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Abstract: Euwallacea perbrevis is an ambrosia beetle that vectors fungal pathogens causing Fusarium
dieback in Florida avocado trees. Current monitoring lures contain quercivorol, a fungus-produced
volatile, but the exact attractant is unknown since lures contain a mixture of p-menth-2-en-1-ol isomers
and both α- and β-phellandrene. This study used pure cultures of six symbiotic fungi isolated from
E. perbrevis to document volatile emissions and determine the relative attraction of symbionts in
binary choice assays. In a comparative test, headspace solid-phase microextraction followed by gas
chromatography–mass spectroscopy was used to identify and quantify emissions from 3-week-old
cultures. In a temporal study, Super-Q collection followed by gas chromatography–flame ionization
detection was used to measure cis- and trans-p-menth-2-en-1-ol emissions for three months. A total of
15 compounds were detected, with monoterpene hydrocarbons and oxygenated monoterpenoids
predominating. Only trans-p-menth-2-en-1-ol was common to all six symbionts. Peak levels of both
isomers were observed at day 7, then gradually declined over a 90 day period. In choice tests, avocado
sawdust disks inoculated with Fusarium sp. nov. were the most attractive. This symbiont produced
only two volatiles, trans-p-menth-2-en-1-ol and limonene. The combined results indicate that trans-p-
menth-2-en-1-ol is the primary female attractant emitted from symbiotic fungi, but limonene may be
a secondary attractant of E. perbrevis.

Keywords: ambrosia beetles; chemical ecology; Euwallacea perbrevis; Fusarium dieback; invasive
species; p-menth-2-en-1-ol; quercivorol; symbiosis

1. Introduction

Shot hole borers in the genus Euwallacea (Coleoptera: Curculionidae: Scolytinae) are
Asian ambrosia beetles that comprise a cryptic species complex newly invasive in the
continental United States and in other countries. Species established in the USA include
the tea shot hole borer (E. perbrevis Schedl) in Florida, and the polyphagous shot hole borer
(E. fornicatus Eichhoff) and Kuroshio shot hole borer (E. kuroshio Gomez and Hulcr) in
California [1]. Typical of ambrosia beetles, females are wood borers that colonize host trees
in which they cultivate symbiotic fungi as a nutritional source for larvae and adults [2].
The exotic fungi vectored by Euwallacea spp. are phytopathogenic and induce Fusarium
dieback, a destructive vascular disease of avocado, woody ornamentals, and numerous
native American trees [3,4].

Euwallacea perbrevis in Florida (referred to as E. nr. fornicatus in previous published
reports [4,5] prior to the taxonomic revision by Smith et al. [1]) escalated in pest status
in 2016 when extensive infestations were detected throughout the commercial avocado
production area of Miami-Dade County [4]. Although tea [Camellia sinensis (L.) Kuntz] is
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commonly attacked in Asia [6], avocado (Persea americana Mill.) appears to be the preferred
host in Florida [4,5], but colonization of other fruit trees and natives has been observed [7].
Avocado is an important agricultural commodity in south Florida, with a production value
of $23.6 million for the 2019–2020 season [8]. The prevalence of Fusarium dieback presents
additional challenges to Florida growers, who are already experiencing significant losses
due to laurel wilt, a lethal vascular disease of the Lauraceae, including avocado. Laurel
wilt is caused by Raffaelea lauricola T. C. Harr., Fraedrich and Aghayeva, the primary fungal
symbiont of redbay ambrosia beetle, Xyleborus glabratus Eichhoff [9,10]; however, this
symbiont has since transferred laterally to multiple species of ambrosia beetle in Florida,
which now function as additional vectors [11,12].

Field monitoring of E. perbrevis populations was first achieved using lures containing
quercivorol, a food-based attractant emitted by symbiotic fungi [13]. Lures were deployed
in either Lindgren funnel traps or sticky panel traps [4,5,14]. Subsequent studies showed
that the α-copaene lure developed for redbay ambrosia beetle [15] also improved captures
of E. perbrevis when combined with quercivorol [5,16,17]. Analysis of the commercial
quercivorol lure indicated that it contained four enantiomers of p-menth-2-en-1-ol as well
as α- and β-phellandrene; the percent composition consisted of two trans-isomers: 48.12%
(1R,4S)-p-menth-2-en-1-ol and 39.97% (1S,4R)-p-menth-2-en-1-ol, two cis-isomers: 4.95%
(1R,4R)-p-menth-2-en-1-ol and 3.98% (1S,4S)-p-menth-2-en-1-ol, 1.57% β-phellandrene, and
1.42% α-phellandrene [16]. The common name ‘quercivorol’ refers only to (1S,4R)-p-menth-
2-en-1-ol [18], which is not the predominant component in the lure, so it is not clear which
enantiomer(s) is/are attractive to E. perbrevis. It has also not been determined which fungal
symbionts emit volatiles attractive to the beetle, warranting further investigation of the
chemical ecology underpinning the interaction of E. perbrevis and its fungal symbionts.

In this study, we (1) prepared pure laboratory cultures of six fungal symbionts iso-
lated from E. perbrevis, (2) identified and quantified the chemical emissions from each
symbiont using volatile collections by headspace solid-phase microextraction (HS-SPME)
coupled with gas chromatography–mass spectroscopy (GC–MS), (3) documented the pat-
tern of Super-Q collected emissions of cis- and trans-p-menth-2-en-1-ol for 90 days by gas
chromatography–flame ionization detection (GC–FID), and confirmed by GC–MS, from a
symbiont that emitted both isomers, and (4) conducted binary choice bioassays with female
E. perbrevis to determine relative attraction to symbionts.

2. Materials and Methods
2.1. Fungal Cultures

Six E. perbrevis fungal associates—Fusarium sp. AF-6 (AF-6), Fusarium sp. AF-8 (AF-8),
Fusarium sp. nov., Graphium sp., Acremonium sp., and Acremonium murorum—were obtained
from stock cultures isolated and identified at the Tropical Fruit Entomology Laboratory,
University of Florida, Tropical Research and Education Center (TREC), Homestead, FL,
USA. Sequences of the strains used in this study were deposited into GenBank (AF-6:
translation elongation factor 1-α (EF1-α)-MZ265351, DNA-directed RNA polymerase sub-
unit 1 (RBP1)-MZ265354, second-largest subunit of RNA polymerase (RBP2)-MZ265357;
AF-8: EF1-α-MZ265350, RBP1-MZ265353, RBP2-MZ265356; Fusarium sp. nov: EF1-α-
MZ265349, RPB1-MZ265352, RPB2-MZ265355; Graphium sp.: 28S large ribosomal subunit
(LSU)-MZ262759, 18S small ribosomal subunit (SSU)-MZ262756; Acremonium sp.: LSU-
MZ262757, SSU-MZ262754; A. murorum: LSU-MZ262757, SSU-MZ262755). Fungal strains
were cultured on 100 mm (diam) × 15 mm Petri dishes containing potato dextrose agar
media (PDA) (BD, Franklin Lakes, NJ, USA) (Fisher Scientific, Waltham, MA, USA). For
the bioassays, 100 µL of 1 × 106 spores/mL suspensions of Fusarium sp. nov., AF-8 and
Graphium sp. were individually plated on 47 mm (diam) Petri dishes containing avocado
sawdust media [19]. PDA and sawdust media plates were incubated at 25 ◦C.
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2.2. Test Chemicals

Chemical standards consisted of α-phellandrene #99-83-2, α-terpinene #99-86-5, p-
cymene #99-87-6, limonene #5989-54-8, terpinen-4-ol #20126-76-5, and α-terpineol #98-55-5
(purchased from Sigma-Aldrich, St. Louis, MO, USA); β-elemene #515-13-9 and valencene
#4630-07-3 (purchased from Fluka Chemical Co., Buchs, SG, Switzerland); and cis-p-menth-
2-en-1-ol and trans-p-menth-2-en-1-ol mixture (commercial quercivorol lure, Product #3402,
obtained from Synergy Semiochemicals Corp., Delta, BC, Canada).

2.3. Volatile Extraction

Mycelial cultures on PDA Petri dishes of A. murorum, Acremonium sp., AF-6, AF-8,
Fusarium sp. nov. and Graphium sp. were sampled for volatile emissions when 24–25 days
old. Collection of volatile compounds was performed using a SPME fiber coated with
50/30 µm divinylbenzene/carboxen on polydimethylsiloxane (DVB/CAR/PDMS). Each
fungal culture was placed in a Pyrex cylindrical jar then sealed with plastic film and left at
25 ◦C for 30 min for equilibration of volatiles in the headspace. After equilibration, the film
was pierced with the SPME needle, and the fiber exposed to the sample headspace for 1 h
at 25 ◦C. After the extraction, the fiber was immediately inserted into the injector port of
the GC–MS for desorption 2 min in the splitless mode.

2.4. Gas Chromatography–Mass Spectrometry Analysis

Volatile emissions were analyzed by GC–MS Agilent 7890B GC coupled with 5977B
mass selective detector (Agilent Technologies, Santa Clara, CA, USA). A DB-5 column (30 m
× 0.25 mm inner diameter with 0.25 µm film thickness) was used and GC oven temperature
program was 60 ◦C for 1.3 min, rose at 3 ◦C/min up to 246 ◦C. The injector and detector
temperatures were kept at 220 ◦C and 230 ◦C. Helium was used as a carrier gas at a flow
rate of 1.3 mL/min. Mass spectra were recorded at 70 eV. Mass range was m/z 35 to 450 Da
and the scan rate was 2.8 scans/s. Mass Hunter B.07.06 software (Agilent Technologies) was
used for data acquisition and processing. Volatile compounds emitted by symbionts were
identified by comparing retention times, retention indices (RI) calculated using the Van
den Dool and Kratz [20] equation in relation to a homologous series of n-alkanes (C9–C21)
and libraries MassFinder [21], Adams Library [22], Flavours and Fragrances of Natural
and Synthetic Compounds 3 [23], and Wiley 12/NIST 2020 [24], and in-house library
“SHRS Essential Oil Constituents-DB-5” which was built up from authentic standards and
components of known essential oils [5,7,16]. Results expressed as the relative percentage
of each compound peak area to the total GC–MS peak area. Compounds released from
Petri plates without fungal culture and siloxanes in procedural blanks as background
contamination produced by SPME fiber were subtracted. All sample preparations and
analyses were independently performed in triplicate.

2.5. Collection and Quantification of p-Menth-2-en-1-ols

Volatile emissions of cis-p-menth-2-en-1-ol and trans-p-menth-2-en-1-ol from Graphium
sp. cultures on PDA Petri plates (four replicates) were sampled over the course of three
months every two or three days using Super-Q adsorbent (Analytical Research Systems,
Gainesville, FL, USA). Cultures were stored for the duration of this study at 25 ◦C in
an incubator (Shel lab, model SRI20PF, Sheldon Mfg. Inc., Cornelius, NC, USA). Super-
Q volatile collections were conducted as described previously [16] but using a slightly
modified version. Small oven bags (Reynolds, Richmond, VA, USA) were used for the
collection of volatile emissions from each Petri plate, using two port holes to connect to the
volatile collection system. Filtered air was introduced at 1 L/min through one port hole;
a Super-Q trap collector attached to a vacuum line pulling at 1 L/min was set up on the
other port hole (push-pull system). Collection of volatiles was timed for 15 min. Volatile
emissions were eluted from the Super-Q adsorbent using 200 µL methylene chloride (#75-
09-2, Sigma-Aldrich, St. Louis, MO, USA) and an internal standard equivalent to 5 µg of
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C16 (hexadecane #544-76-3, Sigma-Aldrich, St. Louis, MO, USA) was added to each sample
prior to injection onto the GC analysis.

For quantitative analysis, samples were analyzed using a 7890B Agilent GC with a
flame ionization detector (FID) and a split-splitless injector. The column was an Agilent
DB-5 30 m × 0.25 mm × 0.25 µm (Agilent Technologies, Santa Clara, CA, USA). Injector
temperature was 220 ◦C; split ratio was 20:1. The carrier gas was helium with a total flow of
27.2 mL/min and a pressure of 14.4 psi. The oven temperature was programmed at 60 ◦C
for 1.3 min increasing at 3 ◦C/min to reach a final temperature of 246 ◦C. The FID was set
to 250 ◦C. Extracts were quantified by GC–FID and analyzed by GC–MS for comparison
purposes only.

2.6. Experimental Insects

Mature E. perbrevis females were obtained from laboratory colonies maintained at
TREC, using rearing methods described previously by Cruz et al. [25]. Briefly, E. perbrevis
females were excavated from avocado logs collected from an orchard in Miami-Dade
County, Florida, USA (25◦31′31” N, 80◦29′7” W). An avocado sawdust rearing medium
was prepared and poured into 50 mL conical centrifuge tubes [19]. Females were surface-
disinfested with 70% (v/v) ethanol for 5–7 s and individually placed into the tubes. Rearing
tubes were capped with lids fitted with a 1 cm metallic screen opening for airflow and
maintained at 25 ◦C and 75% relative humidity, with a 16:8 L:D photoperiod.

2.7. Laboratory Bioassays

Dual-choice bioassays were conducted in shallow plastic containers (21 cm long ×
15 cm wide × 8 cm high) lined with white paper (Gordon Paper Co., Inc., Virginia Beach,
VA, USA; BWKB18401000) to provide a rough surface upon which the beetles could walk,
comparable to test arenas described previously [26]. Avocado sawdust disks inoculated
with Fusarium sp. nov., AF-8 or Graphium sp. were placed on opposite sides of the container.
A plastic vial containing six E. perbrevis females (≤7 days post-emergence) was placed at the
center of each container. After a 5 min acclimation period, the vial was removed to allow
the females to interact with the inoculated avocado sawdust disks. The container was then
covered with a fitted lid with two screened ventilation holes and kept in a walk-in-rearing
room at 25 ◦C in complete darkness. The number of beetles on, in or next to each avocado
sawdust disk was recorded at one time point after 12 h. Beetles that did not choose a
given treatment (not in, on or next to an avocado sawdust disk) were excluded from the
analysis. Each combination of symbionts was replicated six times, reversing the position of
the symbionts, and using new cohorts of beetles each time.

2.8. Statistical Analysis

The data obtained from GC–MS were subjected to multivariate analysis. Principal
component analysis (PCA) was performed using XLSTAT 2021 (Addinsoft, New York,
NY, USA). Pearson correlation was adopted. A hierarchical cluster analysis (HCA) was
performed using JMP Pro.16.0 software (SAS Institute Inc., Cary, NC, USA) using Ward’s
clustering method. Regression analysis with exponential decay models was used to analyze
emissions of cis- and trans-p-menth-2-en-1-ol from the Graphium sp. cultures; analysis by
t-test was used to assess for differences in emissions of the two isomers at each sampling
point (SigmaPlot 14.0, Systat Software Inc., San Jose, CA, USA). The results of the dual-
choice bioassays were analyzed using a Kruskal–Wallis non-parametric test (SAS Institute
Inc., Cary, NC, USA).

3. Results and Discussion
3.1. Volatile Emissions of Symbionts

SPME–GC–MS volatile compositions for individual fungal symbionts of E. perbrevis
are presented as the peak area percentages in Table 1. A total of 15 compounds were
detected from the emissions of the six symbionts, and the chemical structures of those
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compounds are illustrated in Figure 1. Notably, the monoterpene hydrocarbons and
oxygenated monoterpenoids were the most abundant terpenoid classes emitted by the
symbionts. Limonene and trans-p-menth-2-en-1-ol were the major constituents in the group
of monoterpenoids in five symbionts, while aristolochene and valencene were higher in
symbiont AF-8 than in Acremonium sp., AF-6 and Graphium sp. (Figure 2). Regarding the
components present in the commercial quercivorol lure [16], trans-p-menth-2-en-1-ol was
the only volatile detected across all six symbionts. cis-p-Menth-2-en-1-ol was detected in
the emissions from Graphium sp. and both Acremonium spp. but was absent in the emissions
from AF-6, AF-8, and Fusarium sp. nov. α-Phellandrene was detected in the emissions
from A. murorum and Graphium sp., while β-phellandrene was emitted from cultures of A.
murorum, AF-8, and Graphium sp.
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Table 1. Volatile emissions (mean ± SE) produced by fungal symbionts of Euwallacea perbrevis
identified by SPME–GC–MS, expressed as the peak area percentages (%).

# Compounds * RI
Exp

** RI
Lit

Composition of Volatile Emissions (Relative % ± SE)
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trans-p-menth-2-
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* RI exp: retention indices calculated on DB-5 column; ** RI lit: retention indices from Adams Library 
[22]; relative concentration was expressed as the peak area and data listed were the mean of three 
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ing with MS library and comparison with reported RI. 
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relative concentration was expressed as the peak area and data listed were the mean of three injection results ±
standard error (SE); a compound identified using retention time of authentic standard, matching with MS libraries
and comparison with reported RI; b compound identified by matching with MS library and comparison with
reported RI.

The results of principal component analysis (PCA) are indicated by the principal
components (PC) score and loading plots (PCA-Biplot). The PCA of volatile components
yielded three PCs with eigenvalues ≥ 1, accounting for 97.01% of the total variance across
the entire dataset. The first, second, and third PCs contributed 49.41%, 31.30%, and 16.30%
of the total variance, respectively (Table 2). Scores and loading plots of the first two PCs
obtained from volatile emissions of six symbionts are presented in Figure 3. The PCA
showed three different groupings: A. murorum and Graphium sp. are located separately in
the upper and lower right quadrants, respectively, while Acremonium sp., AF-6, AF-8 and
Fusarium sp. nov. are clustered in the lower left quadrant. Figure 3 displays the variables
factor map indicating the discriminating emissions among the symbionts. Compounds
6 (cis-p-menth-2-en-1-ol), 9 (terpinen-4-ol), 10 (α-terpineol), 11 (trans-piperitol), 12 (β-
elemene) and 15 (β-bazzanene) are grouped in the lower right associated with Graphium sp.;
and compounds 1 (α-phellandrene), 2 (α-terpinene), 3 (p-cymene), 5 (β-phellandrene), 7
(cis-p-mentha-2,8-dien-1-ol) and 8 (trans-p-menth-2-en-1-ol) are grouped in the upper right
corner associated with A. murorum. In contrast, compounds 4 (limonene), 13 (aristolochene)
and 14 (valencene) are grouped in the lower left associated with Acremonium sp. and the
three Fusarium species (AF-6, AF-8 and Fusarium sp. nov.). Aristolochene was first isolated
from Aspergillus terreus, and the headspace profile of Penicillium roqueforti and P. digitatum
cultures were found to be rich in (+)-aristolochene (up to 80%) and valencene (11%) [27].

A hierarchical cluster analysis (HCA) dendrogram categorized the symbionts into
three main clusters (Figure 4). Cluster I and II represented A. murorum and Graphium
sp., respectively. Cluster III grouped Acremonium sp., AF-6, AF-8 and Fusarium sp. nov,
confirming the results from PCA. PCA and HCA results revealed that cis-p-menth-2-en-1-ol
and trans-p-menth-2-en-1-ol are the key components for discriminating effect of symbionts.
This is the first report to compare chemical profiles of the volatile emissions in the six fungal
species studied.
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Table 2. Loadings, eigenvalues, and percentage of variance for the principal components (PCs) data
from symbionts.

Compound F1 F2 F3 F4 F5

1 0.278 0.298 −0.030 −0.138 0.075
2 0.333 0.189 −0.029 −0.150 0.070
3 0.289 0.280 −0.030 −0.141 0.074
4 −0.243 −0.102 −0.418 −0.450 −0.098
5 0.261 0.239 0.291 −0.209 −0.254
6 0.261 −0.256 −0.079 0.637 −0.169
7 0.158 0.415 −0.026 −0.100 0.071
8 0.148 0.399 −0.035 0.459 −0.022
9 0.307 −0.252 −0.010 −0.101 0.015
10 0.307 −0.252 −0.010 −0.101 0.015
11 0.307 −0.252 −0.010 −0.101 0.015
12 0.307 −0.252 −0.010 −0.101 0.015
13 −0.091 −0.115 0.594 −0.013 0.694
14 −0.084 −0.048 0.613 −0.121 −0.627
15 0.307 −0.252 −0.010 −0.101 0.015
Eigenvalue 7.411 4.694 2.446 0.421 0.027
% Variance 49.407 31.296 16.309 2.809 0.179
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3.2. cis- and trans-p-Menth-2-en-1-ol Emissions from Graphium sp.

The temporal pattern of emissions for cis- and trans-p-menth-2-en-1-ol from the
Graphium sp. cultures is depicted in Figure 5. Based on our experimental design, peak
emissions of both compounds were detected at day 7 (although highest levels may have
occurred slightly before or after that timepoint since measurements were not recorded
daily). Following that peak, emissions began to decline gradually over a period of 90 days.
The decrease in emissions over time was best fit by regression with exponential decay
models (cis: y = 2.59e(−0.05x), R2 = 0.924; trans: y = 1.34e(−0.04x), R2 = 0.927). Emissions of
cis-p-menth-2-en-1-ol were higher than trans-p-menth-2-en-1-ol for the first 30 days, but the
difference was significant only on day 10 (t = 11.34, df = 2, p = 0.004) and day 20 (t = 3.24,
df = 2, p = 0.042).
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Figure 5. Emissions of cis- and trans-p-menth-2-en-1-ol quantified over time from cultures of Graphium
sp. Volatiles were isolated by Super-Q collection (15 min adsorption), followed by GC-FID analysis
(DB-5 column).

3.3. Laboratory Bioassays

Euwallacea perbrevis females were significantly more attracted to Fusarium sp. nov. than
to AF-8. When given a choice between AF-8 and Graphium sp., females were significantly
more attracted to AF-8, but no significant differences were observed when females were
offered the Fusarium sp. nov. and Graphium sp. (p = 0.12) (Figure 6).
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dual-choice assays. Mean number of E. perbrevis in, on or next to the disk after 12 h. (A) AF-8 vs.
Fusarium sp. nov., (B) Fusarium sp. nov. vs. Graphium sp., (C) AF-8 vs. Graphium sp. * Indicates
significant difference in attraction between the two choices (p < 0.05).

trans-p-Menth-2-en-1-ol, detected in the volatiles of all three test fungi, is the main
component of the quercivorol lure that is attractive to E. perbrevis [13,16] and other Euwal-
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lacea species [28]. The cis-isomer, also present in the quercivorol lure, was only detected in
the emissions from Graphium sp. cis-p-Menth-2-en-1-ol did not increase the attraction of E.
perbrevis to Graphium sp., suggesting that the trans-isomer is the primary attractant of E. per-
brevis and possibly of other Euwallacea spp. Furthermore, trans-p-menth-2-en-1-ol was the
only volatile compound detected in the emissions from all six symbiont cultures (Table 1).
Under natural conditions, the fungal gardens of E. perbrevis would consist of mixed cultures
of all six symbionts, which would emit a strong ‘bouquet’ of trans-p-menth-2-en-1-ol.

The two minor components in the commercial lure [16], α- and β-phellandrene, were
also detected in the emissions from fungal symbionts. α-Phellandrene was present in emis-
sions from the Graphium sp. cultures, and β-phellandrene was emitted by both Graphium
sp. and AF-8; however, neither compound appeared to increase attraction of female E.
perbrevis in choice assays. (−)-β-Phellandrene is the predominant monoterpene in the
phloem tissue of lodgepole pine (Pinus contorta Douglas) and a known kairomone attractant
for several species of bark beetle, including the economically important pine engraver, Ips
pini (Say) [29].

Graphium sp. was the least attractive symbiont despite emissions of trans-p-menth-2-en-
1-ol. This suggests that other volatiles from Graphium sp. may include potential repellents.
For instance, cis-p-menth-2-en-1-ol and trans-piperitol are known to have repellant activity
against Musca domestica L. and Haematobia irritans L. [30,31], and terpinen-4-ol has insec-
ticidal and repellent activities against three stored-product insects: Tribolium castaneum
Herbst, Lasioderma serricorne Fabricius, and Liposcelis bostrychophila Badonnel [32]. However,
other volatiles produced by Graphium sp., like p-cymene and β-elemene, are involved in the
attraction of X. glabratus to Lauraceous trees [33]. More research is needed to understand
the effects of these and other volatiles from Graphium sp. as potential attractants or repel-
lants of E. perbrevis. Identification of effective repellents would facilitate development of a
pest management strategy using a ‘push-pull’ approach; a repellent applied to host trees
would push pests away, while surrounding traps baited with attractant (i.e., the combina-
tion of trans-p-menth-2-en-1-ol and α-copaene [5]) would reduce numbers of host-seeking
females [34].

Fusarium sp. nov. was the most attractive amongst the tested fungi. Besides trans-p-
menth-2-en-1-ol, the only other volatile detected from Fusarium sp. nov. was limonene.
Therefore, limonene is likely a secondary attractant of E. perbrevis, not present in the other
two symbionts. Limonene is a known attractant kairomone of another scolytine species, the
white pinecone beetle, Conophthorus coniperda Schwarz [35]. Limonene is also a precursor
in the synthesis of trans-p-menth-2-en-1-ol [18]. Given the structural similarities, limonene
and trans-p-menth-2-en-1-ol may be detected by the same antennal olfactory receptors, but
additional electrophysiological studies [5,36] are needed to address that question.

4. Conclusions

Euwallacea perbrevis, a new invasive ambrosia beetle in Florida, maintains a complex as-
sociation with multiple species of symbiotic fungi, some of which induce Fusarium dieback
in host trees, including avocado. This study utilized pure cultures of six symbionts to
identify and quantify their volatile emissions, and to determine the attractive components
within those emissions. Chemical analyses indicated that trans-p-menth-2-en-1-ol was the
only compound produced by all six symbionts; behavioral assays indicated that emis-
sions of cis-p-menth-2-en-1-ol did not increase attraction. The most attractive symbiont,
a new species of Fusarium, also emitted limonene, implicating this compound as a sec-
ondary attractant. Additional laboratory bioassays and electroantennographic analyses are
needed with female E. perbrevis to assess limonene for behavioral responses and olfactory
chemoreception, respectively. The results presented here may allow improving lures for
field monitoring of E. perbrevis and possibly other invasive Euwallacea species.
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