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Background
The microbial population of the human colon has wide-ranging effects on host nutrition 
and health. These effects include providing important metabolites that cannot be syn-
thesised by the host, modulation of immune functions, and roles in diseases both of the 

Abstract 

Background:  Hydrogen cross-feeding microbes form a functionally important subset 
of the human colonic microbiota. The three major hydrogenotrophic functional groups 
of the colon: sulphate-reducing bacteria (SRB), methanogens and reductive acetogens, 
have been linked to wide ranging impacts on host physiology, health and wellbeing.

Results:  An existing mathematical model for microbial community growth and 
metabolism was combined with models for each of the three hydrogenotrophic 
functional groups. The model was further developed for application to the colonic 
environment via inclusion of responsive pH, host metabolite absorption and the inclu-
sion of host mucins. Predictions of the model, using two existing metabolic parameter 
sets, were compared to experimental faecal culture datasets. Model accuracy varied 
between experiments and measured variables and was most successful in predicting 
the growth of high relative abundance functional groups, such as the Bacteroides, 
and short chain fatty acid (SCFA) production. Two versions of the colonic model were 
developed: one representing the colon with sequential compartments and one utilis-
ing a continuous spatial representation. When applied to the colonic environment, 
the model predicted pH dynamics within the ranges measured in vivo and SCFA ratios 
comparable to those in the literature. The continuous version of the model simulated 
relative abundances of microbial functional groups comparable to measured values, 
but predictions were sensitive to the metabolic parameter values used for each func-
tional group. Sulphate availability was found to strongly influence hydrogenotroph 
activity in the continuous version of the model, correlating positively with SRB and 
sulphide concentration and negatively with methanogen concentration, but had no 
effect in the compartmentalised model version.

Conclusions:  Although the model predictions compared well to only some experi-
mental measurements, the important features of the colon environment included 
make it a novel and useful contribution to modelling the colonic microbiota.
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colon and more distant regions of the body (see review by Nicolas and Chang [1]). Efforts 
to study the colonic microbiota have included observational and interventional studies, 
coupled with in vitro, animal, and computational models. This last technique, although 
dependent on experimental data for model validation, has appeal as a fast, cheap and 
high-throughput method, leading to the creation of several mathematical models pre-
dicting colonic microbial dynamics in recent years (e.g. [2, 3]). Most of these models 
focus on the dynamics of the dominant taxa found in the colon and their metabolites, 
although the importance of other, less abundant microbes is present in the experimental 
literature. One group of microbes that has largely escaped study in colonic microbiome 
models includes microbes that metabolise hydrogen [4]. Hydrogen is produced through 
various microbial metabolic pathways involved in the degradation of carbohydrates 
in the colon, creating a niche for microbes that can cross-feed on hydrogen [5]. These 
hydrogenotrophs have demonstrated and hypothesised impacts on both the microbiota 
and the host, including increasing the rate of carbohydrate fermentation of saccharo-
lytic bacteria in vivo, with associated increases in host adiposity [6], and links to negative 
health outcomes such as Irritable Bowel Syndrome [7], Inflammatory Bowel Disease [8] 
and colorectal cancer development [9]. The low relative abundance and inconsistencies 
in hydrogenotroph abundance between individuals makes them challenging to study [4]. 
Modelling could provide useful insight into the dynamics of these taxa in vivo, contrib-
uting to our understanding of these microbes in human health, nutrition and wellbeing.

Recently, an adaptable tool for modelling the metabolism and growth of microbial 
communities was published, named microPop [10]. This tool was developed as an exten-
sion of a previous model for the in vitro growth of the faecal microbiota published by the 
same group [11]. microPop models the dynamics of microbial communities by assign-
ing metabolic parameter values to a number of microbial functional groups (MFGs) to 
be representative of the whole community. The authors stated that the model could be 
adapted for application to the colon and provided suggestions for how this might be 
achieved.

Here, an adaptation of the model is presented incorporating these suggestions, along-
side further alterations and additions, designed to replicate the behaviour of the major 
functional groups of the human colonic microbiota. The model was compared to three 
in  vitro faecal fermentation data sets, followed by simulations of the in  vivo environ-
ment. Adaptations made for the in vivo simulations included the addition of host fac-
tors: secreted mucins, host buffering and absorption; as well as microbial adaptations, 
most notably greater focus on hydrogen cross-feeding microbes and the novel inclusion 
of sulphate-reducing bacteria (SRB). Finally, various substrate availability scenarios were 
simulated to give predictions for their effect on the microbiota.

Results
Comparison of model predictions to experimental data

microPop constructs and solves a system of ordinary differential equations for 
any number of MFGs and metabolites, as defined by the user. The base version of 
microPop (without the additional inclusions to replicate the colon; version 1.5 https​
://cran.r-proje​ct.org/web/packa​ges/micro​Pop/index​.html) contains ten colonic 
MFGs, with a total of 17 metabolic pathways, influencing the concentrations of 20 

https://cran.r-project.org/web/packages/microPop/index.html
https://cran.r-project.org/web/packages/microPop/index.html
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metabolites. The model utilises Monod kinetics, involving maximum growth rates, 
half-saturation constants, yield and stoichiometric parameters for each metabolite 
in each metabolic pathway. The pH and substrate preferences of each MFG are also 
included, leading to 243 model parameters in total. These parameters were set based 
on existing knowledge of the MFGs, rather than parameterisation of microPop with 
faecal culture data. Note that two sets of microbial kinetic parameter values were 
used in this work: an Alpha set, utilising the original parameter values of Kettle et al. 
[10]; and a Beta set based on more recent estimates ([12]; see "Methods"). The major 
differences between the two parameter sets are in the viable and optimal pH range of 
each MFG, which were altered by as much as 0.95 pH units between parameter sets, 
and in the maximum growth rates for non-starch polysaccharide (NSP) and resist-
ant starch of all MFGs able to metabolise these substrates. These are the most abun-
dant substrates included in the model, thus substantial changes in model predictions 
between the two parameter sets were anticipated.

To validate that the predictions of microPop were realistic for the colonic MFGs and 
metabolites modelled, simulated concentrations were compared with experimental data 
from continuous faecal cultures. The predictions of both parameter sets are shown in 
each figure in this section. All 20 microPop colonic metabolites were included and the 
MFGs simulated are listed in Fig. 1b. In total, the model predictions were compared with 
data from 14 continuous faecal cultures drawn from three previous publications. Fig-
ure 1 and Additional file 2: Fig. 1 involve cultures with varied peptide availability. Fig-
ure  2 and Additional file  2: Fig.  2 involve cultures with a pH shift during the culture. 
Figure 3 and Additional Figs. 3, 4 and 5 involve cultures with media changes over time. 
Additional Figs. 6, 7, 8 and 9 involve cultures from four donors run at either pH 5.5 or 
pH 6. All simulations were performed with initial conditions and pH values fixed at 
those used for the experimental work.

Figure 1 shows the microPop prediction for a continuous faecal culture from Walker 
et al. [13]. This culture was run with 0.6% w/v peptide in the medium; a second experi-
ment was also run with 0.1% w/v peptide (see Additional file 2: Fig. 1). In both cases the 
pH was fixed at 6.5.

The model correctly predicted the dominance of the Bacteroides MFG under the high 
peptide conditions. However, the prediction for short chain fatty acid (SCFA) concentra-
tions were mostly inaccurate (see Fig. 4 and Additional file 2: Table 1). Acetate concen-
tration was overpredicted by at least 15 mM from day 4 of culture onwards using both 
parameter sets. The model predicted decreasing concentrations of butyrate and lactate, 
although this was more rapid using the Alpha parameter set than the Beta parameter 
set, while experimentally both metabolites maintained a non-zero steady state. Con-
trastingly, propionate concentration was accurately predicted to within 5 mM using the 
Alpha parameter set and to within 2 mM using the Beta parameter set throughout the 
experiment.

The model prediction under low peptide conditions (Additional file 2: Fig. 1) for ace-
tate concentration was within 5 mM of the experimental values throughout the experi-
ment using both parameter sets, and for butyrate was within 3  mM using the Beta 
parameter set. However, the model predicted all other metabolites poorly. The domi-
nance of the Bacteroides MFG was again predicted by the model.



Page 4 of 29Smith et al. BMC Bioinformatics            (2021) 22:3 

Data was also published for continuous culture of faecal samples with a pH shift 
added to the experiment. Figure 2 displays the model predictions compared to these 
experimental data. In this experiment, the population was more evenly distributed 
before the pH shift, after which the Bacteroides MFG dominated. The model captured 
this trend qualitatively, although quantitatively the predicted proportions did not 
match those observed experimentally.

The mean bias values for the model prediction of each measured SCFA using the 
Alpha parameter set demonstrated the high quality of model fit to these data (see 
Fig. 4 and Additional file 2: Table 1). However, using the Beta parameter set, acetate 
was overpredicted and butyrate underpredicted, without the dramatic change in the 
concentrations of these SCFAs that was observed experimentally after the pH shift.

A second pH shift experiment was performed with a faecal population from a dif-
ferent donor (Additional file  2: Fig.  2). The experimental and model dynamics were 
similar to those in Fig. 2, and the quality of model fit is displayed in Fig. 4 and Addi-
tional file 2: Table 1.

The next dataset used for comparison was that of Payne et al. [14]. These research-
ers used a three-compartment sequential fermenter, inoculated with faecal material 
from either an obese or a normal-weight child, to study the impact of high-energy, 
normal-energy and low-energy diets on the profile of the microbiota and the SCFAs 
produced.
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Fig. 1  Model prediction compared with experimental data from Walker et al. [13] for continuous culture 
of a faecal microbial community on a medium containing 0.6% w/v peptide. a Measured metabolite 
concentrations are indicated by the coloured circles, solid lines indicate the model prediction using the 
Alpha parameter set, and dashed lines indicate the prediction using the Beta parameter set. b MFG relative 
abundance at end of experiment
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For the first compartment in the experiment using the obese child’s faecal material 
(Fig. 3), total SCFA concentrations were predicted with good accuracy but low precision 
(see Fig. 4 and Additional file 2: Table 1). Acetate concentrations were underpredicted 
using both parameter sets, while butyrate was overpredicted. Propionate concentrations 
during continuous fermentation remained between 2 and 4 mM, while the model pre-
dicted continuously decreasing propionate concentrations throughout continuous cul-
ture. The predicted total SCFA concentration was similar to the observed data, although 
did not display the fluctuations observed experimentally within each dietary treatment. 
Propionate concentration was overpredicted for all media compositions in the latter two 
compartments.

Interestingly, the predictions for acetate and butyrate concentrations using the Beta 
parameter set appeared swapped compared to the experimental data: the model predic-
tion for acetate concentration approximated the observed butyrate concentration, and 
vice versa. A possible explanation for this is metabolism of acetate and production of 
butyrate by the ButyrateProducers1 MFG, the abundance of which was consistently 
overpredicted by the model in all compartments when using the Beta parameter set 
(Additional file 2: Fig 3). For the Alpha parameter set, this relationship between acetate 
and butyrate predictions was not present throughout the experimental data, but could 
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Fig. 2  Model prediction compared with experimental data from Walker et al. [13] for continuous culture 
of a faecal microbial community on medium containing 0.6% w/v peptide. A pH shift from pH 5.5 to pH 
6.5 was gradually enacted between days 9 and 11, as shown by the dotted lines in a. a Measured SCFA 
concentrations are indicated by coloured circles, solid lines indicate the model prediction using the Alpha 
parameter set, and dashed lines indicate the prediction using the Beta parameter set. b MFG relative 
abundance before the pH shift (day 9). c MFG relative abundance at end of experiment
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be seen from 20  h onwards in the latter two compartments (Fig.  3). Using the Alpha 
parameter set, the ButyrateProducers2 MFG was consistently overpredicted (Additional 
file 2: Fig 3), giving a similar possible explanation.

The SCFA and MFG results for the experiment with the normal-weight child’s faecal 
material were comparable to those of the first experiment (Additional file 2: Figs 4 and 
5). Propionate concentration was predicted more accurately, but again an overprediction 
of butyrate concentration, with corresponding overprediction of butyrate-producing 
MFGs and underprediction of acetate, was seen in the latter two compartments.

The SCFA predictions of the model were consistent between the two parameter sets, 
with the exception of the acetate predictions. Use of the Beta parameter set resulted in 
acetate dynamics that shifted rapidly but minimally to new steady state values after a 
dietary shift (Additional file 2: Figs. 3 and 4). In contrast, use of the Alpha parameter set 
resulted in large and continued increases in acetate concentration over the course of the 

0 5 10 15 20 25 30 35 40 45

Time (days)

0

50

100

150

200

C
on

ce
nt

ra
tio

n 
(m

M
)

Compartment 1

Total SCFA
Acetate
Propionate
Butyrate

0 5 10 15 20 25 30 35 40 45

Time (days)

0

50

100

150

200

C
on

ce
nt

ra
tio

n 
(m

M
)

Compartment 2

0 5 10 15 20 25 30 35 40 45

Time (days)

0

50

100

150

200

C
on

ce
nt

ra
tio

n 
(m

M
)

Compartment 3

HE NE HE LE

Fig. 3  SCFA concentrations in the three fermenter compartments over the course of the 42-day experiment 
of Payne et al. [14]. This figure pertains to the experiment with faecal material from the obese child, run in 
batch mode with high-energy (HE) medium for 2 days, then switched to continuous fermentation. During 
continuous fermentation, the model was run in four 10-day periods with differing media, in the following 
order: HE, normal-energy (NE), HE, low-energy (LE). Measured data are indicated with coloured circles, solid 
lines indicate the model prediction using the Alpha parameter set, and dashed lines indicate the prediction 
using the Beta parameter set. The dotted vertical lines indicate changes between media
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high-energy diet. This was likely due to the increased relative abundance of the Acetogen 
MFG seen in the use of the Alpha parameter set in all compartments under all diets, 
but particularly large under the high-energy diet (Additional file 2: Figs. 3 and 5). This 
increase was not seen using the Beta parameter set.

The MFGs showing relative abundance of > 10% were completely consistent between 
the simulations of the two experiments, demonstrating that diet rather than initial con-
ditions was the major determinant of microbial profile in the model (Additional file 2: 
Figs. 3 and 5). However, this was not the case for the experimental data: the most abun-
dant three MFGs determined from the observed data differed between the two experi-
ments in eight of the nine measurements (low-energy conditions, compartment 1 was 
the only measurement that showed this consistency between the two experiments). 
The most notable failings of the model MFG predictions were the overprediction of 
the butyrate producing MFGs and the Acetogen MFG, and the inability to predict the 
high relative abundance of the NoButyStarchDeg and NoButyFibreDeg MFGs (which 
are capable of degrading resistant starch and NSP, with acetate rather than butyrate the 
SCFA produced).

No explicit data was available for the acetogen or the methanogen MFGs from 
these experiments; these were simply calculated as a proportion of the total Firmi-
cutes and total bacteria, respectively (Additional file 1: Sect. 4). The SRB MFG was 
measured experimentally but showed a decrease from initial abundance in all cases 
but one: the third compartment on the low-energy diet, where modest increases of 
less than 1 log10 copies 16S rRNA gene g−1 were observed in both experiments. The 
model predicted a sustained decrease in the SRB MFG across all simulations, as the 
dilution rates of 6 d−1 in the first compartment and 3 d−1 in the latter two compart-
ments were both greater than the maximum growth rate of the SRB MFG (2.78 d−1), 
preventing population growth.

The final dataset to which the model was compared was that of Belenguer et  al. 
[15] (Additional file 2: Figs. 6–9). These authors also performed continuous cultures 
of faecal communities at pH 5.5 or pH 6 and recorded the SCFA production of the 
cultures. Unfortunately, insufficient data was recorded for the microbial community 
makeup to allow conversion of this data to microPop MFGs, so example initial MFG 
concentrations from Walker et al. [13] were used instead (Additional file 1: Sect. 4). 
While the example inocula used by the model were likely different to those in the 
experimental work, the model predictions for SCFA concentrations were mostly 
within the range observed experimentally. Interesting to note in these simulations 
was the pronounced differences between propionate and butyrate dynamics in the 
model predictions given different initial MFG concentrations. However, these dif-
ferences were found only temporarily: when run for several hundred days, the model 
predictions for each of the three initial conditions used converged to identical 
values.

Neither parameter set outperformed the other on all the experimental data stud-
ied, either for metabolite concentrations or MFG abundance. An important caveat 
to the MFG profile comparisons in this section is that the quality of these compari-
sons is dependent on the assignment of experimental data to microPop MFGs, as 
described in Additional file 1: Sect. 4. The distribution of this data into MFGs is an 
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approximation, based on similar work performed previously [11]. In simple terms, 
these comparisons represent the quality of fit of an eleven-member microbial com-
munity model to an incomplete measurement of a microbial population that was 
then assigned to these eleven groups. Far more assumptions were necessary in the 
establishment of this comparison than were necessary for the SCFA data, there-
fore the latter should be treated as the more reliable comparison between what was 
observed and what was simulated.

Simulation of the colonic microbiota

In order to study the colonic microbiota in silico, several adaptations were made to 
the original microPop structure, as detailed in the Methods and Additional file  1 
and illustrated in Fig.  5. The adapted model, microPop:Colon, is able to simulate 
the colon in two different ways: either as a series of separate compartments, repre-
senting specific regions of the colon, each with their own individual luminal condi-
tions; or, as a continuous model in which the passage of a fixed bolus of digesta is 
modelled over time and space simultaneously. In the former setup, the model is run 
to steady state (usually after a simulation period of at least 20 days) to provide pre-
dictions, whereas in the latter setup, the model simulates the colonic dynamics over 
the course of a single transit. The two structures are referred to as the discrete and 
continuous versions of microPop:Colon, respectively.

The discrete model

The discrete version of microPop:Colon simulates conditions in the proximal, transverse 
and distal colon. Selected dynamics from an example simulation are shown in Fig.  6, 
with steady state values obtained after 100 simulated days given in Table 1. Figure 6 dis-
plays the results using the Alpha parameter set.

Figure 6a displays the changes in pH over the course of the first five days after model 
initiation. The model was initiated with microbial community data from Walker et  al. 
[13] (Additional file 1: Sect. 4), initially present in the proximal compartment only. Due 

Fig. 5  Diagrammatic explanation of the major adaptations made to microPop in the development of 
microPop:Colon. Note that division of the colon into sections was performed for the discrete version of the 
model only. See Methods and Additional file 1 for a detailed description
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to the high initial availability of substrates (Additional file 1: Sect. 3), there was a phase 
of rapid population growth and metabolism during the first simulated day. The result-
ing production of SCFAs caused a rapid decrease in pH, most notable in the proximal 
and transverse compartments where the microbial population was at greatest abundance 
during this time. Due to a depletion of substrate, host buffering, SCFA absorption and 
washout, the pH climbed gradually thereafter, approaching steady state values between 
pH 6.3 and 7.2, as observed in vivo [16, 17].

Figure  6b shows the concentration in the proximal compartment of the five most 
abundant MFGs over the first five days after model initiation. The abundances of the 
remaining MFGs were too low to be distinguished in this plot. The Bacteroides MFG 
dominated this compartment from model initiation onwards, including at steady state 
(Table 1).

As is clear from the pH dynamics shown in Fig. 6a, there was a drop in pH in all three 
compartments during the first day of simulation, due to a rapid increase in SCFA con-
centration. Figure 6c shows the change in SCFA concentration in the distal compartment 
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over the first five days of simulation. Increases here were the result of SCFA inflow from 
the transverse compartment, alongside SCFA production from what substrates were still 
available. SCFA removal was due to host absorption and washout.

Under the conditions used for this simulation, the acetogen and SRB MFGs were 
washed out after small population increases over the first two days of the simulation. 
This was likely due to the dilution rates used for the simulation, which were high relative 
to the maximum growth rates of these MFGs, and competition for organic substrates 
between the acetogen MFG and other saccharolytic MFGs. The methanogen MFG was 
washed out of the proximal and transverse compartments, likely due to the lower pH, 
with no methanogen growth possible below pH 6 and limited growth below pH 6.9. 
However, the methanogen MFG achieved steady state concentrations in the order of 
0.001 g L−1 in the distal compartment (Table 1).

The pH predictions of the model for each compartment were within 0.2 pH units 
of literature measurements (Table  1). All SCFA concentration predictions of the 
model were lower than those measured in sudden death victims (Table  1; [18]). Per-
haps more important is the ratio of SCFAs, often stated as approximately 60:20:20 for 
acetate:propionate:butyrate in vivo [19]. Measurements from sudden death victims were 
comparable to this ratio (Table 1). The discrete model predicted a mean ratio across the 
three compartments of 63:32:5 using the Alpha parameter set, implying that acetate and 
propionate were overpredicted at the expense of butyrate. Absorption of SCFAs by the 
host was underpredicted by the model. The absorption parameters were calculated from 
perfusion studies rather than observational research; thus, the rate of absorption may 
be different under normal colonic conditions. Moreover, the rate of absorption in the 
model increases linearly with the colonic volume, which was assumed fixed for these 
simulations. An increased colonic volume induced by digesta influx would increase the 
rate of absorption in the model.

The model predicted at least 88% relative abundance of the Bacteroides MFG in all 
three compartments using both parameter sets (Table 1). While much evidence in the 
literature also predicts that this MFG should be highly abundant, 88% is significantly 
higher than the 3–35% estimates available in the literature and was a failing of the dis-
crete model (see Table  1 for literature references). The dominance of the Bacteroides 
MFG also resulted in minimal relative abundances of MFGs that compete for substrates 
with the Bacteroides MFG, which includes all but the methanogen and SRB MFGs. As 
such, the estimates of MFG relative abundance did not compare well with measurements 
in the literature (Table 1).

The predictions of the discrete model using the two parameter sets were similar in 
most respects. The most notable discrepancy between the two sets was in the SCFA 
ratio, with the model predicting higher ratios of acetate when using the Beta parameter 
set. Regarding MFG relative abundances, use of the Beta parameter set resulted in higher 
predictions for the LactateProducers and ButyrateProducers1 MFGs, whereas use of the 
Alpha parameter set resulted in higher predictions for the ButyrateProducers2 MFG.

Although the pH profile predicted by the model was representative of in  vivo data, 
the low SCFA concentrations, low SCFA absorption and the dominance of all colonic 
sections by the Bacteroides MFG mean that substantial changes would be required in 
order to reflect the colonic environment. One major assumption made in the use of the 
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Table 1  Comparison of  simulation predictions from  the  discrete and  continuous 
microPop:Colon models

Discrete model 
(values at 100 hours)

Continuous model 
(values at set time 
points)

Literature data References

Alpha Beta Alpha Beta

pH 6.4 6.4 5.7 5.7 6.37, 6.61, 7.04 (66 non-
fasted subjects)

4.9/5.8, 6.2/5.7, 6.7/6* 
(2 recently deceased 
subjects)

Mean 6.5, range 5-8 (20 
fasted subjects)

[16]
[18]
[17]

6.8 6.8 5.8 5.7

7.1 7.1 6.3 6.3

SCFA concentrations (mM)

 Acetate concentration 15.4 15.9 23.1 24 97.5/98*^ [18]

11.7 12.9 26.7 33 78.4/74.6*^

7.8 11 15.3 19.1 53.8/50.7*^

 Propionate concentration 7.6 7.5 13.6 8.6 34.5/30*^ [18]

5.7 5.7 15.2 11.4 26.7/28.5*^

4.1 4.4 7.2 5.7 17.9/19.2*^

 Butyrate concentration 0.3 0.2 5.6 7.7 41.5/36*^ [18]

0.6 0.2 8.1 9.3 35.8/32.1*^

1.3 0.4 3.9 4.2 16.4/25.8*^

 SCFA ratio (Acetate: Propi-
onate: Butyrate)

66:33:1 67:32:1 55:32:13 60:21:19 56:20:24/60:18:22* [18]

65:32:3 69:30:1 54:30:16 62:21:17 56:19:25/55:21:24*

59:31:10 70:28:2 58:27:15 66:20:14 61:20:19/53:20:27*

SCFA absorption (g d-1)

 Acetate 2.11 2.56 4.54~ 5.45~ 95% (≃9.4 g d-1 total for 
Alpha discrete and ≃13 g 
d-1 total for Beta discrete; 
≃16.3 g d-1 total for Alpha 
continuous and ≃17.3 g d-1 
total for Beta discrete) of 
total produced SCFAs

[19]

 Propionate 1.63 1.66 3.64~ 2.78~

 Butyrate 0.43 0.15 2.81~ 3.27~

 Total 4.17 4.37 10.99 11.5

 MFG relative abundance 
(%)#

 Bacteroides 98 97 48 27 23 (mean value; Bacteroi-
detes)

11 (mean value; Bacteroides)
16, 35 (mean values using 

different techniques; 
Bacteroidetes)

26, 3 (mean values; lean, 
obese individuals; Bacte-
roidetes)

[67]
[68]
[69]
[70]

95 95 42 24

88 89 42 25

 NoButyStarchDeg <1e−10 <1e−10 0.2 0.2 4 (mean value; Ruminococcus 
bromii)

[71]

<1e−10 <1e−10 0.1 0.2

<1e−10 1e−10 0.1 0.2

 NoButyFibreDeg <1e−10 <1e−10 0.1 0.2 11, 27 (mean values; lean, 
obese individuals; Rumi-
nococcus)

[70]

<1e−10 <1e−10 0.2 0.2

<1e−10 <1e−10 0.2 0.2

 LactateProducers <1e−10 1.8 20 36 5 (mean value; Actinobac-
teria)

4 (mean value; Actinobac-
teria)

2, 5 (mean values using 
different techniques; 
Bifidobacteria)

<1, 4 (mean values; lean, 
obese individuals; Actino-
bacteria)

[67]
[68]
[69]
[70]

<1e−10 3.5 21 39

<1e−10 7 21 39
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discrete model was that the steady state values would give the best prediction of in vivo 
conditions. The entry of digesta into the colon is not continuous and expulsion of faeces 
is periodic, in contrast to the model setup. Therefore, it is not feasible to expect that the 
variables predicted by the model at steady state will remain at this state in vivo. To chal-
lenge the steady state assumption, a continuous version of the model was developed.

Table 1  (continued)

Discrete model 
(values at 100 hours)

Continuous model 
(values at set time 
points)

Literature data References

Alpha Beta Alpha Beta

 ButyrateProducers1 <1e−10 0.9 16 22 3 (mean value; Roseburia)
4 (mean values; Roseburia 

intestinalis)

[67]
[72]

<1e−10 2 19 23

<1e−10 4 19 23

 ButyrateProducers2 2 <1e -10 2 1 5 (mean value; Faecalibac-
terium)

2 (mean value; Faecalibacte-
rium prausnitzii)

[67]
[72]4 <1e−10 2 1

11 <1e−10 3 1

 PropionateProducers <1e−10 <1e−10 14 13 4, 4 (mean values using 
different techniques; Veil-
lonella)

[69]

0.2 0.2 15 11

0.5 0.7 15 11

 ButyrateProducers3 <1e−10 <1e−10 0.1 0.1 0.04 (mean value; Eubacte-
rium hallii)

0.5 (mean value; Eubacterium 
hallii)

[73]
[72]0.001 0.003 0.1 0.09

0.004 0.004 0.1 0.08

 Acetogen <1e−10 <1e−10 0.04 0.04 Found in all regions
of the colon, but
abundance varies slightly 

between regions and 
individuals (104-105 gene 
copies g-1 in mucosal 
biopsies). More abundant 
than methanogens and 
SRB in faeces.

1 (mean value; Blautia)

[44]
[74]
[67]

<1e−10 <1e−10 0.05 0.03

<1e−10 <1e−10 0.05 0.03

 Methanogen <1e−10 <1e−10 0.05 0.06 Found in all individuals, but 
not found in all regions of 
each individual. Increased 
population size distally.

[44]

<1e−10 <1e−10 0.03 0.06

0.06 0.01 0.04 0.2

 SRB <1e−10 <1e−10 0.05 0.05 Found in all regions of the 
colon, but abundance 
varies widely between 
regions and individuals 
(102-109 gene copies g−1 in 
mucosal biopsies)

0.02 (mean value; Desulfo-
vibrio)

0.1, 0.03 (mean values; lean, 
obese individuals; Desul-
fovibrio)

[44]
[75]
[70]

<1e−10 <1e−10 0.04 0.04

<1e−10 <1e−10 0.06 0.05

Font style denotes values specific to the proximal, transverse and distal regions of the colon
*  Data from Macfarlane et al. [18] is displayed as Subject1/Subject 2, for the two subjects analysed

^mM concentrations were calculated from mmol kg−1 reported data assuming 1 kg faecal contents has approximately 1 L 
volume [76]
#  Literature data for relative abundance was obtained from studies on faecal samples using a wide variety of techniques 
and various groups of faecal donors. Unless otherwise stated, the data is for healthy adults and the mean value for the 
indicated taxonomic group has been included, which corresponds to the assigning of MFGs to taxa in Kettle et al. [11]. These 
values are included for comparison only and should not be interpreted as representative means for all individuals

 ~ Values from the model were tripled to give the daily total, since only one third of the daily metabolite influx into the colon 
was modelled using the continuous model
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The continuous model

To match the discrete model, a colonic transit time of one day was chosen for the con-
tinuous model. This was convenient as it matched the model time unit of days, and was 
reflective of in vivo transit times [17, 20]. Digesta was assumed to progress continuously 
along the colon over time. The dilution rates calculated from volumes used for the dis-
crete model allowed calculation of mean residence times in each colonic region in the 
model: approximately 14% (3.4 h) for the proximal colon, 32% (7.7 h) for the transverse 
colon and 54% (12.9  h) for the distal colon. Therefore, the model estimates for each 
region were taken at 3, 10 and 24 h. The concentration of inflowing substrates was set at 
one third of the daily influx for the discrete model, assuming this represents one of three 
daily meals. The continuous secretion of mucins and bicarbonate by the host was also set 
at one third of their daily value. The initial microbial population was again taken from 
Walker et al. [13], as for the discrete model. The estimates of the model at the regional 
time points are given in Table 1. Figure 7 displays the predictions of the model using the 
Beta parameter set.

The pH profile followed the expected pattern established by the discrete model: 
there was a rapid initial decrease in pH caused by microbial production of SCFAs, 
which was followed by a more gradual return towards neutral pH caused by SCFA 
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Fig. 7  Selected results of the continuous version of microPop:Colon using the Beta parameter set. The 
vertical dashed lines indicate timepoints corresponding to the values in Table 1. a pH dynamics over the 
single day simulation. b MFG dynamics of the five most abundant over the single day simulation. c SCFA 
concentrations over the single day simulation
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absorption and bicarbonate secretion (Fig.  7a). However, the pH did not return to 
neutrality during the 24-h simulation, finishing at pH 6.3 using both parameter sets. 
This is lower than the distal colonic pH estimates found in the literature (Table  1), 
perhaps reflecting inaccuracies in the bicarbonate buffering aspect of the continuous 
model.

As shown in Fig. 7b, the five MFGs showing the greatest population growth were 
identical to those shown in Fig.  6b for the discrete model. The remaining MFGs 
attained population sizes too small to be distinguished in this plot. There was a more 
even distribution of MFGs in the continuous model predictions using either parame-
ter set than was seen using the discrete version of the model. The MFG relative abun-
dance values from the continuous model were similar when using the Alpha or Beta 
parameter sets, with the exception of the Bacteroides and LactateProducers MFGs. 
The Bacteroides MFG attained 42–48% relative abundance throughout transit when 
using the Alpha parameter set compared to the LactateProducers 20–21%, whereas 
these positions were reversed when using the Beta parameter set, with Bacteroides 
relative abundances of 24–27% and LactateProducers relative abundances of 36–39% 
(Table 1).

The continuous model predictions for SCFA concentrations were similar to the 
steady state predictions of the discrete model, although higher maximum concentra-
tions were achieved by the continuous model (Fig. 7c). Use of the Beta parameter set 
resulted in higher acetate concentrations than did the Alpha parameter set, and an 
SCFA ratio more similar to that observed in  vivo (Table  1). Once again, the SCFA 
concentrations were lower than the literature estimates for these values.

Absorption of SCFAs was greater using the continuous model than the discrete 
model, with two thirds of the available SCFAs being removed from the colon by the 
host during transit. However, this was still less than the 95% absorption rate stated in 
the literature [19].

Overall, each of the four model runs analysed here (the discrete and continu-
ous models with each parameter set) gave the best predictions of the four for some 
aspects of the comparison to literature values in Table  1. However, the superiority 
of the discrete model was only seen for predictions of pH. The SCFA concentration 
and absorption predictions were poor, and the domination of all colonic sections by 
the Bacteroides MFG meant that little could be drawn from the microbial side of the 
discrete model. Contrastingly, the continuous version of the model, despite predicting 
lower pH values, was more accurate in predicting SCFA concentrations, absorption 
and the relative abundance of MFGs.

The consistent underprediction of SCFAs by each of the models could be remedied 
by a greater concentration of protein, NSP and resistant starch entering the colon. 
However, none of the model runs were able to achieve predictions for the NoButyS-
tarchDeg and NoButyFibreDeg MFGs within an order of magnitude of the observed 
relative abundances, making this the only consistent failing of the model that could 
not be explained by insufficient substrate availability. Since these MFGs were also 
underpredicted in the comparisons to experimental data in  the "Comparison of 
model predictions to experimental data" section, the accuracy of the parameter values 
for these MFGs likely requires further investigation.
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Investigation of varied colonic sulphate availability

The microPop:Colon model was developed for use as a tool to quickly provide predic-
tions on the effect of changes in substrate availability on colonic dynamics. As our inter-
est was in the hydrogenotroph dynamics in the colon, it was considered what the role 
of inflowing sulphate quantity was on the SRB population and SRB hydrogen sulphide 
(H2S) production in the colon. Previous research has shown both positive and neutral 
results of increased dietary sulphate increasing the colonic SRB population [21–25]. The 
hypothesis was that changes in sulphate inflow would have a negligible influence on SRB 
population size and H2S production in the model. The reasoning was that the sulphate 
released during mucin metabolism would be in excess of what can be metabolised by the 
small SRB MFG population in the colon, therefore sulphate would not be limiting, and 
additional sulphate would have no effect. To investigate this, microPop:Colon was run 
with varied sulphate inflow concentrations and transit times.

The discrete and continuous versions of the microPop:Colon model were run as 
described in the previous sections, using the Alpha parameter set and with sulphate 
inflow the only substrate that was varied. Conditions compared were as follows: zero 
sulphate (NoS), where sulphate may be derived from cross-feeding on the breakdown 
products of mucin only; low sulphate availability (NormS), for which the results of the 
previously performed model runs with 0.86 g L−1 d−1 sulphate available were used; and 
high sulphate availability (HighS), where the sulphate availability was increased by a fac-
tor of 10 from the NormS case. To investigate the influence of transit time on the results, 
colonic transit times of one day (as investigated previously), two days and four days were 
simulated.

Using the discrete model, variations in sulphate resulted in a maximum concentration 
change of less than 0.02% for those MFGs that avoided washout, including the hydrog-
enotrophs. Steady state differences of less than 10–4 g L−1 were observed for all metab-
olite concentrations, with the exception of sulphate, which increased with increasing 
influx levels.

The results of the continuous model showed greater differentiation between sulphate 
and transit time conditions (Table  2). Changes in the non-hydrogenotrophic MFGs 
and the acetogen MFG between sulphate influx levels were minimal, as were changes 
in SCFA concentrations. The concentration of the methanogen MFG increased under 
the NoS influx level and decreased under the HighS influx level, the magnitude of this 
change increasing with increasing transit times. Conversely, the concentration of the 
SRB MFG decreased by at least 19% under the NoS influx level and increased by 1–2% 
under the HighS influx level, with H2S concentration changes following the SRB trend.

Thus, the discrete and continuous models were not consistent in their conclusions 
on the effect of varied sulphate influx on the SRB MFG. The discrete model predicted 
washout of the SRB MFG under all conditions simulated, whereas the continuous model 
predicted that increased sulphate would result in incremental increases in SRB and H2S 
concentrations, while removal of sulphate inflow would result in substantial decreases in 
both these quantities.
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Discussion
The modelling work described here builds on the work of Kettle et  al. [11], develop-
ing and applying the microbial community model microPop [10] for the study of the 
human colonic microbiota. Several features were added to the model, encompassing 
both human and microbial metabolites and functions. The increased attention given to 
hydrogen cross-feeders in this work increases the model’s potential to provide useful 
predictions in the analysis of these microbes.

The number of in  vitro data sources used for model validation was limited by the 
requirement for detailed information on study design and time-course measurements of 
metabolite and microbial concentrations. However, the three sources and 14 independ-
ent experiments used allowed for comparison of the model predictions to microbial data 
for the majority of MFGs in the model, and against concentration data for five microbial 
metabolites, namely acetate, butyrate, propionate, lactate and formate.

The accuracy of the model predictions varied between parameter sets. Overall, no 
clearly superior parameter set was established from the validation runs: while the Beta 
parameter set of Wang et al. [12] appeared superior to the original Alpha parameter set 
of Kettle et al. [10] in most cases, its poor performance in the pH shift experiments of 
Walker et al. [13] prevents its recommendation as the more accurate parameter set for 
all cases. A similar conclusion was reached in the microPop:Colon simulations: predic-
tions of the model using either parameter set were similar, with similar flaws. In the 
future, it may be possible to derive a new parameter set, incorporating the latest knowl-
edge of the MFGs, which shows better performance than either current parameter set. 
Alternatively, it could be possible to select the parameter set based on knowledge of the 
specific strains in the inoculum to be simulated.

The viable and optimal pH range of each MFG was altered between the Alpha and 
Beta parameter sets. As pH varies between 5 and 7.5 in the simulations of the in vitro 
experiments and for the microPop:Colon runs, this change has a strong effect on growth. 
Moreover, substantial alterations were made to the maximum growth rate of the Bacte-
roides MFG on protein, NSP and resistant starch. Due to the dominance of this MFG in 
many of the simulations detailed here, the differing model predictions between param-
eter sets were to be expected.

Table 2  Summary of  changes in  microbiota and  metabolite concentrations with  varied 
sulphate influx and transit times. Percentage changes to one significant figure compared 
to the results under NormS conditions are shown, after the full transit time

Colonic transit time 1 day 2 days 4 days

Sulphate influx NoS HighS NoS HighS NoS HighS

Non-hydrogenotrophic MFGs  < 0.02  < 1e−3  < 0.02  < 2e−04  < 0.01  < 3e−04

Acetate − 5e−03  + 1e−04 −4e−03  + 1e−06 −3e−03  + 7e−05

Propionate − 2e−03  + 3e−05 − 4e−04  + 1e−05  + 8e−04 − 1e−04

Butyrate − 6e−03  + 1e−04 − 3e−03  + 5e−05  + 2e−04 − 9e−06

Acetogen MFG  + 0.04 − 1e−3  + 0.04 − 8e−04  + 0.01  + 2e−04

Methanogen MFG  + 0.7 − 0.03  + 3 − 0.2  + 10 − 0.7

SRB MFG − 19  + 1 − 25  + 2 − 25  + 2

H2S − 39  + 2 − 35  + 3 − 28  + 2



Page 18 of 29Smith et al. BMC Bioinformatics            (2021) 22:3 

The original setting of parameter values in the Alpha set by Kettle et al. [11] and of 
the more recent Beta set was performed either from monoculture experimentation 
or assumptions based on the literature. As a result of this use of monoculture param-
eters, the model inherently assumes that monoculture metabolic parameter values are 
also accurate in a co-culture environment. Experimental and modelling evidence in the 
literature both supports and opposes this assumption, with monoculture parameters 
sufficient for certain applications to co-culture [26, 27], but with co-culture fitted param-
eters necessary for more complex communities [28, 29]. Unfortunately, the derivation of 
parameter values for co-culture growth is challenged by the difficulty of successfully co-
culturing multiple strains in vitro and extracting the contributions of each to net metab-
olite flux. The current model version is constrained by this lack of data.

There are obvious limitations in assuming that a single set of parameter values is rep-
resentative of an entire functional group: clearly more variation exists between strains 
in the same MFG than is captured using this assumption. Kettle et al. [11] addressed the 
need for greater diversity of metabolic capabilities by running their model with multiple 
strains in each MFG, each of which had stochastically varied parameter values within a 
certain range. Stochastic variation within each MFG was not performed here, but would 
be a natural next step in the analysis of the model. While this would likely result in quan-
titative changes in the relative abundance of many MFGs, we speculate that it would be 
unlikely to qualitatively change aspects such as the washout of hydrogenotrophs in the 
discrete model, or the overall dominance of the Bacteroides MFG seen in most of the 
simulations.

The major addition to the original microPop model described here was the inclusion 
of the SRB MFG and the alterations to the modelling of the other hydrogenotrophic 
MFGs. A full comparison of the developed model with the original microPop model has 
not been presented here, mainly due to a lack of data around hydrogenotroph dynam-
ics: none of the data sources used here measured all three hydrogenotrophic MFGs and 
their associated metabolites. The novel SRB MFG was washed out in all simulations 
in  the "Comparison of model predictions to experimental data" section, due either to 
an absence of sulphate or mucin (Walker et al. [13] and Belenguer et al. [15] datasets) 
or high dilution rates (Payne et al. [30] dataset), thus this MFG had a negligible effect on 
the model predictions. The changes made to the other two MFGs also had little effect 
due to the incremental nature of the changes and the low abundance of these MFGs. 
For example, when the predictions for the developed model shown in Figs. 1 and 2 were 
compared to those of the original microPop version, the results were nearly identical, 
but for the acetate and acetogen MFG predictions. The developed model predicted lower 
acetate concentrations in both simulations (mean bias of developed model: 10.6 mM and 
0.7 mM for Figs. 1 and 2, respectively; corresponding mean bias of the original model: 
11.1  mM and 1.1  mM, respectively), likely due to a lower abundance of the acetogen 
MFG in the predictions of the developed model.

Another challenge faced by the creators of the original microPop model was in deter-
mining the initial abundance of MFGs. Kettle et al. [11] determined the abundance of 
the acetogen MFG in faecal samples as a proportion of counts from two Firmicutes-
targeting 16S rRNA probes, and the abundance of the methanogen MFG simply as a 
proportion of the total bacterial counts. While some of the probes used matched the 
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corresponding MFGs well (e.g. Bac303 probe for the Bacteroides MFG), others (e.g. ace-
togen, methanogen, NoButyStarchDeg and NoButyFibreDeg MFGs) were not as well 
targeted and must be considered ‘best guesses’ [11]. The fact that the simulated abun-
dances of NoButyStarchDeg and NoButyFibreDeg MFGs frequently did not match the 
observed abundances in the experimental data may be a result of poor approximation 
between microbial data and MFGs. The use of functional gene counts, suggested by Ket-
tle et al. [11], would improve the accuracy of these approximations.

The development of microPop:Colon required the inclusion of environmental fac-
tors and their influence on MFGs. The inclusion of host SCFA absorption allowed the 
effect of the colonic microbiota on the host to be quantified. The proportion of total 
SCFAs absorbed was consistently lower than observed in vivo, which could be due to 
several factors. Firstly, the absorption parameter used in microPop:Colon was calcu-
lated using results from perfusion experiments; colonic absorption under normal condi-
tions may take place at a different rate. Secondly, the absorption rate in microPop:Colon 
was dependent on the volume of the colonic section (for the discrete model) or of the 
modelled digesta (for the continuous version), with greater volumes resulting in greater 
SCFA absorption. Estimates of adult colonic volume in the literature vary widely, from 
the 3.02 L used here [31, 32] to a fasting volume of as little as 0.5 L [33], thus the volume 
estimate may be inaccurate and biasing the absorption rate.

microPop:Colon also considered bicarbonate secretion by the host, and subsequent 
buffering of the colonic environment. This is one of the strengths of the model, as it 
allows for a more physiological representation of pH than would be possible if pH were 
fixed. However, it was challenging to find consistent estimates of colonic bicarbonate 
secretion in the literature. Bicarbonate ions are exchanged for SCFAs at the colonic epi-
thelium, but also for other ions such as chloride, which were not modelled [34, 35]. The 
constant influx of bicarbonate used in the model was based on measurements from per-
fusion experiments, which may not be representative of normal colonic function.

Although the inclusion of pH in the model adds functionality, there is also potential 
for this to contribute to errors in the model predictions. If the pH value is incorrect, then 
this will influence the growth and metabolism of the modelled MFGs, resulting in varia-
tion in the production of pH influencing metabolites. This feedback mechanism should 
be considered in interpreting model results and should also be an area for future devel-
opment and testing of the model.

Another aspect of the model that defies consistent estimation is transit time. For 
microPop:Colon, a mean transit time of 24 h was chosen based on measurements in the 
literature [16, 20]. However, other research on healthy individuals has found median 
colonic transit times as high as 72 h, with individual transit times ranging from 14 to 
132  h [36–38]. These transit times were also not consistent between subject groups 
divided by gender or by age [20, 36].

Transit time has been shown as a determining factor in hydrogenotroph abundance 
[25, 39]. Both referenced studies saw a negative correlation between methanogen abun-
dance and SRB abundance, with the former seen at higher abundances with slower 
colonic transit. The abundance of Archaea has been associated with harder stools, 
indicative of longer transit times [40, 41]. There is also evidence that the presence of 
colonic methane can slow colonic transit [42]. The washout status of the acetogen and 
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SRB MFGs were unaffected by varied transit time in the discrete model, but the metha-
nogen MFG achieved increased steady state concentrations in the transverse and distal 
compartments at the higher transit times simulated in Sect. 3.2.3.

One important omission of the model was the mucous layer. Previous models for 
colonic microbiota dynamics, such as that of Muñoz-Tamayo et al. [31], have included 
compartments representing the mucous layer and shown different dynamics in this 
habitat. The mucous layer allows certain microbes to adhere to mucosal structures, thus 
increasing their residence time in the colon and generating a population distinct from 
that of the lumen [43]. The lower dilution rates associated with the mucous layer could be 
important in the persistence and greater abundance of the slower growing MFGs, such 
as the hydrogenotrophs [44]. As the mucous layer was absent from microPop:Colon, it 
should be considered a model for the luminal dynamics in the colon, rather than the 
entire colonic environment.

microPop:Colon predicted no increase in the SRB MFG concentration in the discrete 
model and only minimal increases in the continuous model with increased sulphate 
influx. This, alongside the inverse relationship between the SRB and methanogen MFGs 
in terms of population size in this investigation, suggests that competition between these 
MFGs for hydrogen or formate may be present. This relationship was not seen with the 
acetogen MFG, perhaps due to its additional ability to metabolise carbohydrates. Com-
petition between the hydrogenotrophic MFGs has been postulated previously but no 
consensus has yet been reached on the extent to which this occurs in the colon [4, 5].

The microbial community in microPop:Colon was shown to vary from the profile seen 
in  vivo (Table  1). However, substantial differences were seen between parameter sets 
and between the discrete and continuous models, despite identical initial abundances 
of each MFG. The specific profile of the microbiota, including hydrogenotrophs, has 
been repeatedly shown to vary between individuals and within individuals over time 
[44–47], so it is unsurprising that models for this complex population exhibit high vari-
ability. This variability could potentially be minimised given a reliable estimate of the 
initial MFG concentrations. Currently, microPop:Colon uses faecal abundance data as a 
proxy for the proximal colon, due to a lack of data on the proximal colonic population. 
However, the population at the beginning of the colon is known to differ from the faecal 
population [48]. Therefore, it is not expected that the faecal abundance data used to ini-
tiate microPop:Colon is representative of the proximal colonic microbiota. However, this 
estimate has been used in the absence of more appropriate data, and the initialisation 
of microPop:Colon with an initial microbial population much lower than the carrying 
capacity allows for the establishment of a population with a profile appropriate to the 
local environment.

In the future, it may be possible to use faecal abundance data to give an estimate of 
the proximal colonic population using microPop:Colon. Inverting the model, so that 
data such as faecal pH, MFG and metabolite concentrations are the input, could allow a 
reverse simulation or Markov Chain Monte Carlo estimation to be conducted in which 
the proximal colonic population could be predicted, to within some degree of accuracy. 
Such a model would require rigorous validation of the current model against human 
data, as the prediction quality of the reverse model would be dependent on its accuracy 
in its current form.
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There are several existing models for microbial and metabolite dynamics in the colon. 
Table 3 gives an overview of selected mathematical models that perform similar roles to 
microPop:Colon. The novel aspects of microPop:Colon are the option to run the model 
either in discrete, compartmentalised form, or with the continuous version. The inclu-
sion of SRB and the focus on hydrogenotrophs are also new additions to the field, and 
the diversity of the microPop MFGs sets it above other models in terms of applicability 
to microbial abundance data. Areas where the model is less sophisticated than previous 
publications are its lack of a mucous layer and a gaseous phase, as well as a less com-
prehensive catalogue of metabolites than is possible using genome-based metabolomic 
reconstructions (e.g. [49]). Moreover, water is absorbed from the lumen as digesta passes 
along the colon [50], which results in changes in metabolite concentration, digesta vis-
cosity and volume. As water absorption was not included in microPop:Colon, the effects 

Table 3  Summary of selected mathematical models for the colonic environment

Publication (model name) No. of MFGs No. 
of metabolites

Key features

Muñoz-Tamayo et al. [31] 4 13 Lumen, mucous and gaseous compartments 
over three colonic sections

Motelica-Wagenaar et al. [2] 10 24 Proximal colon only, adaptation of Muñoz-
Tamayo et al. [31]

Parameterised from in vitro data
Impact of transit time, substrates, pH, and 

presence of methanogens investigated

Moorthy et al. [52] 4 (multiple 
strains within 
MFG)

10 One-dimensional spatially continuous adap-
tation of Muñoz-Tamayo et al. [31]

Only carbohydrate substrates considered
No gaseous phase
Varied transit times, fibre intakes and number 

of strains in the primary degrader MFG 
investigated

Bauer et al. [3] (BacArena) 7 50 +  Two-dimensional cellular automaton con-
straint-based reconstruction and analysis 
(COBRA) model

Includes cellular motility and mucin layer

Van Hoek and Merks [49] Single supra-
organism used

50 +  Two-dimensional cellular automaton COBRA 
model

Evolutionary component of metabolic path-
way gain/loss

No specific MFGs, theoretical organisms with 
widely varied metabolic capabilities

Varied transit times investigated

Cremer et al. [51] 2 7 One-dimensional mechanistic model
Includes relationship between SCFA produc-

tion, pH and microbial growth
Models water absorption and peristaltic 

movement of the colon wall

Labarthe et al. [53] 4 12 A unification of Muñoz-Tamayo et al. [31] with 
Cremer et al. [51], also including microbial 
active motion

Diet, mucous, chemotaxis and peristalsis vari-
ations investigated

microPop:Colon 11 20 Spatially discrete or continuous versions
Responsive pH
Host secretion and absorption
Inclusion of mucins, but no mucous layer or 

gaseous phase
Inclusion of SRB
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of this dynamic on microbial and metabolite concentrations were not captured. Other 
models for the colon have included water absorption [51], and this would be a good 
addition to future versions of microPop:Colon.

Conclusions
Adaptations to the original microPop model of Kettle et  al. [10] have been presented 
that allow it to be applied to the human colon while retaining the qualities of the original 
model. The inclusion of all three hydrogenotrophic MFGs is a strength of the model, as 
is the option to use either the discrete or continuous versions. The model predictions 
compared well to literature data in some respects, while pointing to areas for model 
improvements in others. Perhaps the most pressing future inclusion would be the addi-
tion of a mucous layer compartment to microPop:Colon, to allow the important role of 
this habitat to be captured. The potential for the model to address biological questions in 
its current form, such as the role of sulphate in the colon, has been demonstrated.

microPop:Colon represents a tool for the further interrogation of experimental data 
or investigation of hypotheses on the behaviour and function of the human colonic 
microbiota. Once validated against experimental data for a specific in  vitro system, 
the model could be used to analyse the data from a different perspective. With further 
validation against in vivo data, the model could be used to make predictions about the 
effects of dietary interventions, probiotic performance, or antibiotic resistance on the 
microbiome. Some other example uses of the model include: deriving an estimate for 
the amount of acetate produced via reductive acetogenesis during a faecal fermentation 
study; estimating the effect of increased dietary resistant starch on the colonic micro-
biota and SCFA absorption; or, providing a prediction for the best candidate prebiotics 
to elicit a butyrogenic effect before beginning more expensive in vitro tests.

The advantages of microPop:Colon over its in vitro and modelling alternatives are its 
rapid results, low cost and the ease with which new functionality can be built in. Disad-
vantages include the limited depth to which microbes and metabolites can currently be 
interrogated, in comparison to metagenomics and metabolomics approaches, and the 
degree of abstraction necessary, leaving the quality of model predictions dependent on 
the validity of its simplifying assumptions. Thus, the model should be viewed as com-
plementary to experimental work. There is clear potential for both microPop and the 
colonic expansion of the model to be grown, with inclusion of further metabolites and 
MFGs and further comparison to in vitro and in vivo data. The model has the potential 
to benefit microbiome research both by guiding experimental research through the pro-
vision of experimentally testable hypotheses, and in application to questions that cannot 
feasibly be addressed experimentally.

Methods
Consideration of hydrogen cross‑feeding in microPop

The microbial community modelling tool microPop [10] models microbial activity and 
metabolite concentrations by accounting for the growth and metabolism of several 
MFGs, each of which is representative of a subset of the wider microbial community. For 
each of these MFGs, microPop implements information on the different metabolic path-
ways available to the MFG and the corresponding parameter values for these pathways, 
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including maximum growth rate, half-saturation constants, yield factors and stoichio-
metries. microPop also considers the pH preferences of each MFG, scaling metabolic 
activity according to environmental pH. microPop is based on Monod kinetics, con-
structing and solving a system of ordinary differential equations for given initial condi-
tions relating to each MFG and each metabolite. Full details of the equations used are 
included in Additional file 1: Sect. 1. The MFG kinetic parameter values used here were 
based on two different parameter sets: the Alpha set, utilising the original values of Ket-
tle et  al. [10]; and a Beta set, based on newly published values [12]. These values are 
included in Additional file 1: Sect. 7. Use of both parameter sets allowed for comparison 
of the predictions of the two parameterisations.

The main alterations to the microPop MFGs performed here involved the represen-
tation of hydrogenotrophs. microPop included hydrogenotrophic pathways in a meth-
anogen and an acetogen MFG. Changes to the original methanogen MFG parameter 
values were made as detailed in Additional file  1: Sect.  2. Alterations were also made 
to the hydrogenotrophic pathway of the acetogen MFG: as previous research has dem-
onstrated a hydrogen uptake threshold for these bacteria [54], the threshold model for 
Blautia hydrogenotrophica of Smith et al. [55] was used instead of the original microPop 
hydrogenotrophic pathway for the acetogen MFG. Finally, a novel SRB MFG was added 
to the model. This MFG included a hydrogenotrophic pathway and a lactate metabolism 
pathway, both based on the Desulfovibrio vulgaris model of Smith et al. [56], as well as 
formate metabolism. Full details of the three hydrogenotrophic MFGs can be found in 
Additional file 1: Sect. 2.

Comparison of microPop to experimental data

A predecessor model to microPop has previously been validated against experimental data 
from faecal fermentations [11, 13]. In order to validate microPop after the alterations to 
the hydrogenotrophic MFGs, model predictions were compared to continuous faecal cul-
ture data from three independent sources. Data was sampled from Walker et al. [13] (the 
same data used in previous model validations [11]), Belenguer et al. [15] and Payne et al. 
[14] using image capturing and graphical input software in MATLAB (The MathWorks; 
www.mathw​orks.com). SCFA and MFG measurements were converted into microPop 
units from information provided in the publications (Additional file 1: Sects. 3 and 4).

Adaptation of microPop to the human colonic environment

To perform the theoretical study of hydrogen cross-feeding and model the activity of the 
microbiota in the human colon, several further alterations to microPop were introduced. 
The colon version of the model is referred to as microPop:Colon.

Physiology

In the discrete model, the colon was divided into three sequential compartments, rep-
resentative of the proximal, transverse and distal sections. To make the model reflective 
of the colonic environment, an overall dilution rate of 1 d−1 was chosen for the entire 
colon, reflective of mean transit times in the literature [17, 20]. The dilution rate was 
scaled in each compartment according to the relative volume of the compartment. A 

http://www.mathworks.com
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fixed colonic volume of 3.02 L was assumed, with 0.41, 0.98 and 1.63 L volumes in the 
proximal, transverse and distal colons, respectively, based on previous calculations [31]. 
Although the volume of the colon will vary in vivo, these assumptions on the volumes 
only affected compartmental transit time, metabolite absorption and bicarbonate secre-
tion in the model.

pH

pH variation based on the metabolism of the microbiota and host activity was identified 
as an important inclusion. Thus, the charge balance model structures of Batstone et al. 
[57] and the simplified version of Muñoz-Tamayo et al. [58] were adapted for the colonic 
environment. Full details of the pH calculations are given in Additional file 1: Sect. 6. 
Briefly, it was assumed that a charge balance is maintained between positively charged 
ions (H+ ions and miscellaneous other cations) and negatively charged ions (dissociated 
SCFAs, bicarbonate and hydroxide). Moreover, it was assumed that the host buffers the 
colonic lumen via secretion of bicarbonate ions, absorption of SCFAs and secretion and 
absorption of CO2. Absorption of SCFAs is described in Sect.  2.3.3. Bicarbonate and 
CO2 was modelled to adhere to the equilibrium equation:

where Ka,CO2 is the equilibrium constant for CO2, sCO2 , sHCO−

3
 and sH+ are the concen-

trations of CO2, bicarbonate and H+ ions, respectively. Thus, as bicarbonate is secreted 
into the colonic lumen, it combines with H+ ions to form CO2 and H2O to balance the 
equilibrium equation. This balancing also occurs during CO2 secretion and absorption. 
The pH was then calculated from the concentration of H+ ions, where sH+ must satisfy 
both the above equilibrium equation and charge balance.

Substrates and metabolites

The influx of substrates and metabolites into the model was limited to the first compart-
ment, with the exception of mucin and bicarbonate. Rates of substrate inflow from die-
tary sources were taken as equal to those from experimental estimates in the literature 
(Additional file 1: Sect. 3). Free sulphate from the diet was included at an inflow rate of 
0.86 g d−1 [59], which was important to the SRB MFG.

In the case of mucin, it was estimated that between 2.7 and 7.3 g d−1 is secreted into 
the colon [59, 60], so 5  g d−1 was set as the microPop:Colon influx. Unlike the other 
metabolites, mucin influx occurred in every compartment, proportionally to the vol-
ume of each compartment. For mucin degradation, it was assumed that mucin is made 
up of mostly carbohydrate, with smaller proportions of protein and sulphate [11, 61]. 
An analysis of colonic microbial genomes emphasised the capacity of many Bacteroides 
strains to be effective degraders of common mucin structures [62]. Akkermansia mucin-
iphila was also implicated as a major mucin degrader, and only this species and certain 
Bacteroides strains were capable of encoding mucin-desulphating sulphatases. Since 
microPop did not include A. muciniphila explicitly and this inclusion has not been made 
here due to a lack of parameterising data, the Bacteroides MFG was the sole degrader of 

Ka,CO2sCO2 − s
HCO

−

3
sH+ = 0,
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mucin in the model. The following pathway was selected for the breakdown of mucin by 
the Bacteroides MFG:

where X is the unknown weight of mucin carbohydrate that is broken down to NSP 
rather than simple sugars. It is not clear what proportion of mucin carbohydrate is 
degraded to simple sugars versus more complex polysaccharides and this likely varies 
between degrading strains and mucin structures [62]. An approximate value of X = 0.5 
was assumed. Parameter values for this Bacteroides MFG metabolic pathway were based 
on the metabolism of chondroitin sulphate and porcine mucin by Bacteroides thetaio-
taomicron and are listed in Additional file 1: Sect. 5 [63].

Finally, in order to capture the contribution of SCFAs to host nutrition, host absorp-
tion of acetate, propionate and butyrate was included. Previous research implied 
minimal variation between the absorption rates of these three SCFAs in digestive envi-
ronments [64–66]. Ruppin et al. [66] experimentally tested the absorption rates of varied 
concentrations of SCFAs perfused into the colon and an absorption rate of approxi-
mately 0.4 h−1 was calculated from this data, which is applied to acetate, propionate and 
butyrate in microPop:Colon.

MFGs

The eleven MFGs of microPop:Colon were made up of the ten MFGs from the origi-
nal microPop model (with the aforementioned alterations to the methanogen, acetogen 
and Bacteroides MFGs), and the novel SRB MFG. Unless stated as changed specifically 
for microPop:Colon, all values used were those of the original model. For the initial 
microbial population sizes, 16S rRNA data from faecal samples were used, converted to 
microPop MFGs according to Kettle et al. [11] (Additional file 1: Sect. 4). This method 
assigns the faecal 16S rRNA data to microPop MFGs based on the closest match between 
taxa and MFGs. In instances where there was no clear match between a single probe and 
MFG, the total 16S count obtained with the probe was split between the relevant MFGs. 
In instances where no probe corresponded to one of the microPop MFGs (e.g. no metha-
nogen enumerations were made), an assumption was made about the relative proportion 
of that MFG in the total microbial community, and this value was taken as the initial 
condition for the model. For the methanogen MFG, this assumption was that the meth-
anogen abundance was equal to 0.1% of the total bacterial abundance (see Additional 
file 1: Sect. 4). It should also be noted that the initial MFG concentrations from the data 
of Walker et al. [13] were used as the initial conditions for simulations where other data 
was not available, including the microPop:Colon simulations. The implications of this 
assumption are noted in the discussion. No cell death was included in the model, as this 
was assumed negligible compared to washout, which was included.

Computation

Although microPop was used as the basis for microPop:Colon, the equations for 
microPop:Colon were implemented in MATLAB (The MathWorks; www.mathw​orks.
com) rather than R, the format for the original publication, for ease of code management. 

1 g Mucin → 0.05 g Sulphate + 0.2 g Protein+ Xg NSP+ (0.75− X) g Sugars

http://www.mathworks.com
http://www.mathworks.com


Page 26 of 29Smith et al. BMC Bioinformatics            (2021) 22:3 

The availability of microPop functionality in both MATLAB and R should facilitate 
wider usage of the model. The mathematical structure and parameter values given in the 
supporting material of the microPop package were used to transition the tool between 
software. Upon completion, the MATLAB version was tested to ensure that its predic-
tions were consistent with those of the R version. This testing was carried out for the pH 
static experiment displayed in Fig. 1 and the pH shift experiment displayed in Fig. 2. For 
all MFGs and metabolites, the predictions of the R and MATLAB versions were identical 
to four significant figures. Discrepancies beyond this level of accuracy were likely due to 
the differing numerical solvers used in the computation and were deemed insignificant.

The adaptations of the model to the human colonic environment described above were 
all carried out in the MATLAB environment. The code is available in the BioModels 
repository (https​://www.ebi.ac.uk/biomo​dels/MODEL​20062​10002​).
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