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Objective. This paper presents an assessment of physical meanings of parameter and goodness of fit for homodyned K (HK)
distribution modeling ultrasonic speckles from scatterer distributions with wide-varying spatial organizations. Methods. A set of
3D scatterer phantoms based on gamma distributions is built to be implemented from the clustered to random to uniform
scatterer distributions continuously. The model parameters are obtained by maximum likelihood estimation (MLE) from
statistical histograms of the ultrasonic envelope data and then compared with those by the optimally fitting models chosen from
three single distributions. Results show that the parameters of the HK distribution still present their respective physical
meanings of independent contributions in the scatterer distributions. Moreover, the HK distribution presents better goodness of
fit with a maximum relative MLE difference of 6.23% for random or clustered scatterers with a well-organized periodic
structure. Experiments based on ultrasonic envelope data from common carotid arterial B-mode images of human subjects
validate the modeling performance of HK distribution. Conclusion. We conclude that the HK model for ultrasonic speckles is a
better choice for characterizing tissue with a wide variety of spatial organizations, especially the emphasis on the goodness of fit
for the tissue in practical applications.

1. Introduction

The ultrasonic imaging has many advantages over other tech-
niques due to utilizing nonionizing radiation, scanning in real
time, and distinguishing soft tissues with high sensitivity and
resolution [1, 2]. The speckle, which manifests the granular
structure in the ultrasound images, is caused by diffuse scatter-
ing of the ultrasound, and the background texture of the
speckle is connected with the tissue microstructure. Therefore,
the ultrasound imaging shows good potential for diagnosing
diseases by statistical analysis of the speckle properties in
the images to extract corresponding distribution parameters
[1, 2]. Two kinds of statistic models including single
distributions [3–5], such as the K distribution (K), Rayleigh
distribution (RA), Rician distribution (RI), and Nakagami
distribution, as well as compound distributions [6–9], such

as the homodynedK distribution (HK), generalizedK distribu-
tion, Rician inverse Gaussian distribution (RiIG), Nakagami-
generalized inverse Gaussian distribution (NGIGD), have been
investigated for analyzing the statistical properties of the
ultrasonic-echoed envelope data. As commonly used models,
the single distributions have been widely employed since the
1980s [3–5]. This kind of method is used as the histological
descriptors with a one-to-one relationship between the distri-
bution type and tissue characterization. According to the
results from the researches, the K distribution corresponds to
the tissue with low density of scatterers and without a deter-
ministic component; the Rayleigh distribution refers to the tis-
sue with high density of scatterers and a without deterministic
component; the Rician distribution represents tissue with high
density of scatterers and a deterministic component. On the
contrary, the compound distributions model the tissue speckle
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pattern in images through modulating the parameters to
represent the scatterer clustering degree or effective density,
diffuse signal power, and coherent signal component [6–9].
The quantitative measurements, such as log-likelihood cross-
validation or Kullback-Leibler distance, are used to verify the
model performance.

As a generalized compound distribution, the HKmodel has
drawn more attention over the other compound versions
because its parameters present respective physical meanings
from independent contributions in the scatterer distributions.
In order to investigate the parameter meaning of the HK distri-
bution, Prager et al. [10] described a method to estimate the
ratio of the mean to the standard deviation and the skewness
for the statistical model of the HK distribution based on
arbitrary powers of the simulating ultrasound echo envelope
signals. The parameters of the HK distribution were also esti-
mated by the moments of the distribution. As a unifying point
of view, Destrempes and Cloutier [11] compared the HK distri-
bution and other statistical models based on theoretical compu-
tation for the modulated distribution, modulating distribution,
and modulated parameters on the mean and the signal-to-
noise ratio of the signal intensity. The authors conclude that
the HK distribution is the only model that the parameters have
their physical meanings in certain cases, even though the other
distributions may better fit ultrasound signals. In addition, the
authors suggest that the goodness of fit for HK distribution
should be further assessed by the simulation or clinical test.
Destrempes et al. [12] presented a new estimation method for
the parameters of HK distribution by the mean intensity and
two Log-moments. Then, theymade a comparison between this
method and the methods based on the first three moments of
the intensity, the amplitude, or the signal-to-noise ratio
(SNR), skewness, and kurtosis of two fractional orders of ampli-
tude. The results indicate that this estimation method is the
best. However, the method of moments for parameter estima-
tion is deficient because the solutions of the equations based
on the even moments are not always real or positive. The selec-
tion criteria for a set of parameters are various and nonunique,
and the computational complexity for the high order moments
is also a problem [13]. Moreover, the distribution based on the
moment method may not be the optimum one for fitting ultra-
sound signals. As an important aspect in practice, applications
of the best fitting ultrasound signals using statistical models
involve tissue segment [14], speckle reduction [15], modeling
for localizing a thin surgical tool [16], ultrasound kidney images
[17], carotid artery plaque assessment [18], or classification of
breast lesions [19]. It is necessary to assess the parameter
meanings and goodness of fit of HK distribution for ultrasound
echo signals under an optimum condition.

The objective of this paper is to assess the physical mean-
ings of parameter and goodness of fit of HK distribution for
ultrasonic envelope data from scatterer distributions with
wide-varying spatial organizations by using maximum likeli-
hood estimation (MLE) criteria. A 3D scatterer phantombased
on gamma distributions is built to be implemented from the

clustered to random to uniform scatterer distributions
continuously. The model parameters and maximum likeli-
hood estimation are obtained by MLE from statistical histo-
grams of the ultrasonic envelope data. In order to evaluate
the parameter meanings and goodness of fit, the mean and
standard deviation (MSD) of these estimated values based
on 30 simulation realizations are compared with those based
on the optimally fitting models chosen from commonly used
three single distributions, that is, the K, Rayleigh, and Rician
(OKRR) distributions. Experiments based on ultrasonic enve-
lope images from common carotid arteries (CCA) of 30
human subjects validate the simulation results of HK distri-
bution for tissues with varying scatterer spatial organizations.

2. Methods

2.1. The Speckle Models

2.1.1. Three Single Distributions

(i) Rayleigh Distribution. The Rayleigh distribution [20]
arises with a large number of scatterers in the effective
resolution cell. The scattering structure is too fine to
be resolved and fully forms a speckle pattern in ultra-
sonic B-mode images. The Rayleigh distribution for
ultrasonic envelope amplitude A is defined by

PRA A = A

d2
e−A

2/2d2 , 1

where d2 represents the variance of scatterer
strength. This distribution is a classical statistical
model that assumes many fine randomly distributed
scattering sites in the space without any well-
organized periodic structure.

(ii) Rician Distribution. The Rician distribution [21]
describes the analogous textures as the Rayleigh
distribution, but the difference is the existence of
the coherent signal echoed from the well-organized
periodic scatterer structure to the diffuse signal from
randomly distributed scatterers. The Rician distribu-
tion is expressed as

PRI A = A
g2

e− A2+l2 /2g2 I0
Al
g2

, 2

where g2 and l, respectively, are the variance and
mean in scatterer strength. I0 x is the modified
Bessel function of the first kind and order zero.
The special case is that the Rician distribution
becomes the Rayleigh model with a small value of l
or Gaussian model for l→∞.

(iii) K Distribution. Another commonly used model for
ultrasonic envelope data is called the K distribution
[22], which may describe the signals from the struc-
tures with a small number of scatterers in the effec-
tive resolution cell. The probability density function
for the envelope amplitude A can be written as
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PK A = 2a
Γ m

aA
2

m

Km−1 aA , 3

where Km−1 x is the modified Bessel function of the
second kind and order m − 1. Γ x is the gamma
function, and a = 2 m/ 2σ2 1/2 (where 2σ2 is the
second moment of A). For the case of m→∞, this
model turns into the Rayleigh distribution.

2.1.2. The Homodyned K Distribution. The HK distribution
[10], as a more universal statistical model, is used to describe
the signals from the structure filling of variable density
scatterers with or without well-organized periodic compo-
nents. The HK distribution models the ultrasonic envelope
amplitude A by

PHK A = AuJ0 uε J0 uA 1 + u2σ2

2c

−c

du, 4

where ε, σ, and c, respectively, denote the coherent compo-
nent, diffuse component, and scatterer clustering degree in
the signal. J0 x is the Bessel function of the first kind with
order 0. The model shades into the K distribution with
ε→ 0, the Rayleigh distribution with c→∞ and ε→ 0, and
the Rician distribution with c→∞. The parameters of the
HK distribution have their own physical meanings of the
independent contributions from clustered, random, and
regular components in the scatterer distributions.

2.2. Ultrasound-Echoed Data Simulation. In order to objec-
tively and fully assess the HK distribution performance, it is
required to synthesize a varied ultrasonic data source with
the scatterer distributions, whose density and spatial organi-
zation can be tuned along the continuum from clustering to
random to regular. In a present study, a 3D simulation for
the ultrasonic envelope images is performed by the Field II
software on theMATLAB platform. This library achieves this
target by setting the scatterer phantom geometry, density,
strength, and organization as well as the probe and ultrasonic
scanning parameters in relevant functions.

A generalized Poisson process is used to setup the 3D
scatterer distribution by a given scatterer number and
phantom dimension as well as shape and scale parameters
of the gamma distribution for the scatterer space. A one-
dimensional scatterer model proposed by Cramblitt and
Parker [23] is given by

s x =〠
i

aiδ x − Xi , 5

where Xi and ai are position and strength of the ith scatterer,
respectively. A Poisson process is considered to define the
distance d between two continuous points [24]. In this case,
the space of scatterers is the gamma distribution to generalize
this Poisson process with the shape parameter α and scale
parameter β as

f d = dα−1 exp −d/β
Γ α βα , 6

where α > 0, β > 0, and d > 0. The mean and variance of the

space d are d = αβ and σ2
d = αβ2 = d

2/α, respectively. There-
fore, the scatterer distribution could be characterized by the
density parameter 1/d and shape parameter α. For α < 1,
the scatterer distribution is clustering with high space vari-
ance; with α = 1, the Poisson process with gamma distribu-
tion turns into exponential distribution, and the space d is
random; for α > 1, the scatterers are distributed evenly in
the space with low space variance. In other words, d is set
to equality. Figure 1(a) demonstrates the one-dimensional
scatterer positions with different values of shape parameter
α under a certain density condition (determined by d).
The shape parameter α is set as 0.01, 0.1, 1, 10, and 100,
while the scale parameter β changes with the α by
β = d/α d = 2 17 with 50 scatterers. In this figure, the clus-
tering degree of scatterers is the highest for α = 0 01. With
the value of the shape parameter increasing, the clustering
degree is decreasing, and the scatterer positions are randomly
distributed with α = 1, while the distribution tends to evenly
spread as α = 100. Therefore, with the shape parameter
increasing, the scatterer distribution is changing from clus-
tered to random to regular continuously. By the given varied
mean distance (density) and shape parameter, the scatterer
distance distribution could be smoothly changed from
irregularity to regularity, which makes this scatterer model
agilely and continuously adjustable.

For resembling the reality, the one-dimensional scatterer
distribution should be isotropically mapped onto two- or
three-dimensional spaces for guaranteeing homogeneity to
the scatterer structure. As a continuous and nondifferentiable
fractal, space-filling Hilbert curve [25] becomes a good
choice because it could well assure the corresponding relation
between the distance for two contiguous points of the origi-
nal one-dimension line and the spatial distance for two
points of the multidimension space. For the 2D occasion
shown in Figure 1(b), the mapping way is from a vertex of
a square cell to the adjacent one along an edge of this square
cell. For the 3D occasion, the mapping route for level one
shown in Figure 1(c) is from a vertex to another according
to the vertical number in the cube cell; the mapping manner
for level two is filling the eight cube cells in the order of the
numbers shown in Figure 1(d) by using the mapping way
in one cube cell for level one. Finally, the phantom is setup
by placing the scatterers with predefined density, strength,
and position distributions into a cube with a preset size.
Details for this mapping algorithm can be found in [26].
Due to the ground truth that aim parameters could be finely
preset, which could be hardly reached in physical phantom,
this scatterer model is attractive for evaluation of parameter
characterization and fitting performance of HK distribution
for ultrasound RF signals from the cross-tissue simulation.

2.3. Parameter Estimation. Given an observed data set X,
the log-likelihood value L s is computed with the known
global probability density function (PDF) P and unknown
parameters s as [27]

L s = ln∏
x∈X

P s∣x 7

3Journal of Healthcare Engineering



The maximum likelihood estimation is seeking the esti-
mated values of parameters s when L s attains its maximum.
For realizing this object, s must conform as

∂
∂s

L s = 0 8

However, it is difficult to compute the parameter s
directly by solving the analytic solution from (8). For this
reason, it is necessary to use a method of numerical calcula-
tion to find this parameter by exploring the optimized result
within a certain range under the condition of the maximum
log-likelihood value. The solutions to (8) are found numeri-
cally using the Newton-Raphson method [28]. For this
purpose, define

F1 x s k1, s
k
2,  …,   s kM = ∂L s

∂s1
∣s= s k = 0,

F3 x s k1, s
k
2,  …,   s kM = ∂L s

∂s3
∣s= s k = 0 9

FM x s k1, s
k
2,  …, s kM = ∂L s

∂sM
∣s= s k = 0,

where s = s1, s2,…, sM is the model parameter vector;
s = s 1, s 2,…, s M is the estimated one at the kth iteration.
The value of the parameter vector s at a given iteration is
obtained as

s k+1
1 = s k1 −

F1 x s k1, s
k
2,  …,   s kM

F1′ x s k1, s
k
2,  …,   s kM

10

s k+12 = s k2 −
F2 x s k1, s

k
2,  …,   s kM

F2′ x s k1, s
k
2,  …,   s kM

11

s k+1M = s kM −
FM x s k1, s

k
2,  …,   s kM

FM′ x s k1, s
k
2,  …,   s kM

12

The value of s1 obtained from (10) is used as the initial
value in (11), whereas the value of s2 found in (11) is used
as the initial value in the subsequent equation and so on.
Finally, the value of sM found in (12) is used as the initial
value of sM in solving (10) in subsequent iterations. This iter-
ative process will be continued until the following condition
is satisfied:

〠
M

i=1
s k+1i − s ki ≤ 1 × 10−8 13

In the MLE processing, the PDF of the used statistical
models should be calculated firstly. For the Rayleigh, Rician,
and K distributions, the analytical expression defined as (1),
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Figure 1: The scatterer position by the gamma distributions with different shape parameters α in one dimension (a), and mapping schematic
to two dimensions (b), three dimensions with levels 1 (c) and 2 (d).
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(2), and (3) could be directly used to calculate the PDF. For
HK distribution, its PDF expression defined as (4) is an
integral form, from which its analytic primitive function is
hard to be obtained. Thus, the numerical integration is used
to compute this integral for the PDF by the function quadgk
in the MATLAB platform, which returns the integral
result using a high-order global-adaptive Gauss-Kronrod
quadrature [29] with input parameters of integration range
(0, inf), 1× 10−8 of error tolerance and 20,000 of allowed
maximum number of intervals.

3. Experiments

3.1. Experiments with Simulation Data. In the simulation
study, echoed ultrasound RF signals and their corresponding
envelope images are simulated by using the Field II library
from a set of 3D scatterer phantoms based on gamma distri-
butions with different values of shape and scale parameters,
which control to implement continuously from the clustered
to random to uniform scatterer distributions firstly. In the
simulation, the scatterer phantom is set as a cube with
12mm× 12mm× 12mm under the transducer surface of
20mm with shape parameter values of 0.1, 1, 10, and 100,
as well as density values of 5, 10, 50, and 100 scatterer/ λ3,
respectively. Acoustic parameters are set as the center fre-
quency of 5MHz, the sampling frequency of 100MHz, sound
speed of 1540m/s, and wavelength of 3.08× 10−4m; the
parameters for the linear array transducer are physical and
active elements of 512 and 64, respectively, element width
of 1.54× 10−4m, height of 0.005m, fixed focal point of [0, 0,
0.03]m, respectively, and lines for envelope imaging of 20.
The mean and variance for normal distributions of scatterer
strength are 0 and 1, respectively. Then, the MLE for
statistical histograms (SH) of the gray levels of the envelope
speckle images is performed to obtain the values of the
model parameters and log-likelihood. In order to evaluate
the parameter meanings and goodness of fit for the HK
distribution, the mean and standard deviation of these
estimated values based on 30 realizations are compared
with those by the optimally fitting models chosen from
commonly used three single distributions.

3.2. Experiments with Human Subjects. The modeling perfor-
mance of the homodyned K distribution for ultrasonic
speckles from scatterers with varying spatial organizations
is also accessed by B-mode images of common carotid arter-
ies scanned from a small group of volunteers. The carotid
artery is the arterial trunk on both sides of the head and neck.
Due to its special anatomical structure, cardiovascular and
cerebrovascular diseases such as atherosclerosis are usually
initialized and developed from this arterial segment. Geo-
metric and statistical information obtained by using ultra-
sound techniques from the intima-media, media, adventitia,
blood flow, and surrounding tissues of CCA has important
clinical significance for disease diagnosis [30]. It has been
proved by histological studies [31] that the intima composed
of the endothelium and subendothelial is the thinnest inner
layer of the vessel wall. The adventitia is made up with the
loose connective tissue, and the inoblast is the main cellular

constituent of the loose connective tissue in the vessel wall.
The media, which locates between the intima and adventitia,
is composed of the elastic membrane with a little smooth
muscle, whose reflection effect for ultrasound could be
attenuated due to its location between the intima and adven-
titia. The blood in the lumen, which is one of the connective
tissues, is mainly composed of the plasma and hemocyte, and
the echo is mainly produced by the hemocyte. Thus, the
intima, intima-media, adventitia, and blood in the lumen
could be considered as a set of test tissue samples with
different scatterer distributions and spatial organizations.

All clinical B-mode ultrasound images are scanned by a
commercial ultrasound system (PHILIPS iU22, Philips
Medical Systems, Andover, MA) equipped with a L12-5
linear array transducers. The imaging parameters are set as
the grey level of 55%, the contrast level of 56%, the overall
gain of 6 (the maximum scale is 12), and the time gain com-
pensation from the near field to far field of −4, −3, −2, −1, 0,
1, 2, 3, and 4dB. 30 B-mode ultrasound images of healthy
CCA are collected, and the sections of the intima-media,
media, adventitia, and lumen are manually segmented from
CCA images delicately. The envelope data are estimated by
a nonlinear mapping method [8] from the B-scan data in
each section. The histogram and maximum likelihood
estimation are computed from these estimated envelope
data for comparison. The mean and standard deviation
of estimated model parameter and likelihood values based
on HK distribution are also compared with those by the
optimally fitting models chosen from commonly used three
single distributions.

All the above simulation and performance evaluation
are conducted with software platforms of Windows® XP
and MATLAB R2014b, under the hardware conditions of
Intel Pentium Dual-Core CPU (E6500) 2.93GHz and
4GB memory.

4. The Results and Discussions

4.1. Results and Discussions with Simulation. In order to
assess physical meanings of parameter and fitting perfor-
mance of the HK distribution, 30 isotropous scatterer models
with different spatial organizations are setup. Figure 2 depicts
the scatterer models with different shape α and density ρ
values in the cases of the scatterer strength following normal
distributions of mean 0 and variance 1. The scatterers are
distributed as spreading dots, whose gray levels indicate the
scatterer strength. In Figure 2, considered separately the
influence of the shape parameter α on the scatterer distribu-
tions, it is observed that the scatterers are high clustered with
a small value of α and the most tightly clustered for α = 0 01.
However, the clustered distributions are becoming random
and even approaching the uniformity along with the increas-
ing density ρ. With the increasing value of α, the clustered
scatterers are randomly and then uniformly spread in the
space, notably the most uniform distributions for α = 100.
Focused on the effect of the density parameter ρ on the scat-
terer distributions, it can be found that the scatterers cluster
in the space for small ρ and become stochastic in manner
and then in uniformity with the growing shape parameter α.
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Therefore, both the shape parameter and scatterer
density affect the scatterer distributions and effective scat-
terers in space. Lower values of shape and density param-
eters lead to more tightly clustered distributions, from
which a few effective scatterers can be found. However,

larger shape and density parameter values give more even
distributions with more effective scatterers. It is known
that the scatterer model reflects tissue characteristics by
spatial distribution, which determines the speckle patterns
in echoed signals.
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Figure 2: The scatterer phantoms with strength following normal distribution of mean 0 and variance 1. The image size is 2mm× 2mm.
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Figure 3: The simulated ultrasound envelope images. The image size is 12mm× 12mm.
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Figure 4: The statistical histograms and fitted curves for simulated ultrasound envelope images.
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Figure 3 shows the simulated ultrasound envelope images
with different shape α and density ρ values corresponding to
the scatterer models shown in Figure 2. In Figure 3, the
variation of the shape parameter α influencing the results is
checked firstly. With the low α, the clustered distributions
in scatterer models (Figure 2) produce sporadic speckles
without any deterministic component in images, particularly
for α = 0 01, whereas the dispersive speckles without regular
components are becoming denser randomly with the
increase of density ρ. In the cases of increasing α, which rep-
resent that the scatterer distributions in the models turning
gradually from clustering to regularity, the speckles in the
images are becoming denser with more or less horizontal line
patterns, which is particularly remarkable for ρ = 1. Espe-
cially for α = 100, the most regular speckle pattern can be
found in the images. Secondly, considering the variation of
the density ρ, the sporadic speckles, whose distributions are
consistent with the those of the scatterer models shown in
Figure 2, are also distributed in images when the ρ is small.
The most clustered speckle distributions can be found for
ρ = 1. The sporadic speckle distributions are changing to
the densely random ones for the increasing shape parameter
and the regular ones for the large-shape parameter. Thus,
both the shape and effective density parameters affect the
speckle distributions in the images. The shape parameter
determines the regularity of speckle distribution for a certain
degree of effective density.

The cases of α = 1, 10, and 100 should be drawn more
attention. When ρ = 1, the speckle distributions present an
increasing ordered horizontal-line pattern; for ρ = 5 and 10,
the images show that the major speckle areas are highlighted
high-reflection regions, indicating the well-organized peri-
odic structure; to ρ = 50 and 100, high-dense and uniform
scatterer distributions result in total reflection occurring to
some extent in corresponding ultrasonic envelope images.
The total reflection is a physical phenomenon that the
incident and reflected waves are counteracted due to their
opposition when the characteristic impedance of the incident
medium is much greater than that of the reflective medium,
and contrarily, the amplitude of the synthesis wave is double
of that of the incident wave based on the in-phase [32]. Thus,
in the images (for α = 1, 10, and 100 and ρ = 50 and 100),
strong specular reflection appears in the belt zones of the
top and bottom, and weak random reflection appears in the
central region.

Figure 4 demonstrates the statistical histograms and fitted
curves for simulated ultrasound envelope images in Figure 3.
In these subfigures, the statistical histograms express the
distributions of echoed envelope data, and the two fitted
curves represent the estimated PDF waveforms of the HK
(red line) and the model chosen optimally from the K (blue
line), Rayleigh (green line), and Rician (turquoise line)
under the MLE condition. In Figure 4, considered only the
role of the shape parameter, when the α is small, the OKRR
model for the echo envelope, which corresponds to the
clustered scatterers (shown in Figure 2) and the sporadic
speckle images (shown in Figure 3), is the K distribution.
Especially, the case of α = 0 01 is the most typical.
Moreover, the differences of goodness of fit between the K
and HK distributions can be found. The goodness of fit of
the HK distribution for the envelope data is better than that
of the K distribution. With rises of shape parameter and
density, the fitted distributions by the OKRR are turning
into the Rayleigh. In these cases, Rayleigh and HK
distributions for fitting the histograms of the given data are
very close. With continuous increase of density or shape
parameter, the fitted models by the OKRR are becoming the
Rician distributions, whose goodness of fit is approximately
equal to the HK distribution. The cases of α = 1, 10, and 100
should be noticed again. When ρ = 1, the dispersive
histograms represent the envelope data from scatterers with
low density and a little organized periodic structure (shown
in Figure 2), as well as the speckle distributions with an
ordered horizontal-line pattern (shown in Figure 3). In
these cases, both the OKRR-based K or Rayleigh
distributions and the HK distributions could conform well
to the dispersive statistical histograms; for ρ = 5 and 10, the
OKRR-based Rician distributions conform well to statistical
histograms due to the more regular distributions in space
for high-dense scatterers; for ρ = 50 and 100, which
represent the very high regularity and density of scatterers,
the OKRR-based K distributions rather than the Rician
distributions are the preferable options for modeling the
envelope data due to the appearance of the total reflection
in images. Thus, the HK distribution could be a better
model for the fitness with the ultrasonic speckle in
envelope images echoed from very high regular and dense
scatterer distributions.

In order to demonstrate the performance for the param-
eter estimation for HK distribution using the MLE algorithm,
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relative bias and normalized standard deviation (SD) of the
values of the two parameters c and k = ε/σ [12, 13] with sets
c ∈ 1, 2,…, 10 and k ∈ 0 1, 0 2,…, 1 0 for 1000 random
numbers are computed and shown in Figure 5. Compared
with the results of [12, 13], the algorithm based on MLE
to estimate the parameters of HK distribution get smaller
errors. However, the average time for one estimation takes
3–8 minutes, which is much longer than those methods
of moments. More studies on the selection of initial values
of parameters, numerical computation of PDF, and solu-
tion of the maximum likelihood equation are needed in
the future for improving computational efficiency of the
presented method.

In order to quantitatively assess the parameter character-
ization and goodness of fit, Table 1 lists the mean and stan-
dard deviation of the estimated parameters and maximum
likelihood values of the fitted distributions with different
shape α and density ρ values. To obtain a more reasonable
comparison for distributions having different numbers of
free parameters, the “best-fitting” value was calculated using
the likelihood value based on minimized Schwarz’s Bayes
information criterion (BIC) [33]:

L = −2Ll +mlog n, 14

where Ll is the value of the maximum log-likelihood, as well
as n and m are the numbers of data samples and parameters
in the model, respectively.. The likelihood values based on
BIC of the fitted distributions by the HK, OKRR-based K,
Rayleigh, and Rician are denoted as LHK,  LK,  LRA, and
LRI, respectively. The asterisk symbols ∗, ∗∗, ∗∗∗, and
∗∗∗∗ that are reflected on the tables indicate the sections
of the fitted OKRR distributions by the models of K, Ray-
leigh, Rician, and K with total reflection, respectively. It is
commonly known that the three parameters ε, σ, and c of
the HK distribution have their independent physical implica-
tions, which separately express the coherent component,
diffuse component, and clustering degree of scatterers in
tissue, respectively.

It has been shown from the scatterers (Figure 2) and
the corresponding envelope images (Figure 3) that the
speckle distributions in images are clustered from high-
variance (α < 1) and low-density scatterers (ρ ≤ 10). In the
corresponding section ∗ (OKRR-based K distributions) of
Table 1, the small density or shape parameters mean the
low effective density or high clustered scatterers with little
organized periodic structure. In these cases, the estimated ε
ranged as 0.01–0.14 indicates existence of little coherent
components and increases along with the increasing density;
the values of σ are from 0.17 to 0.26, which are also increas-
ing along with the increasing density; c is small for high clus-
tering and increasing along with the increase of the shape
parameter and density, indicating a change from clustered
to randomtoregular speckledistributions in images. Secondly,
the speckle distributions become random around α = 1 and
more evenwithα > 1.Meanwhile, adequate speckle is forming
when ρ > 10 in the envelope images. Thus, section ∗∗
(OKRR-based Rayleigh distributions) denotes the random
scatterers with higher effective density and more or less

well-organized periodic structure. In these cases, the ranges
of the estimated ε in section ∗∗ are 0.01–0.36, which are
larger than those in section ∗ overall. This means more
deterministic components in the echoed envelope data in
section ∗∗ due to their scatterers having more regular spatial
distributions with a higher shape parameter α. The range of σ
in section ∗∗ is 0.16–0.30, which is close to that (0.17–0.26)
in section ∗. Parameter c ranged as 5.61–100 in section ∗∗ is
larger than that ranged as 1.00–2.55 in section ∗, which indi-
cates weaker clustering in section ∗∗. Thirdly, Figure 3
shows that the speckle distributions become regular when
α ≥ 1. Meanwhile, adequate speckle is forming when ρ = 5
and 10 in the envelope images. In its corresponding
section ∗∗∗ (OKRR-based Rician distributions), which
denotes the high effective density scatterers with a certain
well-organized periodic structure, the range of estimated ε
is 0.52–0.69, much larger values than those in sections ∗
to ∗∗. This implies more deterministic components in enve-
lope data in this section due to much more regular distribu-
tions of scatterers with a higher parameter α and adequate
density. The range of σ in section ∗∗∗ in the table is 0.11–
0.16, smaller values than those (0.16–0.30) in section ∗∗,
signifying a less random degree for envelope data in this sec-
tion. The larger parameter c ranged as 5.69–40.29 indicates
strongly even speckle distributions in envelope data echoed
from the specular scatterer distribution in section ∗∗∗.
Finally, it should be noticed that the clear characterization
of the HK parameters corresponding to scatterer spatial orga-
nizations in section ∗∗∗∗ could not be found owing to the
total reflection in the echoed envelope images. In summary,
the parameters of the HK distribution still present their
respective physical meanings of independent contributions
from the clustered, random, and regular components in the
scatterer distributions under MLE criteria.

In order to evaluate the goodness of fit forHK distribution
modeling the ultrasonic envelope data, the largest difference
between the values of maximum likelihood based on BIC
of the fitted distributions by the HK and OKRR are listed
in all four sections in Table 1 for comparison. The largest
differences exist between LHK = 245 and LK = 239 for
α,  ρ = 0 1,  5 in section ∗, LHK = 159 and LRA = 157 for
α,  ρ = 0 1,  50 in section ∗∗, LHK = 232 and LRI = 228
for α,  ρ = 10,  5 in section ∗∗∗, and LHK = 449 and
LK = 421 for α,  ρ = 100,  50 in section ∗∗∗∗. It can be
found that goodness of fit for the HK distribution is close to
or slightly better than that for OKRR models for random or
mildly clustered or mildly regular scatterer distributions. In
this case, the maximum relative difference of MLE is 1.27%.

Table 2: The numerical values of the SNR of simulated data.

α = 0 1 α = 1 α = 10 α = 100
ρ = 1 0.58 0.70 0.93 0.99

ρ = 5 0.65 0.97 1.09 1.15

ρ = 10 0.78 1.12 1.02 1.21

ρ = 50 0.88 0.96 0.75 0.67

ρ = 100 0.99 0.85 0.65 0.63
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However, the HK presents better goodness of fit for clustered
scatterers or random or mildly regular with well-organized
periodic structure with a maximumMLE difference of 6.23%.

For the HK distribution, the SNR of simulated data can
be expressed as [11]

SNR = ε2 + 2σ2c
2σ ε2c + 2σ2c + c2σ2

, 15

where ε, c, and σ are the parameters of the HK distribution.
Based on (15), the numerical values of the SNR of simulated
data are presented in Table 2. The SNR increases with an
increasing scale parameter α or density parameter ρ before
the emergence of total reflection and decreases with increas-
ing α or ρ when total reflection occurs.

In present study, we use the point scatterer to make the
3D scatterer distribution by the given scatterer density and
shape parameter of the gamma distribution; then, the corre-
sponding RF, envelope signals, and B-mode images are
obtained. For the scatterer model presented in [12, 13], two
schemes were considered. First, randomly located scatterers
were placed in the phantom volume at spatial locations
distributed according to a uniform distribution; second, a
fixed density of randomly located scatterers combined with
coherent scattering created by using periodically spaced
scatterers in different regions in the phantom were consid-
ered. In present study, a 3D scatterer phantom based on
gamma distributions is built to be implemented from the
clustered to random to uniform scatterer distributions
continuously. Compared with previous scatterer models,
the advantage for the presented 3D scatterer phantom is
more flexible and controllable to synthesize a varied ultra-
sonic data for assessment of HK distribution performance.

4.2. Results and Discussions with Human Subjects. 30 B-mode
ultrasound images of normal common carotid arteries of
human subjects are scanned and recorded for validation
using a L12-5 linear array transducer, which has 256
elements with a bandwidth of 5–12MHz. Figure 6 shows a
B-mode ultrasound image scanned from a normal CCA (left)
and the magnified region indicated by a green box for a
different tissue segmentation. Their subimages are manually

segmented delicately from CCA B-mode images and then
converted into envelope data by a nonlinear mapping
algorithm [8], from which the histogram and maximum like-
lihood estimation are computed for each kind of tissue data.
Figure 7 shows statistic histograms and fitted curves for the
lumen, intima-media, media, and adventitia segmented from
300 envelope data converted from the image in Figure 6. It
can be found that the echo envelopes of the blood, intima-
media, media, and adventitia are OKRR-based Rayleigh, K
(with a high coherent component), K (with a little coherent
component), and Rician distributions. In general, the HK
distribution conforms better with the envelope data than
the OKRR distribution, especially for those speckle distribu-
tions with high coherent components. Table 3 lists the mean
and standard deviation of the estimated parameters and
maximum likelihood values based on BIC from 30 test
samples from 30 different images. It can be found that the
goodness of fit compared with the OKRR results and
estimated parameter values reflecting the tissue and speckle
distribution characterization by using the HK distribution
is accordant with the simulation results.

5. Conclusion

This paper presents an assessment of physical meanings of
parameter and goodness of fit for homodyned K distribution
modeling ultrasonic speckles from scatterer with wide-
varying spatial organizations by using maximum likelihood
estimation criteria. A set of 3D scatterer phantoms based
on gamma distributions are built to implement from the
clustered to random to uniform scatterer distributions con-
tinuously. The model parameters and maximum likelihood
estimation are obtained by MLE from statistical histograms
of the ultrasonic envelope data and then evaluated with a
comparison with those of the optimally fitting models chosen
from three single distributions, that is, the K, Rayleigh, and
Rician distributions. The simulation results show that the
parameters of the HK distribution still present their respec-
tive physical meanings of independent contributions in the
scatterer distributions under MLE criteria. Moreover, the
HK presents better goodness of fit with maximum relative
MLE difference of 6.23% for random or clustered scatterers

Intima 

Media 
Adventitia 

Blood in the lumen 

Figure 6: The ultrasound B-mode image scanned from a normal CCA (left) and the magnified region indicated by a green box for different
tissue segmentation.
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with well-organized periodic structure. Experiments based
on ultrasonic B-mode images from common carotid arteries
of human subjects validate the modeling performance of HK

distribution for tissues with varying scatterer spatial organi-
zations. It is concluded that the HK model for ultrasonic
speckles is a better choice for characterizing tissue with a
wide variety of spatial organizations based on the MLE,
especially the emphasis on the goodness of fit for the tissue
with well-organized deterministic components in practical
applications. It may provide us more useful information for
further applications by statistical analysis of the speckle
properties in the ultrasonic images by the HK models.
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