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ABSTRACT

The study of RNA expression is the fastest growing
area of genomic research. However, despite the dra-
matic increase in the number of sequenced transcrip-
tomes, we still do not have accurate estimates of the
number and expression levels of non-coding RNA
genes. Non-coding transcripts are often overlooked
due to incomplete genome annotation. In this study,
we use annotation-independent detection of RNA
reads generated using a reverse transcriptase with
low structure bias to identify non-coding RNA. Tran-
scripts between 20 and 500 nucleotides were filtered
and crosschecked with non-coding RNA annotations
revealing 111 non-annotated non-coding RNAs ex-
pressed in different cell lines and tissues. Inspecting
the sequence and structural features of these tran-
scripts indicated that 60% of these transcripts cor-
respond to new snoRNA and tRNA-like genes. The
identified genes exhibited features of their respective
families in terms of structure, expression, conser-
vation and response to depletion of interacting pro-
teins. Together, our data reveal a new group of RNA
that are difficult to detect using standard gene pre-
diction and RNA sequencing techniques, suggesting
that reliance on actual gene annotation and sequenc-
ing techniques distorts the perceived architecture of
the human transcriptome.

INTRODUCTION

Gene annotation is the blueprint of the human genome
upon which gene expression analyses are performed (1,2).
Translation open reading frames were the primary scaffold
for annotating protein-coding genes that were later vali-

dated through transcriptomic and genetic analysis (3–5).
As a result, the overall number of protein coding genes
in the human genome now stands at ∼20 000 with little
change in their annotation in the past ten years (3,6). In con-
trast, the annotation of the wide spectrum of non-translated
genes has proven much more challenging. In general, anno-
tation of non-coding RNAs (ncRNAs) depends either on
in silico prediction programs that scan for known features
of ncRNA, or evidence of expression. Standard RNA se-
quencing pipelines use general gene annotation sets from
databases like GENCODE (4) and RefSeq (5) to assign se-
quencing reads to specific genes, enabling the estimation of
their expression. As a result, these pipelines discard aligned
reads that map to non-annotated genes. For this reason,
having a complete annotation set is essential to correctly
evaluate the transcriptomic landscape with RNA-Seq data.

Some specialized databases such as RNAcentral aggre-
gate annotation information from a multitude of databases,
in order to produce a more inclusive depiction of non-
coding RNA annotations (7). Using this type of annota-
tion set increases the number of reads assigned to ncRNA
but might also incorporate errors generated by unreliable
prediction methods. Even when the prediction of ncRNA is
possible, many non-coding RNAs exist in multiple copies,
making it difficult to distinguish the active copies respon-
sible for the non-coding transcripts and potential pseudo-
genes (8). Furthermore, the ncRNA are often hidden in the
introns, and sometimes exons, of protein coding genes and
their rapidly evolving nature makes them difficult to con-
firm based on interspecies conservation (9–11). Ultimately,
a genomic locus should be annotated as a gene if it produces
RNA that accumulates as a stable independent entity that is
reproducibly detectable. However, the highly structured na-
ture of non-coding RNA makes their detection unreliable
with standard sequencing techniques.

Current sequencing techniques use retroviral reverse
transcriptases that often stall when they encounter RNA
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structures or modified nucleotides and are prone to liga-
tion bias (12,13). As a result, standard sequencing tech-
niques like Illumina TruSeq are biased towards the detec-
tion of less structured RNA such as protein-coding tran-
scripts, and do not always provide a representative read dis-
tribution across the full length of non-coding RNA (14).
This makes de novo prediction of ncRNA based on tran-
script definition very difficult and increases the reliance on
a predetermined definition of these RNA. Using highly pro-
cessive and structure-tolerant reverse transcriptases like the
thermostable group II intron reverse transcriptase (TGIRT)
permits the sequencing of full-length noncoding RNAs
(14,15). This method of sequencing (TGIRT-Seq) does not
require ligation of adapters to the RNA but instead uses the
proficient template switching activity of TGIRT to couple
adapter addition to the 3′ terminal nucleotide of an RNA
template. As a result, this method dramatically increases the
number of detected non-coding RNA, especially snoRNA
and tRNA. Indeed, direct comparison of the same RNA
sequenced by either TGIRT-Seq or TruSeq techniques in-
dicates that the number of reads assigned to snoRNA and
tRNA increases 4–17 times using TGIRT-Seq (16). Most
importantly, TGIRT-Seq faithfully reproduced the RNA
ranks predicted using biochemical methods and gene spe-
cific studies (16).

In this study, we take advantage of the homogeneous
full-length distribution of the sequencing reads produced
by TGIRT-Seq to carry out de novo identification of
RNA transcripts independent of pre-established annota-
tion. To accurately identify the natural termini of ncR-
NAs, increase confidence in transcript definition and have
a greater sequencing depth of ncRNAs, sequencing was
performed using non-fragmented RNA, derived from the
ovarian cancer cell line, SKOV3ip1 (16,17). Overall, we
identified a total of 1212 high-confidence distinct tran-
scripts, many of which mapped to multiple loci. Impor-
tantly, 111 of the newly identified transcripts are produced
from distinct previously non-annotated small non-coding
RNA genes (sncRNA) we termed non-annotated RNAs
or NA RNAs. Sequence and structural similarity analyses
indicate that 60% of these 111 NA RNAs correspond to
previously unidentified snoRNA or tRNA-like genes. The
rest of the new transcripts correspond to transcribed ribo-
somal RNA (rRNA) spacers or display no homology in
sequence or structure with any annotated genes. In gen-
eral, these non-annotated tRNA (NA tRNA) genes are
well conserved in vertebrates while non-annotated snoRNA
(NA snoRNA) are mostly primate-specific. In addition, the
NA H/ACA snoRNAs are affected by the depletion of
Dyskerin, a core component of H/ACA snoRNPs, con-
firming their integration into functional H/ACA snoRNP
complexes. Comparing the structure of the newly identi-
fied transcripts to known tRNAs and snoRNAs revealed
some structural or sequence anomalies explaining why the
new transcripts were overlooked by standard function pre-
dictors and suggesting possible non-canonical functions of
these RNAs. Together, the results indicate that the cata-
logue of human non-coding RNA is far from complete
and underscore the power of de novo transcript detection
in specialized sequencing techniques as a tool for gene
definition.

MATERIALS AND METHODS

RNA-Seq dataset accessions

The SKOV3ip1 and INOF TGIRT RNA-Seq datasets were
obtained from NCBI Gene Expression Omnibus (GEO)
series GSE99065 (16) including datasets GSM2631743
and GSM2631744 for the SKOV3ip1 non-fragmented
ribodepleted TGIRT-Seq datasets, GSM2631741 and
GSM2631742 for the SKOV3ip1 fragmented ribodepleted
TGIRT-Seq datasets, GSM2631745 and GSM2631746 for
the SKOV3ip1 fragmented ribodepleted classical RNA-Seq
and GSM2997959 for the INOF fragmented ribode-
pleted TGIRT-Seq datasets. The human reference RNA
and brain RNA ribodepleted fragmented TGIRT-Seq
datasets were obtained from the NCBI Short Read Archive
(SRA) (SRR2912443, SRR2912444 and SRR2912446 for
the human reference RNA datasets and SRR2912479,
SRR2912481 and SRR2912483 for the brain RNA
datasets) (14) Hydro-tRNAseq datasets are available from
GEO (sample accessions GSM2521595, GSM2521596,
GSM2521597 and GSM2521598) (18). Datasets for the
YAMAT-Seq were obtained from SRA (SRR5168440,
SRR5168441 and SRR5168442) (19) and the demethy-
lase TGIRT-Seq dataset from GEO (GSM1624818 and
GSM1624819) (20). All RNA-seq datasets considered in
this study are listed in Supplementary Table S1.

RNA-Seq data processing

All datasets were analyzed using the same computational
pipeline. Fastq files were checked for quality using FastQC
and trimmed using Cutadapt (21) and Trimmomatic (22)
to remove Illumina sequencing adapters and portions of
reads of low quality, respectively. Reads were aligned using
STAR (23) and reads not aligned were aligned once again
with Bowtie2 (24) as described in (16). All the mapped reads
were then merged using Samtools merge (25). The refer-
ence genome used was hg38 and the reference annotation to
build the STAR alignment index was taken from Ensembl
(v87) (6). Parameters values for all tools used are given in
Supplementary Table S2.

Read cluster detection and selection

The Blockbuster tool was used for read cluster detec-
tion (26). To prepare the Blockbuster input bed files,
the SKOV3ip1 non-fragmented ribodepleted TGIRT-Seq
alignment files were converted to bed format using the
bamtobed tool from the bedtools suite (27) followed by
an in-house script which outputs the strand-specific read-
pair coverage per genomic region. Read clusters were
identified using Blockbuster (26) on the bed file with
parameters: -format 1 -print 1 -minBlockHeight 100 -
tagFilter 50. The read cluster detection pipeline was im-
plemented with the workflow management system Snake-
make (28) and is available at https://github.com/GaspardR/
snakemake blockbuster.

Gene expression quantification

To optimize the expression quantification of small and mid-
size non-coding RNAs, gene expression estimation in TPM

https://github.com/GaspardR/snakemake_blockbuster
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was produced with the CountCorrector pipeline CoCo (v
0.2.1p4) (parameters: -c both –strand 1 –paired) which
corrects read assignment for embedded and multimapped
genes (29). The annotation provided to CoCo was the En-
sembl (v87) annotation bonified with the 111 new sncRNA
gene entries as well as the tRNAs from GtRNAdb (30) and
modified through the use of the CoCo correct annotation
module (default parameters).

Sequence similarity search

Each cluster sequence was aligned against each non-coding
RNA sequence within the RNAcentral annotation (v10) (7)
with nhmmer (31) (default parameters) to find sequence
similarity. Hits with an e-value above 0.01 were filtered out.
The overlap of the read clusters with the RNAcentral an-
notation was checked using the intersect tool from bedtools
(parameters: -loj -s).

Predictor parameters

Each cluster sequence was run through the following non-
coding RNA predictors: snoscan (32) (parameters: -d 250
-l 1), snoGPS (33) (parameters: -t 105) and tRNAscan-SE
(34) (default parameters).

TurboFold II (35) was used to find common structures
between the new ncRNA genes and known tRNAs or
H/ACA snoRNAs (using default parameters). Each Tur-
bofold run combined the sequence of a new ncRNA gene
with a set of 10 annotated tRNA or H/ACA snoRNA to
compute common structure. The new ncRNA genes were
marked as able to fold like a tRNA or an H/ACA snoRNA
if they could adopt the reference structure of their respec-
tive sets. The two sets of 10 tRNAs and the two sets of
10 H/ACA snoRNAs used as references are listed in Sup-
plementary Table S3. These sequence sets were selected for
their ability to adopt the appropriate structure with Turbo-
fold.

Pol II and Pol III ChIP-Seq datasets and peak identification

Data for the ChIP-Seq of Pol II were obtained from (36):
supplementary bigwig files GSE108323 ChIP exoMerge.
bw and GSE108323 ChIP seqMerge.bw were downloaded
from GEO series accession GSE108323. Data for the ChIP-
Seq of Pol III originate from (37): supplementary bedgraph
files from the compressed folder GSE18184 RAW.tar were
downloaded from GEO series accession GSE18184. These
datasets were visualized using IGV (38,39) and the locus of
each non-annotated ncRNA was visually inspected for the
presence of prominent ChIP-Seq peaks.

Cell culture, DKC1 knockdown and tissue preparation

The ovarian adenocarcinoma SKOV3ip1 cell line was grown
in DMEM/F12 (50/50) medium supplemented with 10%
fetal bovine serum and 2 mM L-glutamine (Wisent) as rec-
ommended by ATCC. For the DKC1 knockdown, cells were
seeded in six-well plates (350 000 cells/well) 4 hours prior
to transfection with 10 nM DKC1 targeting siRNA us-
ing Lipofectamine 2000 (Invitrogen). Two replicates were

performed using siRNA 1, targeting the third DKC1
exon (GAAUCCAAAGUUGCUAAGU) and two repli-
cates were generated with siRNA 2, targeting the fourth
DKC1 exon (ACACCUCUUGCAUGUGGUU). The cells
were trypsinized and collected 72 h post transfection, pel-
leted and resuspended in 1 ml TRIzol (Ambion) and kept
at −80◦C until RNA extraction. Eight normal tissue sam-
ples: three prostate, two breast and three ovary (samples
were obtained from FRSQ tissue bank (40)) tissue samples
were homogenized with Tissuelyser and aliquoted in 1 ml
TRIzol/30 mg tissue and also kept at −80◦C prior to ex-
traction.

RNA extraction

Total RNA was extracted from transfected cells and their
control (mock transfection), as well as from the tissue sam-
ples, with Qiagen’s RNEasy minikit as previously described
(16), with on-column DNAse 1 digestion. Samples were
then evaluated on an Agilent Bioanalyzer.

Library preparation for sequencing of RNA from human tis-
sues and the SKOV3ip1 cell line

In order to prepare TGIRT-Seq libraries, 5 �g of each RNA
sample, to which a 1 ul spike-in of ERCC EXfold mix 1
was added (ThermoFisher Scientific), were ribo-depleted
using a RiboZero Gold (Human/Mouse/Rat) kit (Illu-
mina). 50 ng of each RNA sample was then fragmented us-
ing the NEBNext Magnesium RNA Fragmentation Mod-
ule (New England Biolabs) at 94◦C for 2 or 3 min (de-
pending on RIN) and treated with T4 polynucleotide ki-
nase (Epicentre) to remove 3′ phosphates and 2′,3′-cyclic
monophosphates, which impede TGIRT template switch-
ing (41). RNAs were purified after ribo-depletion, fragmen-
tation and dephosphorylation using a modified version of
the Zymo RNA Clean & Concentrator protocol (addition
of eight sample volumes of ethanol to increase retention of
very small RNA species). The recovered RNA was used for
cDNA synthesis via TGIRT template switching with 1 �M
TGIRT-III RT (InGex, LLC) for 15 min at 60◦C, as previ-
ously described (16). The template-switching reaction seam-
lessly links the complement of an Illumina Read 2 sequenc-
ing primer-binding site (R2R DNA) to the 5′ end of the
cDNA during cDNA synthesis, after which a DNA oligonu-
cleotide containing the complement of an Illumina Read
1 sequencing primer-binding site (R1R DNA) is ligated to
the cDNA 3′ end using Thermostable 5′ AppDNA/RNA
Ligase (New England Biolabs). Ligated cDNAs with R1R
and R2R sequencing adapters on either end were then am-
plified for 12 cycles of PCR (16) (initial denaturation at
98◦C for 5 s, followed by cycles of 98◦C for 5 s, 65◦C for
10 s, 72◦C for 10 s), during which Illumina capture and
index sequences were added. Libraries were purified using
Ampure XP beads (Beckman-Coulter) to remove adapter-
dimers and leftover primers, then evaluated on an Agilent
2100 Bioanalyzer, and quantified using Qubit 2.0 fluorom-
eter (Invitrogen) as was the final equimolar pool of the
TGIRT-Seq libraries. They were then sequenced using the
Illumina NextSeq 500 instrument (75 nt paired-end reads)
with the Illumina NextSeq 500/550 High Output Kit v2
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(150 Cycles). RNA-Seq data were processed and analysed
as previously described (16,29).

Conservation analysis

PhastCons100way score table for the hg38 assembly was
obtained from the UCSC table browser (42,43). The con-
servation score per gene was calculated as the average
phastCons100way score over all positions of the gene. The
equivalent genomic coordinates of the non-annotated genes
in 10 mammal genomes were obtained using the liftOver
tool. Sequences were fetched from the extended equiva-
lent coordinates (±300 nt upstream and downstream) of
the mammalian genomes and aligned against the human
non-annotated gene sequences with the matcher aligner
tool from EMBOSS (44,45) to obtain identity percentage
values.

RESULTS

Detection of non-annotated ncRNA genes

To identify non-annotated ncRNA genes, ribodepleted
non-fragmented RNA extracted from the ovarian cancer
cell line SKOV3IP1 was sequenced using TGIRT-seq (Fig-
ure 1A), which enables full length sequencing of RNA vary-
ing between 20 and 500 nucleotides (nts) in length (16).
We avoided RNA fragmentation to obtain a better defi-
nition of the exact start and end of the detected ncRNA
and, as such, facilitate de novo transcript annotation. As
shown in Supplementary Figure S1, sequencing reads gen-
erated using this method have more uniform read alignment
profiles than the standard fragmented RNA-Seq (16). To
identify potential ncRNAs from sequencing read profiles,
we used the Blockbuster software (26), which detects clus-
ters of overlapping reads (Figure 1A). Read clusters smaller
than 500 nts and composed of at least 100 reads were se-
lected, and those not overlapping previously known anno-
tations, as defined in the all-inclusive database RNAcentral
(v10) (7), were identified using Bedtools intersect (27) (Fig-
ure 1B). RNA in RNAcentral obtained from sources that
do not provide genomic coordinates such as ENA (46), or
that are only present in a single specialized database with lit-
tle experimental validation such as snoRNA Atlas (47) and
piRNABank (48) entries were considered previously non-
annotated. To increase confidence in the newly detected
RNA, low abundance clusters found in the antisense of 45S
ribosomal RNA, fully retained introns, those with less than
100 uniquely mapped reads and / or detected in a single
sequencing dataset were filtered out (Figure 1C, D). Fig-
ure 1D shows the number of clusters removed using these
filters. As a result of this pipeline, out of the 1212 read
clusters detected by Blockbuster, we identified 111 (9%)
robustly expressed previously non-annotated transcripts
that we termed non-annotated RNA or NA RNA (Fig-
ure 1C). We note that the majority (64/111) of NA RNA
have only uniquely mapping reads and 93% (103/111) of
NA RNA have <20% of reads also mapping to other
already annotated genes. NA RNA were not restricted
to a specific chromosome or locus but were distributed
throughout the genome. Together the data demonstrate

the advantage of using an annotation-independent analy-
sis pipeline in these specialized RNA-seq datasets and indi-
cate that the annotation of the human genome is not com-
plete even when the most general of gene annotations are
used.

Profiling and characterization of the NA RNAs

Four main analyses were used to determine the likely bio-
type and possible function of the NA RNAs: (i) sequence
similarity analysis, (ii) family-specific structure prediction,
(iii) function prediction and (iv) the identification of overlap
with repeated elements (Figure 1E and Supplementary File
1). Sequence homology searches using nhmmer (31) identi-
fied 69 NA RNA with homology (e-value < 0.01) to known
ncRNA biotypes. Of these 69 NA RNA, 41 displayed ho-
mology to tRNA, 20 to snoRNA, snRNA, 7SL RNA or
rRNA and eight exhibited homology to antisense RNA
or lncRNA. Surprisingly, 32 NA RNAs had no significant
similarity with any known transcript in RNAcentral indica-
tive of potentially new classes of ncRNA. In parallel to the
sequence homology searches, family-specific structure pre-
diction was performed using Turbofold (35), which makes
an iterative probabilistic estimate of secondary structures.
By using 40 reference tRNAs and H/ACA snoRNAs, we
identified 11 NA RNAs that fold like tRNA and 21 that
fold like H/ACA snoRNAs. Function prediction of the
NA RNA sequences was also carried out, using ncRNA
predictors snoGPS (33) for H/ACA snoRNAs, snoscan
(32) for C/D snoRNAs and tRNAscan-SE (49) for tR-
NAs. The snoGPS and snoscan predictors identified seven
NA RNAs as H/ACA snoRNA and three as C/D snoR-
NAs respectively. The tRNAscan-SE predictor did not iden-
tify any of the putative tRNAs identified through sequence
and structural homology, most likely due to small structural
deviations from the canonical tRNA model, as discussed
later. Comparing NA RNA to known repeat elements us-
ing RepeatMasker (50,51) identified 18 NA RNA in tRNA
repeats and 26 within Alu repeats, half of which have
been identified as ‘Alu H/ACA snoRNA’ by the database
snoRNA atlas including eight Alu snoRNA with similar-
ity to 7SL RNA (47) (Supplementary Table S4). Six of the
predicted H/ACA snoRNAs shared similarity to antisense
RNA or lncRNA and eight to 7SL RNA.

Following these independent and complementary analy-
ses, we then integrated their results to obtain the classifica-
tion of the 111 NA RNAs into 8 functional classes includ-
ing tRNA-like, pre-tRNA, tRNA fragment, C/D snoR-
NAs and H/ACA snoRNAs, ITS-RNA, ETS-RNA and
unknown RNA (Figure 1F, Supplementary File 1). The
tRNA and snoRNA classes comprise NA RNAs with the
capacity to fold as tRNA or snoRNA and/or have sequence
homology to these biotypes and/or have been predicted
by function predictors. The tRNA fragment class includes
NA RNAs with sequence homology to tRNA genes but
which are too short (<65 nt) to form a canonical tRNA
structure, while pre-tRNA are defined as RNA fragments
with sequence homology extending beyond the established
mature tRNA sequence. The ETS-RNA and ITS-RNA in-
clude RNA aligning to the 5′ External Transcribed Spacer
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Figure 1. Identification of new non-coding RNA genes from sequencing read clusters. (A) Description of the RNA-Seq and bioinformatic analysis pipelines
used for RNA detection and identification. The lack of fragmentation is indicated by an X. R1 and R2 indicate forward and reverse read files obtained from
paired-end sequencing. Read clusters were identified using Blockbuster on bam alignment files, and visualized on a genome browser. (B) Identification
of new non-coding RNA clusters. The RNA clusters obtained from A were compared to the annotation available in RNAcentral and clusters with and
without standard annotations are indicated in the pie chart. (C) Proportion of kept and discarded clusters. Clusters with <100 uniquely mapped reads, a
size smaller than 20 nucleotides, not detected in other investigated TGIRT-Seq datasets, poorly defined antisense fragment of the 45S rRNA or representing
a retained intron were discarded. It should be noted that clusters with fewer than 100 uniquely mapped reads but with multimapped reads only aligning to
other non-annotated clusters were kept (such is the case for the ETS and ITS clusters). (D) Distribution of the discarded clusters non-optimal features. (E)
Methods used for the functional (biotype) classification of the new non-coding RNA genes. The retained clusters were compared to the sequence, structure,
function and repeated element overlap of known ncRNA and classified by biotype. (F) Final distribution of the predicted biotype of the NA RNA clusters.

(ETS) and the Internal Transcribed Spacer (ITS) of the 45S
preribosomal RNA, respectively. The rest of the NA RNAs
are grouped as unknown. We conclude that the majority
of non-annotated read clusters presented here are bona fide
ncRNAs including tRNA and snoRNA that were previ-
ously missed due to detection biases from classical RNA-
Seq methodology and/or poor homology.

Non-fragmented TGIRT-seq enhances the detection of the
NA RNAs

It was previously shown that non-fragmented TGIRT-Seq
offers an excellent sampling of ncRNAs with low struc-
ture bias (16). This capacity to detect structured RNA in-
creases the likelihood of detecting NA RNAs as indicated
in Figure 2A. Many NA RNAs, and especially NA tRNA
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Figure 2. Detection of NA RNA depends on the sequencing method. (A) Viral based sequencing library protocols poorly detect most of the NA RNA. The
abundance of 111 NA RNA in three different RNA-Seq library preparation methods was compared and the unsupervised clusters shown in the form of a
heatmap. All sequencing methods were generated using ribo-depleted SKOV3ip1 RNA. Color legend for abundance is given at the top (ND: not detected).
The sequencing methods are indicated at the bottom. Gene biotype colors are indicated on the right of panel B. (B) Violin plots of the distribution of
NA RNA abundance as detected in non-fragmented SKOV3ip1 datasets are shown for each biotype. The color legend for biotypes is on the right.

(non-annotated tRNA) and NA snoRNAs (non-annotated
snoRNAs), were missing or detected at very low level in vi-
ral reverse transcriptase sequencing datasets and clearly de-
tected by TGIRT-seq (Figure 2A). RNA treatment also af-
fects the detection of NA RNA. Skipping RNA fragmenta-
tion improves the definition of transcript termini, provides
more uniform alignment profiles and enhances the detec-
tion of NA RNA by reducing the number of reads gener-
ated from long RNAs like mRNAs and lncRNAs (Supple-
mentary Figures S1 and S2A). Therefore, non-fragmented
TGIRT-Seq is the best approach to detect NA ncRNA. Us-
ing this method, we detect NA RNA with variable abun-
dance depending on the biotype, the most abundant being
the tRNA fragment group and the least abundant being
the snoRNA (C/D) group (Figure 2B). The top four most
expressed NA RNAs were the NA tRNA fragment clus-
ter 1088, unknown RNA cluster 177, unknown RNA clus-
ter 1065 and NA tRNA cluster 5 scoring 500–1000 TPM
(transcript per million). However, in general the majority
of NA RNA were expressed below 100 TPM. Notably, as
indicated in Supplementary Figure S2, the abundance of
NA RNA was well within the expected expression level for

their biotype, which further confirms the NA RNAs bio-
type identity. Together these data suggest that the major-
ity of NA RNA are difficult to detect using standard se-
quencing techniques given their stable structure and small
size (Supplementary Figure S3), which may explain their
absence from genome annotation.

NA RNA expression is not restricted to a single cell type

Gene expression is largely deregulated in cancer cells and
often replete with cryptic transcripts which may explain the
identification of de novo transcripts (52–54). To evaluate this
possibility, we examined the expression of the NA RNAs
in different tissues using both in house and published frag-
mented TGIRT-seq datasets. A total of 15 samples from
different normal and cancer tissues as well as normal im-
mortalized and cancer cell lines were considered includ-
ing normal breast, brain, ovary and prostate tissues and
the expression of the NA RNAs compared. Since many of
the NA RNAs were found in introns or within repeat clus-
ters, sequencing was performed using fragmented RNA in
order to evaluate possible links to the expression of host
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genes. All 111 NA RNAs were detected in datasets com-
ing from tissues or cell lines other than SKOV3ip1, indi-
cating that the newly identified genes are not anomalous
products of diseased cells, but rather bona fide genes miss-
ing from the current genome annotations (Supplementary
Figure S4). Notably, while some of the NA RNAs, like the
tRNA, are highly and generally uniformly expressed across
most datasets, others and in particular those that do not re-
semble known ncRNA (unknown) and H/ACA snoRNA
are of lower and more variable expression across most tis-
sues. As observed in the ovarian cancer cell line SKOV3ip,
most NA RNAs were found to be moderately expressed
with an abundance varying between 5 and 10 TPMs, al-
though a few tRNAs are expressed with >100 TPMs (Fig-
ure 2B). Comparing the expression level across different tis-
sues indicates that the strongest differences in abundance of
the NA RNAs are found in brain tissue samples and in the
human reference RNA sample (Supplementary Figure S4).
The most homogeneously expressed group of NA RNAs
across the different tissues are the tRNAs, which is ex-
pected for this highly conserved class of RNA. We con-
clude that missing annotations are generally not due to tis-
sue specificity or generalized low expression level and that
NA RNAs represent a robust group of mostly homoge-
neously expressed genes.

NA RNAs are expressed in a biotype-dependent manner

To investigate how the NA RNA genes are expressed and
further validate their biotype attribution, we started by
characterizing the genomic context in which they are en-
coded. Most annotated human snoRNAs are intronic, en-
coded in the introns of either protein-coding or long-non-
coding RNA host genes (55,56). As shown in Supplemen-
tary Figure S5A, all 25 NA snoRNA are also intronic, em-
bedded in longer annotated genes. In contrast, a major-
ity of NA tRNA, NA tRNA fragment and NA pre-tRNA
are intergenic as is the case for annotated tRNAs (10,11).
As expected, ITS and ETS derived NA RNAs are embed-
ded in the rRNA clusters, while the unknown NA RNAs
have a mixed genomic context, consistent with their pre-
sumably mixed biotype. We also consulted previously pub-
lished Pol II and Pol III ChIP-Seq datasets (36,37) in an
attempt to determine polymerase dependency. Using these
datasets, overlapping polymerase peaks were found on only
nine NA RNA clusters for Pol III and only one for Pol II
(Supplementary Figure S5B), suggesting many NA RNA
are not independently transcribed. However, the antisense
or intergenic context of many NA RNAs implies that they
must be independently transcribed in some manner. There-
fore, at least for these seemingly independent genes, the low
number of peaks might stem from variation in the cell lines
used in the different studies and/or the lack of sufficient
sequencing depth to detect their low abundance level. On
the other hand, absence of distinct Pol II peaks from in-
tronic NA RNAs is expected since they are transcribed as
part of the host gene expression. Consistently, expression
of these intron embedded NA RNAs correlates positively
with the expression of their host genes (Supplementary Fig-
ure S6). Such host-dependent transcription is known to oc-
cur for most known human snoRNAs (56) and our results

suggest that this expression mode is used by at least 21
NA snoRNAs as well as 8 intronic unknown NA RNAs
(Supplementary Figure S5B and S6A, B). ETS and ITS
RNAs are a special case in that they are nested in the ETS
and ITS1 of the Pol I transcribed 45S rRNA. Correlation
between these RNA and their host rRNA gene expression
cannot be verified since most rRNA are absent from the
ribodepleted RNA-Seq dataset used in this study. Having
no Pol II or Pol III peak to support independent expres-
sion of the rDNA embedded NA RNA, we speculate that
they are produced from the processing of the 45S rRNA
spacers. Ultimately, most NA RNAs appear to be indepen-
dently transcribed, whether because they have an associated
polymerase ChIP peak, because they are intergenic or an-
tisense, or because their expression level is negatively cor-
related with that of their host gene (Supplementary Fig-
ure S5B and S6C, D). Most importantly, NA RNA fol-
lowed the expression pattern of their respective attributed
biotype, most NA tRNA being independently transcribed
while most NA snoRNA generated from introns being cor-
related with the expression of their host genes, once again
confirming their identity.

NA RNAs exhibit biotype specific conservation and genomic
distribution patterns

To investigate the evolutionary origin of the NA RNA
genes, we calculated their overall conservation levels as
given by the average phastCons100way score, which mea-
sures the odds that nucleotides at each position of a se-
quence are conserved in 100 vertebrates (42). To comple-
ment this analysis, we also searched for orthologs of these
genes in 10 mammalian species and investigated their se-
quence identity levels. As expected, the most conserved
group of NA RNAs are the tRNAs, tRNA fragments and
pre-tRNAs, with most tRNA conserved at least as far as the
opossum (Monodelphis domestica) (Figure 3). This is to be
expected as tRNAs are the most highly conserved ncRNA
class across all domains of life (57). The conservation level
of the NA tRNAs and NA pre-tRNAs is typical of that
of annotated tRNAs, while the conservation of NA tRNA
fragments tends to be lower (Supplementary Figure S7A).
Interestingly, NA tRNA fragment cluster 1153 has no or-
thologs in other species and could, therefore, be a human-
specific gene.

The NA snoRNAs are generally poorly conserved out-
side primates and have a low PhastCons100way score com-
pared to known snoRNAs (Supplementary Figure S7B).
Unsurprisingly, all NA H/ACA snoRNA overlapping Alu
elements are only found in primates, as Alu elements are
unique to primates (58). The fact that most NA snoRNAs
are associated with repeated elements and have very low
conservation levels likely indicates that they correspond
to evolutionarily recent transposition events and fits well
with previous models of snoRNAs spreading throughout
genomes recently thanks to their relationship with transpos-
able elements (59). In fact, amongst the novel genes, only
one C/D and two H/ACA NA snoRNA do not overlap a
retrotransposable element. It is important to note that none
of these snoRNA-like clusters show high sequence similar-
ity to known snoRNAs. This might mean that these genes
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Figure 3. NA RNA display biotype dependent conservation patterns. (A) Violin plots of the distribution of the conservation level of each NA RNA as
determined using the phastCons100way score (average of the score for each nucleotide position) by biotype (color legend on the right). (B) The conservation
of each NA RNA in mammals is presented as a heatmap based on the identity score of the closest hit. The color index (% sequence identity with human)
is shown on the bottom right. The absence of an equivalent gene (NE: no equivalent) is shown in purple while orange indicates a highly similar or identical
sequence. The 11 mammalian species used for the comparison are sorted in ascending order of evolutionary distance from human and the distance estimated
by timetree.org in millions of years (MYA) is shown at the bottom. The biotype of the NA RNAs is indicated on the left.

have originated from snoRNA copies that have rapidly
evolved due to functional redundancy or that they were for-
tuitously produced by the mutation of intronic elements, in-
cluding retrotransposons.

The ITS and ETS-RNA groups both have a poor se-
quence conservation level, which corroborates the known
high sequence variability of these pre-rRNA spacer regions
(60). While most of the NA RNA genes from the ‘Un-
known’ group have low conservation levels, a few such as
cluster 675, are very highly conserved. No correlation is

found between the expression level and the conservation
score for any of the NA RNA groups, with some of the
most expressed being poorly conserved and vice versa. The
high conservation and low expression of some of these
NA RNAs could be explained by tissue- or stress-specific
expression patterns. On the other hand, some NA RNA
genes are highly expressed but have a low conservation
score. These include the most expressed tRNA fragment
(cluster 1088), the most expressed unknowns (cluster 1065
and cluster 177) and the four ETS-RNAs. It is possible that
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these genes are important contributors to primate cells or
represent human specific features. Overall, the conservation
and genomic distribution patterns of NA RNAs strongly
support their biotype classification.

The NA tRNA adopt the transcription and folding patterns
of tRNAs

To further confirm the identity of the NA tRNA, we com-
pared their expression mechanism and folding pattern to
that of known tRNAs. Five of the 8 NA RNAs overlap-
ping a Pol III ChIP-Seq peak as discussed above are classi-
fied as tRNAs, tRNA fragment or pre-tRNA. The strongest
enrichments of RNAPIII ChIP-Seq peaks were observed
within a cluster of tRNAs at the beginning of chromosome
1 that holds 4 NA tRNAs residing near six previously an-
notated tRNAs (Figure 4A). Three of these four clusters
happen to be identical in sequence to other tRNA genes
and consequently were discarded by the multimapping filter
(Figure 1C, D) and they are not included within the selected
111 NA RNAs. However, their obvious transcription by pol
III and their close proximity to other tRNAs are strong in-
dicators that they too are NA tRNA genes. We show that
cluster 5 can also adopt a tRNA-like structure although it
holds some non-canonical features (Figure 4B, Supplemen-
tary Figure S8).

Indeed, even though Turbofold has shown that 6 of the
12 NA tRNAs can properly fold in a three-leaf clover struc-
ture, they all have imperfections when compared with the
canonical tRNA model, explaining why none were pre-
dicted as being tRNAs by tRNAscan-SE. For example,
cluster 5 has an anticodon stem of 7 bp, longer than the ex-
pected 5 and has a very small anticodon loop (Supplemen-
tary Figure S8). It is possible that these tRNA-like genes
have evolved specialized functions. In any case, six of these
NA RNA genes share close structural resemblance with tR-
NAs and most probably are evolutionarily linked to tRNAs.
For the other six tRNA-like NA RNAs that do not seem to
be able to adopt a proper tRNA structure even though they
are highly similar in sequence, their function is more elusive.
For that reason, we would classify them as pseudo-tRNA
genes.

To further validate these tRNAs, we analysed datasets of
alternative RNA-Seq methodologies that are specialized in
the detection of tRNAs to see if they detect our NA tRNAs.
We analysed datasets from the hydro-tRNASeq method-
ology (18), the YAMAT-Seq methodology (19) and the
Demethylase TGIRT-Seq methodology (20). Of the 12
NA tRNAs, all are detected by at least one of these al-
ternative specialized tRNA methodologies, and 9/12 are
detected by all three approaches (Supplementary Figure
S9). Overall, the sequence homology, expression pattern
and genomic organization support the proposed biotype
of these NA tRNA despite their modest deviations from
the features of the canonical tRNA structure. It is interest-
ing to note that all but one of the 12 NA tRNA overlap
so-called NumtS (Nuclear mitochondrial sequences) which
are mitochondrial fragments inserted in the nuclear genome
(61). The NA tRNA are much shorter than the overlapping
NumtS regions. Thus we conclude that our approach de-
tects short regions of NumtSs as strongly expressed. The

special features of these NA tRNAs might be indicative of
alternative or specialized functions.

The tRNA fragments originate from non-annotated tRNAs
and tRNA-like short RNAs

Although they were not aligned to specific tRNA genes
and were too small to be considered as tRNAs, 27 of the
NA RNAs share high sequence similarity with tRNAs else-
where in the genome and many of them are overlapping
tRNA gene repeats identified by RepeatMasker, and so
we classified them as tRNA fragments (tRFs) (Figure 1F,
Supplementary File S1). To assess whether these tRFs are
indeed produced from the processing of a non-annotated
tRNA gene, we extended the fragment sequence to be equiv-
alent in length and position to their reference tRNA (the
most similar tRNA sequence found in RNAcentral). While
cluster 167, cluster 249, cluster 471, cluster 815 and clus-
ter 1115 have >75% sequence identity with their reference
tRNA in their extensions, all the other tRFs have low se-
quence similarity with their reference tRNA in their ex-
tension (Supplementary File 2). The same Turbofold assay
used to identify the tRNA clusters shows that the extended
forms of cluster 167, cluster 204, cluster 471, cluster 815
and cluster 985 can fold in a similar fashion to tRNAs al-
though the size of their different stems is, once again, in-
appropriate in some cases (Figure 5, Supplementary Fig-
ure S10). Finally, read alignment profiles from the non-
fragmented SKOV3ip1 datasets as well as the structure of
extended fragments show that some of these tRFs appear
to be expressed together with a full size tRNA transcript,
giving good confidence that these transcripts are produced
from the nucleolytic processing of a non-annotated tRNA
(Supplementary Figure S10, S11). Investigation of the pro-
files in the different tissue datasets did not show any sig-
nificant difference in the read alignment profile shape. Al-
though this evidence indicates that some of these NA RNA
genes are fragments produced from non-annotated tRNA
genes, most of these NA RNA genes are only assigned to
this class due to their sequence similarity to tRNA. They
may be genes with no functional tie to tRNA as in some
cases, their extensions seem inappropriate to produce a
functional tRNA.

tRFs are known to come from different portions of their
tRNA gene and so they have been divided in different
groups in the literature such as 5′ and 3′ halves, 5′ and 3′
fragments, and internal fragments (62,63). To determine to
which tRF class these fragments belong, we looked at their
alignment position with respect to their reference tRNA
(Figure 5C). Although 4 clusters appear to be 5′ halves, 3
are 3′ halves and 5 are internal fragments, the rest are much
harder to fit in previously established categories. Indeed, the
rest appear to be 3

4 or close to full tRNA fragments that are
slightly too short to fold like tRNAs. Also, the NA tRNA
fragment cluster 1118 overlaps a piRNA sequence entry in
piRNABank. This corroborates previous findings that tR-
NAs can produce piRNAs through processing (64). Overall,
the data underscore the broad spectrum of tRNA-derived
transcripts and suggest that the human transcriptome is re-
plete with expressed tRNA-derived short transcripts await-
ing functional characterization.
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Figure 4. The NA tRNAs exhibit the structural features of known tRNAs. (A) Genome browser view showing the location of a newly identified tRNA
(cluster 5, indicated in magenta) near three additional non-annotated multimapped loci (highlighted in blue – not part of the 111 NA RNA genes) and
previously annotated tRNAs (in red). (B) Predicted secondary structure of cluster 5. The secondary structure was predicted using turbofold and the
structural features of tRNAs highlighted in colors (the acceptor stem, D arm, anticodon arm available loop and T arm are shown in yellow, green, magenta
and blue, respectively while the anticodon is indicated on top in red).

NA snoRNAs associate with snoRNP proteins and target
known rRNA modification sites

The three C/D and seven H/ACA snoRNAs identified by
snoGPS (33) and snoscan (32) exhibit the canonical features
of snoRNA, appropriate box C/D and H/ACA positioning
and identified ribosomal RNA modification targets (Sup-
plementary Table S4). NA snoRNA ribosomal targets are
evenly spread throughout the 18S and the 28S (Supplemen-
tary Table S4). All of these targets are shared with other
snoRNAs, but the NA snoRNAs display no significant se-
quence identity with the annotated snoRNAs mediating the
same modifications. This is not surprising as the target po-
sition of snoRNAs can be interchangeable through muta-
tions of the guide sequence, and so, similar snoRNAs can
have different targets just as dissimilar snoRNAs may share

the same targets (56,65). Structure prediction with Tur-
bofold and box considerations identified an additional 12
H/ACA snoRNA-like NA RNAs that were not predicted
by snoGPS for a total of 22 H/ACA NA snoRNAs. These
additional 12 H/ACA NA snoRNA genes have no rRNA
target predicted by snoGPS and so they can be classified as
orphans. Very few orphan H/ACA snoRNAs are annotated
and little interest have been shown for their potential for
non-canonical functions which could be explained by the
difficulty in detecting these RNA using standard sequenc-
ing techniques (16). Fourteen of these orphan NA H/ACA
snoRNA and four of the NA snoRNAs with rRNA targets
are Alu snoRNAs, which is a class of snoRNA embedded
in Alu repeats. Ten of the orphan Alu snoRNAs were iden-
tified in a previous study as Wdr-79 associated box H/ACA
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Figure 5. The newly identified tRNA fragments are generated from canonical tRNA genes. (A) Alignment of the sequence of cluster 471 with the sequence
of its most similar tRNA gene (tRNA-lys URS0000206F1C). Identical nucleotides are indicated by asterisks and mismatches by blank spaces; the fragment
sequence is highlighted in green. (B) Predicted structure of the RNA fragment cluster 471 in the context of the mature RNA of its reference gene. The
fragment sequence is highlighted in green. (C) Distribution of the size and position of the NA tRNA fragments relative to their reference genes. 0 and 1
indicate the mature 5′ and 3′ ends of the reference gene, respectively. The ratio of fragments over reference gene length is indicated on the right. The asterisk
indicates incomplete reference tRNA that may not fold into mature tRNA structure.

RNPs (66), and are present in the snoRNA atlas (47) but
were not incorporated in the Ensembl or RefSeq databases.
These Alu snoRNAs feature atypical 5′ stem loop size and
their involvement in rRNA pseudouridylation remains un-
verified (67). However, target prediction suggests that four
of these NA Alu snoRNAs may target rRNA modification
(Figure 6, Supplementary Table S4). To confirm the iden-
tity of NA H/ACA snoRNA, we examined the impact of
depleting the H/ACA binding protein dyskerin on the abun-
dance of NA H/ACA snoRNA. As indicated in Figure 6D
and Supplementary Figure S12, the knockdown of dyskerin
reduced the abundance of NA H/ACA snoRNA to the
same level as annotated H/ACA snoRNAs without affect-
ing C/D box snoRNA. Together these data confirm the ac-
curacy of our NA RNA biotype assignment and validate
the prediction of a new group of previously non-annotated
H/ACA snoRNA genes.

The pre-rRNA spacer sequence generates discrete structured
stable transcripts

The four ETS-RNA NA RNAs and four ITS-RNA
NA RNAs are held within four respective copies of the 45S
rDNA (Supplementary Figure S13A). The sequences of the
ETS-RNA transcripts are identical, although cluster 731
is shorter than the others by four nucleotides. The same
is true for the ITS-RNA transcripts, being identical in se-
quence, with short differences as to where the transcripts
begin and end. For that reason, very few of the reads over-
lapping these eight regions are uniquely mapped (between
0.5 and 10% of reads per locus are uniquely mapped, the
other reads being shared with the other three RNAs, but
not with any other genomic locus) and so it cannot be de-
termined if these four ETS and four ITS derived transcripts
are all strongly expressed, but some of them certainly are.
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Figure 6. The NA H/ACA snoRNA are part Alu repeat elements. (A) The position of NA H/ACA snoRNA cluster 25 (magenta box) is shown relative
to the exons of its host gene (gray boxes) and the intronic AluSz6 element (blue box). (B) cluster 25 adopts the structure of an H/ACA snoRNA. The
structure was predicted by both Turbofold (35) and snoGPS (33) showing the position of the H and ACA boxes. The snoRNA target-binding sites are
circled. (C) The predicted modification target of cluster 25 in the 18S rRNA was determined using snoGPS and the pairing between the snoRNA and
target indicated by the black lines. (D) Depletion of the H/ACA snoRNA binding protein dyskerin inhibits the expression of cluster 25. The average RNA
abundance in TPM was determined in sequencing datasets of lipofectamine controls and cells transfected with two independent siRNAs targeting DKC1
(s1 and s2).

Nevertheless, these transcripts accumulate in considerable
abundance, especially for the ETS-RNA which all have an
estimated abundance of ∼400 TPM. Interestingly, the ETS-
RNA NA RNAs presented here are very close in position to
the 5′ end of the 5′ ETS and are next to two annotated genes
of very similar size, present in all four 45S loci: MIR6724-(1
to 4) and a NoRC associated RNA. No sequence similar-
ity was found between these three genes but Turbofold and
RNAfold show interesting structural similarity between the
three as they can all form a long single stem structure (Sup-
plementary Figure S13B). The ITS NA RNAs, on the other
hand, appear to be alone in the ITS1 region, with no an-
notated stabilized transcripts. Their most striking feature is
the highly repetitive nature of their sequence, especially at
the 3′ end, which is particularly GA rich (Supplementary
Figure S13A). These four ITS1 derived copies are situated

between the cleavage sites 2 and 3 and are, therefore, likely
a stabilized fragment of the normally degraded segment be-
tween the two sites. Indeed, we did not detect independent
promoters or transcription initiation sites near the termini
of these NA RNA further supporting their generation from
pre-rRNA processing intermediates.

NA unknown RNAs include RNA fragments, retrotrans-
posons and potential new RNA families

The Unknown NA RNA family comprises genes of a wide
range of sizes, expression levels and conservation levels and
lacks significant sequence similarity with other genes. Se-
quence similarity searches did not identify any significant
similarities with e-value < 0.01 mostly due to the short clus-
ter size (<30 nts). In nine cases, the RNA shared sequence
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similarity with short portions of tRNAs, although they are
too short to be full-size functional tRNAs. Other unknown
NA RNAs share sequence similarity with a small portion
of an annotated gene but they are too short to form a func-
tional copy of this gene. For example, cluster 273 displayed
similarity to the 3′ third of the U12 minor spliceosomal
RNA gene and cluster 739 displayed similarity to the 5′ half
of the SNORA33 H/ACA snoRNA gene. Interestingly, ex-
tension of these fragment sequences shows poor sequence
similarity with the reference RNA. Fourteen other RNA in
the group did not share sequence similarity with any known
gene but were in the size range of miRNAs or piRNAs (Sup-
plementary Figure S3). However, the biggest group (27/37)
of the unknown clusters overlap with a portion of retro-
transposon elements (Supplementary Figure S14), which
might be indicative of retrotransposons that are still being
partly transcribed. For the rest of these ‘Unknown’ clusters,
not much can be said about their potential functional fam-
ily due to their short size and lack of significant homology.
Together, this work indicates that the repertoire of stable
small RNA is far from complete and that the human tran-
scriptome is replete with small RNA fragments that await
annotation, as well as mechanistic and functional charac-
terization.

DISCUSSION

We have previously shown that ribodepleted non-
fragmented TGIRT-Seq allows the detection of a much
wider range of non-coding RNAs than standard RNA-Seq
(16). Here, we show that this technique detects RNAs that
have not yet been annotated. Their lack of annotation
is either due to the fact that they are generally hard to
detect with classic sequencing methods and/or that they
imperfectly fit in characterized RNA families due to non-
canonical features. Indeed, it certainly is not a coincidence
that most of these 111 non-annotated regions are predicted
as either tRNA-like or H/ACA snoRNAs, two highly-
structured RNAs we have previously shown to be greatly
under-represented in classic RNA-Seq datasets (16). Also,
many of these non-annotated genes have imperfections in
relation to their predicted RNA families. However, in most
cases tested, the expression and conservation patterns, the
structure, the genomic location, and the response to protein
depletion validated the newly predicted gene biotypes as
bonafide new genes with a robust expression level. Indeed,
most of the NA RNA genes were expressed in a wide
variety of tissues and a few were expressed at very high
level (Figure 2, Supplementary Figure S4). Their genomic
location and expression levels mirror those of their assigned
biotype (Figure 2, Supplementary Figure S3–S6), as do
their structure and conservation patterns, confirming their
assigned biotypes (Figures 3, 4 and Supplementary Figure
S7–S8). Finally, biotype-specific experimental evidence
such as tRNA-seq and dyskerin depletion further support
the classification (Figure 6, Supplementary Figures S9
and S12). Together the work presented here underscores
the importance of annotation-independent analysis of
sequencing data and adds dozens of new experimentally
validated genes to standard annotations.

The newly identified genes may represent a new class of
RNA with alternative function. For example, we have found
that some of the NA tRNAs have stems or loops of inap-
propriate sizes, mismatches in stems or are simply unable
to adopt the 3-leaf clover structure. Because of this, they
are not positive hits for the tRNA predictor tRNAscan-SE.
This explains why they have not been annotated as tRNAs
by GtRNAdb (30) which uses tRNAscan-SE positive hits
to identify tRNA genes. Although there are no tRNAscan-
SE positive hits in the novel genes we describe here, most of
them are highly conserved and expressed, and show strong
sequence similarity to tRNAs and are detected in tRNA se-
quencing methodologies. Further validations would be nec-
essary to determine whether the standard definition of the
tRNA family should be extended to include these atypi-
cal tRNA genes. It is, however, entirely possible that some,
if not all, of these NA tRNA genes have distinct func-
tions compared to canonical tRNAs, whether it be to pro-
duce fragments in specific conditions or to function in com-
pletely different cell pathways. On the other hand, the non-
annotated tRFs come from all parts of tRNAs and range
in size from 32 to almost full tRNA of 62 nucleotides (Fig-
ure 5). This challenges the notion that tRFs are necessarily
limited to strict categories including 5′ fragments, 5′ halves,
3′ fragments, 3′ halves and internal fragments (62,63) and
might be indicative of a much more complex family of tran-
scripts. It is important to note that, not all of these tRFs
may be produced from non-annotated tRNA genes. Indeed,
our alignment results show that, although some might be
expressed as full functional tRNAs in other cell types, oth-
ers show no sequence identity with tRNAs in their exten-
sions and cannot fold as tRNAs. Two likely models might
explain these isolated tRFs. First, it might be possible that
the redundancy of tRNA genes led to the evolution of loci
that are only used to produce tRFs and so their upstream
and downstream sequences quickly degenerated, losing the
ability to produce a functional tRNA. Another hypothesis
is that some of these tRFs were produced from a different
tRNA gene locus and were captured by retrotransposable
element machinery and then inserted somewhere else in the
genome, as has occurred for snoRNAs (59). Overall, these
results seem to indicate that tRFs are not just products of
the processing of tRNA but might have become indepen-
dent genes expressed on their own.

The newly identified snoRNAs described here fuel the de-
bate about the alternative function of snoRNAs outside the
documented role in rRNA modifications. While many of
these RNA have clear modification targets, several others
have no predictable rRNA target or are found in Alu re-
peat elements, which define a group of H/ACA snoRNA
with unclear function. However, regardless of target pre-
dictability, all new H/ACA snoRNA behave like bona fide
snoRNA. Their genomic distribution, folding and expres-
sion patterns fit that observed for known snoRNAs. Most
importantly, these new snoRNA are sensitive to the deple-
tion of the H/ACA RNA binding protein dyskerin con-
firming their H/ACA vocation. Notably, our work suggests
that Alu H/ACA which were recently described as a dis-
tinct class of snoRNAs (67,68) may behave like canonical
snoRNA. They are equally sensitive to dyskerin depletion
supporting their nucleolar localization and pseudouridy-
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lation functionality. Confirming the link to Alu H/ACA
snoRNAs, we identified CAB boxes in our newly identi-
fied Alu H/ACA, supporting previous evidence of an Alu
H/ACA Cajal body-relationship (67). Interestingly, the Alu
H/ACA snoRNAs are not always aligned on the same po-
sition relative to Alu elements, being produced both from
Alu monomers and dimers. Together with the evidence of
canonical function, this suggests that Alu H/ACA are not
a functionally distinct class, but rather a fortuitous produc-
tion of Alu repeats. This opens the possibility that any inclu-
sion event might produce a stable transcript, provided a few
mutations occur to make the H and ACA boxes. This rel-
ative simplicity might explain the large number of H/ACA
snoRNA genes found in the genome and suggests that many
other H/ACA snoRNAs might be awaiting discovery in
other cell lines.

The structural similarity and genomic proximity of ETS-
RNA to the MIR6724, a miRNA with no known target,
and a NoRC associated RNA might offer clues as to their
purpose. Indeed, these NoRC associated RNA are known
to be recognized by TAM domain of BAZ2A (also known
as TIP5), a component of the NoRC chromatin remodel-
ing complex (69). These NoRC associated RNA have been
shown to be essential to bring the NoRC complex to the
rDNA promoters in order to make epigenetic modifications
and form heterochromatin, and to bring the rDNA promot-
ers to the nucleolus (69–71). It has been shown that other
RNAs with similar structures are specifically recognized by
BAZ2A and lead to heterochromatin formation. This is the
case of the TERRA RNA that targets the formation of het-
erochromatin at the telomeres (72). It is therefore possible
that the NoRC associated RNA, the elusive MIR6724 and
the NA ETS-RNA derived transcripts shown here are all, in
fact, produced in order to regulate the chromatin structure
of rDNA copies, as well as their localization and transcrip-
tion levels. There is, however, no high-throughput analysis
of BAZ2A interactions available in the literature and so this
remains speculative for now.

Together the results presented here indicate that the an-
notation of the human genome is far from complete and
underscore the value of direct analysis of RNA-Seq align-
ment profiles. Clearly, the number of non-annotated genes
is not limited to the 111 genes identified here since we used
stringent filters on our TGIRT-seq datasets, non-exhaustive
sequencing techniques and did not consider sporadically
expressed low abundance RNA. Deeper sequencing in dif-
ferent tissues and cell lines, and relaxed filters will uncover
many additional yet to be annotated genes. The annotation-
independent analysis used in this study might also be of
value for identifying biomarkers expressed only in diseased
tissues. These types of biomarkers by definition would not
be annotated in normal genomes.
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