, so for the last step of

our decomposition, we apply Theorem 2. Since Gap(ℳ) = O 1
m4  and Gap ℳk = O 1

m3  for

all k, we have

Gap(ℳ) ≥ 1
2Gap(ℳ) min

k ∈ [m/2]
Gap ℳk

= 1
2O m4 O m3

= 1
O m7 ,

establishing Theorem 4. □

Finally, an application of Lemma 3 allows us to conclude that the mixing time is also

polynomially-bounded.

Corollary 1.—ℳ is rapidly mixing.

Proof.—In order to apply Lemma 3, we need to obtain a polynomial bound on log(1/π(x))

for all x ∈ Ω. Let t ∈ Ω have maximum energy among all elements of Ω. For any x ∈ Ω,

log 1
π(x) = log

∑y ∈ Ωe−αd0(y) − βd1(y)

e−αd0(x) − βd1(x)

≤ log
Cne−αd0(t) − βd1(t)

e−αd0(x) − βd1(x)

≤ log
Cne−αn − βn

e−α

= log Cne−α(n − 1)e−βn

≤ nlog(2n) + log 1
n + 1 − α(n − 1) − βn .

This gives us the required polynomial bound, and therefore Lemma 3 implies that ℳ is

rapidly mixing. □
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4. Discussion and Conclusions

The goal of this work was to identify a Markov chain and construct a corresponding

algorithm by which to examine the non-uniform distribution and dispersion properties

of NNTM RNA secondary structures and branching properties independent of a specific

nucleotide sequence. This study successfully identifies the existence of a Markov chain, with

a provably polynomial mixing time, which generates a Gibbs distribution on plane trees.

This stationary probability distribution models branching characteristics of RNA secondary

structure under the NNTM. While the exploration of sampled structures obtained from this

algorithm are beyond the scope of the presented results, pseudocode (see Section 3.1) is

provided to facilitate future work in this area. Below we discuss the direct applications

and implications of this work to RNA modeling, the possibility of implementing a

dynamic programming approach, the possibility of an approach using stochastic context-free

grammars, other biological applications of this work, contributions of this work towards

independent mathematical research interests, and limitations and future directions of the

present work.

4.1. Applications to RNA Modeling

The most straightforward application of this work is in understanding the background

distribution of the branching behavior for secondary structures predicted under the NNTM.

While the NNTM is widely used to predict secondary structures from sequence data,

little is known about the general branching characteristics of the predicted structures,

independent of a specific input sequence. Quantities such as the number of hairpins, the

maximum branching in a multiloop, the average branching in a multiloop, and the maximum

ladder distance of the structure [7,35] help to characterize the branching behavior and

could be computed from samples obtained from this algorithm. These quantities also have

been studied in native structures and/or could be easily obtained from databases such

as RNA STRAND [36]. The parameter values of α, β, and γ corresponding to various

revisions of the NNTM are given in Table 1 in Section 2.1. The Markov chain and

corresponding algorithms presented will enable biologists to calculate the dispersion of key

branching properties for a specific energy function. As described with the detailed hairpin

dispersion example in the Introduction (Section 1), knowing whether branching properties

fall within acceptable dispersion limits is crucial for deducing potential functional insight or

hypothesizing other scientific ramifications.

Another key application to RNA modeling of the presented algorithms is the ability to

explore the parameter space of possible values for α and β. While the various revisions of

the NNTM correspond to specific values for these parameters, in principle any real-valued

parameters could be used. Finding values for these parameters that approximate reality

remains an open question. Yet, determination of how differences in parameter values change

the distribution of NNTM branching properties, such as maximum ladder distance, is

crucial. Moreover, parameter space exploration is necessary to identify and further explore

the phase transitions that exist. The presented Markov chain and corresponding algorithms

expedite such future computational experimentation. Therefore, collectively, the presented

algorithm enables exploration that will greatly improve understanding of NNTM-based RNA

Kirkpatrick et al. Page 25

Math Comput Appl. Author manuscript; available in PMC 2022 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



secondary structures and branching properties, as well as identify potential limitations or

specific branching structures where the NNTM models do not sufficiently emulate reality.

For example, NNTM-based free energy minimization algorithms achieved an accuracy of at

least 60% in only 9% of 16S secondary structures analyzed by Doshi et. al. [15].

The algorithm presented here can only sample under an energy function of the form αd0 +

βd1, and this does not capture the entirety of the model presented in [16], which considers

energy functions of the form αd0 + βd1 + γr. However, the missing term, γr, represents

the energy contribution of the exterior loop, and the exterior loop contributes less of the

total free energy as sequence length increases. Therefore, when interested in sequences of at

least moderate length, this algorithm may be able to provide insight, as long as information

about the exterior loop is not the specific object of study. Note that other authors have made

similar simplifications with respect to the exterior loop, e.g., [17].

4.2. Possibility of a Dynamic Programming Approach

This sampling problem to calculate the dispersion of NNTM RNA secondary structure and

properties utilized Markov chain techniques. However, is it possible to utilize a dynamic

programming algorithm? It is straightforward to sample Dyck paths under a uniform

probability distribution using dynamic programming techniques. However, it is not clear

whether a similar technique could be used for the Gibbs distribution we define here, due

to the complexity of the energy function. In particular, large numeric computations may be

required to handle the variable k, the number of U steps in a path. While Alonso presents

a way to sample from the unweighted distribution Pr(k = l) ∝ m
2l Cl time without large

computations [37], it is unclear if a similar method may be used for the present application.

4.3. Possibility of an SCFG Approach

Stochastic context-free grammars (SCFGs) have been widely used in the field of RNA

secondary structure prediction, e.g., [38–41]. Most commonly, the probabilities for

production rules in an SCFG are determined by training on a set of known secondary

structures, often including covariance information from homologous structures. These

approaches are not immediately applicable to the problem we study here, as they do not

give any insight into the NNTM multiloop energy parameters.

However, some authors have constructed SCFGs based on the NNTM. In particular, Nebel

and Scheid [38] construct an SCFG with 29 distinct production rules to mirror the NNTM

features. They also present a sampling algorithm allowing for sampling structures of a

fixed size using the grammar. However, they do not actually compute probabilities for the

production rules that would allow one to sample from a Gibbs distribution (with NNTM

energy) and instead rely on training on a set of known structures. Indeed, it is not clear from

the paper whether such a set of probabilities must exist.

Even in the case of the simplified model we present in this manuscript, it is not clear how

to assign probabilities to production rules in an SCFG so that the probability of obtaining a

given structure matches the Gibbs probability under the NNTM. See Supplement 1: SCFG

for more details.
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Even if a suitable SCFG could be formulated, the SCFG approach is not necessarily

superior. The sampling algorithm presented by Nebel and Scheid has time complexity

O(n3) and space complexity O(n2). While the algorithm we present does have large time

complexity, it only requires linear space, which may be an advantage for some applications.

Even though we cannot easily formulate a SCFG, it is reasonable to consider whether a

context-free grammar (such as that presented in Supplement 1) could nonetheless be used as

the basis for a dynamic programming algorithm. In fact, this is possible. The key idea is to

create a table for each non-terminal symbol X and then populate entry k of the table with

∑eE(t),

where the sum is taken over all trees t ∈ Tk which can be derived from symbol X.

Once the tables been populated with these (non-normalized) probabilities, a stochastic

backtracking procedure can be used to obtain samples.

However, as in Section 4.2, an assumption that each arithmetic operation can be performed

in unit time is not appropriate here. Because the elements of our dynamic programming

tables are in fact parts of the partition function, we can conclude that the numbers involved

could have up to O(n) digits. Each arithmetic operation, therefore, becomes much more

expensive. While a polynomial-time dynamic programming algorithm based on a context-

free grammar is possible, an efficient dynamic programming algorithm would require

substantially more work.

4.4. Extended Applications

The Markov chain mixing analysis techniques explored in this manuscript have the potential

for useful application in a variety of fields. Markov chain Monte Carlo algorithms are widely

used in several fields including, machine learning [42], econometrics [43], and Bayesian

Statistics [44]. In virtually all applications, an understanding of mixing time increases

confidence in the results. In some situations, an understanding of mixing time may also

allow for more efficient algorithm selection and implementation.

While many Markov chains with nonuniform stationary distributions have been used

for biological applications (e.g., [45–48]), theoretical guarantees on the mixing time are

generally not known. Instead, researchers must rely on convergence heuristics, and in

fact, many introductions to Markov chain Monte Carlo written for biologists explain such

heuristic techniques [49–52]. Of course, heuristics can be misleading, and rigorous mixing

time guarantees would be significantly preferable. The same techniques used in this work

might be used to generate algorithms with rigorous mixing time bounds for other biological

problems concerning a nonuniform distribution.

The mathematical techniques used in this manuscript have been widely used in mathematics,

physics, and computer science, demonstrating their broader applicability. For numerous

examples, we direct the reader to the books of Levin, Peres, and Wilmer [53]; Montenegro

and Tetali [54]; and Jerrum [55].
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As an example where similar techniques have found utility in biological applications, it is

interesting to briefly consider the study of cladograms, which arise from phylogenetic trees.

Mathematically, a cladogram is a binary tree with n labeled leaves and n − 2 unlabeled

internal nodes. While an explicit formula is known for the exact number of cladograms of a

given size, mixing time under certain dynamics has also been studied. For example, Aldous

[56] studied a Markov chain where a leaf is removed at random and then attached to a

random edge in the tree, obtaining a proof that the mixing time is bounded below by O(n2)

and bounded above by O(n3). Further work by Schweinsberg [57] later proved an upper

bound of O(n2), closing the gap between the upper and lower bounds.

4.5. Independent Mathematical Research Interests

The plane trees examined as a model for RNA secondary structure are of independent

mathematical interest. As Catalan objects, they have been studied combinatorially (see,

for example, [25,58]), and Markov chains on Catalan objects have received significant

attention over the years [33,34,59–61], but with very few results providing tight estimates

on the corresponding mixing times; most commonly these are discussed in the language

of Dyck paths. Cohen’s thesis [33] gives an overview of the known mixing time results

for chains on Catalan objects. All of the chains surveyed there have a uniform distribution

over the Catalan-sized state space as their stationary distribution. Among these, essentially

the only known chain with tight bounds (upper and lower bounds differing by a small

multiplicative constant) is due to Wilson [34] and gives the relaxation time of O(n3) for

the walk consisting of adjacent transpositions on Dyck paths. In comparison, in [59] the

chain using all (allowed) transpositions has been shown to have relaxation time of O(n2),

and further conjectured to have O(n) as the relaxation time, in analogy with the random

transposition shuffle of n cards.

Judging from the lack of progress on several of these chains, it is evident that determining

mixing or relaxation time for these chains is typically a challenging problem, even in the

case where the stationary distribution is uniform.

In the current work, the RNA secondary structure modeling naturally leads to a state-space

on Catalan objects with a nonuniform distribution, making the corresponding mixing time

analysis even more challenging. Another example where mixing times are estimated for

Markov chains on Catalan objects with nonuniform stationary distribution is the work of

Martin and Randall [30], which examines a Gibbs distribution on Dyck paths weighted by

the number of returns to the x-axis.

4.6. Limitations and Future Directions

While the mixing time proved here is polynomial, it is almost certainly too large to allow

for any practical computational sampling experiments. However, we conjecture the actual

mixing time to be much smaller, and future work may provide a better bound. Even without

additional theoretical results, interesting work is possible using the algorithm we present and

heuristic methods for evaluating Markov chain mixing. See ([62], Ch. 8) for a discussion of

heuristic methods for monitoring Markov chain convergence.
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The results of this study provide an important mathematical foundation for examining the

dispersion of RNA secondary structures and branching properties using a Markov chain.

However, more work is necessary to optimize the developed computational application for

incorporation into the software utilized by biologists that study RNA. Example questions

that strongly compel further investigation include:

1. Can the mixing time bound in our main result be improved?

2. Is there a rapidly mixing chain, with the same stationary distribution studied

here, whose transitions correspond naturally to moves on the set plane trees?

Mixing time bounds on the chain of matching exchange moves, as defined in

[63], would be especially interesting, as such a chain may relate to RNA folding

kinetics.

3. Is there a rapidly mixing chain converging to the Gibbs distribution using the full

energy function for the utilized NNTM model [16]? The chain presented here

uses only the parameters α and β, setting γ = 0.

4. Is there a stochastic context-free grammar which generates secondary structures

(in our simplified model or using the full NNTM) according to a Gibbs

distribution with NNTM energy?

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A ribonucleic acid (RNA) secondary structure for one of the combinatorial RNA sequences

used in this work and its corresponding plane tree. The ordering of the edges in the plane

tree is derived from the 3’ to 5’ ordering of the RNA sequence. Note that the exterior loop

corresponds to the root of the plane tree. The diagram in (a) was generated by ViennaRNA

[19]. (a) A maximally-paired secondary structure for A4(C5GA4CG5A4)4 has 4 helices; (b)

The corresponding plane tree has 4 edges and encodes the branching pattern seen in the

secondary structure.
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Figure 2.
A plane tree with edges labeled according to the bijection Φ, along with its corresponding

2-Motzkin path.
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Figure 3.

The four level decomposition of Mm
2  (left), and the projection chains corresponding to each

decomposition (right).
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Table 1.

Nearest Neighbor Thermodynamic Model (NNTM) parameters and resulting energy functions. Energy

functions are of the form αd0 + βd1 + γr.

Y Z Turner a b c h f i g α β γ

C G 89 4.6 0.4 0.1 −10.9 3.8 3.0 −1.6 −0.9 −1.8 −1.7

G C 89 4.6 0.4 0.1 −16.5 3.5 3.0 −1.9 −0.9 −1.2 −1.7

C G 99 3.4 0 0.4 −12.9 4.5 2.3 −1.6 2.3 1.3 −0.4

G C 99 3.4 0 0.4 −16.9 4.1 2.3 −1.9 2.2 1.9 −0.4

C G 04 9.3 0 −0.9 −12.9 4.5 2.3 −1.1 −2.8 −3.0 0.9

G C 04 9.3 0 −0.9 −16.9 4.1 2.3 −1.5 −2.8 −2.2 0.9
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