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Abstract Retinal Miiller glial cells have already been implicated in age-related macular degen-
eration (AMD). AMD is characterized by accumulation of toxic amyloid-f3 peptide (Af3); the
question we raise is as follows: is P2X7 receptor, known to play an important role in several
degenerative diseases, involved in A} toxicity on Miiller cells? Retinal Miiller glial cells were
incubated with A3 for 48 h. Cell viability was assessed using the alamarBlue assay and
cytotoxicity using the lactate dehydrogenase (LDH) release assay. P2X7 receptor expression was

>4 Patrice Rat
patrice.rat@parisdescartes. fr

Anais Wakx
anais.wakx@free.fr

Meélody Dutot
melody.dutot@yslab.fr

France Massicot
france.massicot@parisdescartes.fr

Frédéric Mascarelli
Frederic.mascarelli@inserm. fr

G. Astrid Limb
g limb@ucl.ac.uk

! UMR CNRS 8638—Chimie-Toxicologie Analytique et Cellulaire, Sorbonne Paris Cité, Faculté de
Pharmacie, Université Paris Descartes, 4 avenue de I’Observatoire, 75006 Paris, France

Laboratoire Yslab, 2 rue Félix Le Dantec, 29000 Quimper, France

INSERM U 872—Physiopathologie des maladies oculaires: Innovations thérapeutiques, Centre de
Recherches des Cordeliers, 15 Rue de I’Ecole de Médecine, 75006 Paris, France

Division of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology and Moorfields Eye
Hospital, 11 Bath Street, London EC1V 9EL, UK

Inserm U598, Physiopathologie des maladies oculaires, Innovations thérapeutiques, Centre de
Recherches Biomédicales des Cordeliers, 75270 Paris Cedex 06, France

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s12010-015-1878-6&domain=pdf

Appl Biochem Biotechnol (2016) 178:368-381 369

highlighted by immunolabeling observed on confocal microscopy and its activation was evaluated
by YO-PRO-1 assay. Hoechst 33342 was used to evaluate chromatin condensation, and caspases 8
and 3 activation was assessed using AMC assays. Lipid formulation rich in eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA) used in Age-Related Eye Disease Study 2 was incubated
on cells for 15 min prior to A3 incubation. For the first time, we showed that A3 induced caspase-
independent apoptosis through P2X7 receptor activation on our retinal model. DHA and EPA are
polyunsaturated fatty acids recommended in food supplement to prevent AMD. We therefore
modulated A3 cytotoxicity using a lipid formulation rich in DHA and EPA to have a better
understanding of the results observed in clinical studies. We showed that fish oil rich in EPA and
DHA, in combination with a potent P2X7 receptor antagonist, represents an efficient modulator of
AP toxicity and that P2X7 could be an interesting therapeutic target to prevent AMD.

Keywords Age-related macular degeneration - P2X7receptor- Amyloid-[3 peptide - Retinal cells
- Apoptosis - DHA - EPA - Omega-3 fatty acid

Introduction

Age-related macular degeneration (AMD) is a progressive degeneration of the macula, the
portion of the retina used for central vision. It is the leading cause of the irreversible loss of
vision in those aged over 50 years in the Western industrialized world [1]. The United Nations
estimates the number of people with AMD at 20-25 million worldwide [2]. As AMD
progresses, it can develop into two distinct forms of late or advanced AMD: “dry” AMD
(geographic atrophy, 90 %) and “wet” AMD (neovascular AMD, 10 %). Early stage of AMD
is characterized by the formation of drusen that are deposits of extracellular material located
underneath the retinal pigmented epithelium (RPE). Drusen provokes an inflammatory re-
sponse and is associated with RPE atrophy. Photoreceptors overlying drusen die by apoptosis,
whereas retinal Miiller glial cells are activated. Under physiological conditions, Miiller cells
are responsible for maintaining its homeostasis, support neuronal activity, and participate in the
induction, maintenance, and proper functioning of the blood-retinal barrier [3-5]. Alterations
of Miiller cells under pathological conditions can contribute to retinal degeneration [6—8].
Especially, Miiller cell dysfunction leads to photoreceptor apoptosis and blood-retinal barrier
breakdown [9, 10]. There is no curative treatment against atrophic AMD, which affects 90 %
of AMD patients. Indeed, consumption of micronutrients, such as zinc, (3-carotene, or
vitamins, has been shown to prevent AMD progression. A study reviewing the role of dietary
omega-3 long chain polyunsaturated fatty acid (PUFA) in the prevention of AMD reported a
38 % reduced rate of progression to late AMD [11]. docosahexaenoic acid (DHA, C22:6 w-3)
and its precursor eicosapentaenoic acid (EPA, C20:5 w-3) are the major structural long chain
PUFAs of the membrane of photoreceptors [12]. DHA is essential for the biogenesis and the
function of photoreceptors [13]. Moreover, EPA and DHA have antioxidant, anti-inflamma-
tory, antiapoptotic, and antiangiogenic roles in the retina [14, 15]. PUFA content in the retina
decreases with aging and it potentially induces a dysfunction of retinal cells. Participants who
reported the highest levels of EPA consumption had a reduced likelihood of AMD progression
[16]. Amyloid-3 (A) peptide is a key constituent of drusen [17-19]. It has been suggested
that drusen could correspond to the transposition of senile plaques in Alzheimer’s disease
(AD). In the retina of mice models of AD, an age-dependent A3 accumulation has been
detected, possibly resulting in neurodegeneration [20]. It has been found that oligomerized A3
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is more toxic than is nonoligomerized A3 in retinal cell cultures [21, 22]. Retinal toxicity
seems to be associated with oxidative stress and pro-inflammatory response, but underlying
mechanisms remain not clearly defined [23, 24]. The purinergic receptor P2X7 is an ATP-
gated cationic channel expressed by virtually all types of cells [25, 26]. P2X7 is involved in
oxidative stress, cell death, and inflammatory processes, all of which have been linked to
AMD [27, 28]. A recent genetic study has demonstrated that a haplotype containing a rare
genetic variant of P2X7 receptor is associated with increased susceptibility to AMD
[29].Moreover, Notomi et al. recently proposed Brilliant Blue G (BBG), a selective P2X7
receptor antagonist, as a neuroprotective agent in retinal diseases [30]. The first aim of our
study was to describe the P2X7-dependent cell death pathway induced by A3 on Miiller cells.
Our second aim was to modulate A3 cytotoxicity using a lipid formulation rich in DHA and
EPA, chosen for its ability to modulate toxic ocular stresses [31, 32].

Methods
Reagents

Reagents for cell culture were provided by Eurobio (Les Ulis, France), flasks and microplates
from Corning (Schiphol-Rijk, The Netherlands) and chamber slides from Nunc Thermo Fisher
Scientific (Rochester, NY, USA). Lipid formulation rich in DHA and EPA was provided by Yslab
(Quimper, France). BBG, a specific P2X7 receptor inhibitor [33], was purchased from Bio-Rad
(Richmond, CA, USA). Hoechst 33342, YO-PRO-1, TO-PRO-3, and secondary antibodies were
purchased from Invitrogen (PoortGebouw, The Netherlands). A3 (Bachem, Weil am Rhein,
Germany) was oligomerized as previously described [34]. Primary antibodies and IgG isotype
control were provided from Santa Cruz Biotechnology (Heidelberg, Germany). All other
chemicals, dyes, and kits were provided from Sigma-Aldrich (Saint Quentin Fallavier, France).

Cell Culture

The experiments were performed using the immortalized human Miiller cell line MIO-M1
[35]. The MIO-M1 cell line was tested at IDEXX BioResearch (Columbia, MO, USA). The
cell line was confirmed to be human and no evidence of cross-species contamination was
found. The STR testing results reported for the cell line are as follows: amelogenin (X, Y),
CSF1PO (13, 14), D13S317 (13), D16S539 (11, 12), D5S818 (12, 13), D7S820 (7, 9), THO1
(6, 9.3), TPOX (6, 9), and vWA (15, 19).

MIO-M1 were cultured using Dulbecco’s Modified Eagle’s medium, supplemented with
10 % fetal bovine serum (FBS), 2 mM L glutamine, 50 IU/mL penicillin, and 50 TU/mL
streptomycin, at 37 °C in a humidified atmosphere of 5 % CO,, as previously described [36].
Confluent cultures in flasks were removed by trypsin incubation, and then the cells were
seeded into 96-well (20,000 cells per well) or 24-well (38,000 cells per well) culture micro-
plates and kept at 37 °C for 24 h.

Incubation Protocols

Whenever the cells reached confluency, culture medium was removed and the cells were
incubated with oligomerized A3 1-42 at 25 uM in 2.5 % FBS medium for 48 h at 37 °C.
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Excessive A3 was used to model AMD pathology. Twenty-five micromolars was the
highest A3 concentration that did not induce any loss of cell viability in our model (data
not shown).

Neat fish oil containing EPA and DHA (see composition in Table 1) was incubated for
15 min (100 pL/well) followed by 24 h in culture medium prior to A3 incubation [31, 32, 37].
BBG (25 uM, according to Kawahara [38]) was incubated with cells for 15 min prior to A3
incubation. BBG is a potent inhibitor of P2X7 receptor since concentrations as low as 25 pM
are enough to inhibit receptor activation.

Cell Viability (Necrosis Assessment): AlamarBlue Assay

The alamarBlue” assay uses resazurin, a blue fluorogen probe, which is reduced to a red
fluorescent compound (resorufin) by intracellular redox enzymes [39]. A solution of resazurin
at 0.1 mg/mL was prepared in phosphate-buffered saline (PBS) then diluted to the eleventh
well in culture medium supplemented with 2.5 % FBS. The cells were exposed to resazurin
solution for 6 h at 37 °C, then the fluorescence signal was read (Aexc=535 nm, Aem=600 nm,
Safire; Tecan”, Zurich, Switzerland).

Cytotoxicity: LDH Release Assay

The lactate dehydrogenase (LDH) assay measures membrane integrity as a function of
the amount of cytoplasmic LDH released into the medium [40]. Briefly, cell supernatants
were incubated with the LDH mixture containing NAD as LDH substrate and a tetrazo-
lium dye (the mixture was prepared according to the manufacturer’s instructions for
Sigma kit TOX7) for 30 min. Absorbance was detected at 490 nm (Safire; Tecan”,
Zurich, Switzerland).

P2X7 Expression by Immunofluorescence Using Confocal Microscopy

After seeding in chamber slides for 24 h, the cells were fixed with 2 % paraformaldehyde
and 2 mM calcium for 15 min at room temperature. The cells were then permeabilized
with 0.2 % Triton X-100 for 5 min. First, the cells were incubated with primary antibody
(rabbit anti-P2X7 at 5 pg/mL) or rabbit IgG (isotype control) in PBS with 1 % bovine
serum albumin (BSA) for 1 h, and second, the cells were incubated with secondary
antibody (Alexa Fluor 488 anti-rabbit IgG) in PBS with 1 % BSA for 1 h away from
light. Third, nuclei were stained with TO-PRO-3 at 2 pg/uL for 10 min. Slides were then
observed under a Leica TCS SP2 confocal microscope (Leica Microsystems) equipped
with a 40x oil immersion objective. Staining specificity was carefully checked by
omitting the primary antibody.

Table 1 EPA and DHA (%) and

tocopherol (mg/g) composition of Fish YS-2636
tested oil

C20:5 w3 EPA 36

C22:6 w3 DHA 26

Mixed tocopherol 3.6

@ Springer



372 Appl Biochem Biotechnol (2016) 178:368-381

Confocal imaging was performed at IFR71-IMTCE Cellular and Molecular Imaging
platform (Faculté de Pharmacie, Université Paris Descartes, Paris, France).

P2X7 Activation: YO-PRO-1 Test

YO-PRO-1, a fluorogenic probe, enters cells through P2X7 receptor activation-induced pores
and emits fluorescence when it binds DNA [41]. A 2-uM YO-PRO-1 solution in PBS was
distributed in wells, and the microplate was placed at room temperature away from light for
10 min [42—46]. The fluorescence signal was then scanned (Aexc=491 nm, Aem=509 nm,
Safire; Tecan®, Zurich, Switzerland).

Chromatin Condensation: Hoechst 33342 Assay

Hoechst 33342 dye is used to detect chromatin condensation in cells simultaneously with
propidium iodide [44]. Hoechst 33342 enters living and apoptotic cells whereas propidium
iodide enters necrotic cells faster than Hoechst 33342. A solution of Hoechst 33342 at 10 mg/
mL and propidium iodide at 0.5 mg/mL was prepared in PBS. Cells were exposed for 30 min
at 37 °C, then the fluorescence was read (Aexc=365 nm, Aem=450 nm, Safire; Tecan”, Zurich,
Switzerland).

Caspases 3 and 8 Activation: AMC Assays

The caspases 3 and 8§ fluorometric assays were realized following the procedure for fluo-
rometric assay of caspases 3 and 8 activity in adherent cell lines of the CASP3F and CASP8F
Sigma kits. Briefly, the cells were treated with lysis buffer and incubated on ice for 20 min.
Then, DEVD-AMC for caspase 3 detection or IETD-AMC for caspase 8 detection was added
in each well. The samples were incubated in the dark at room temperature for 30 min.
Afterward, the fluorescence signal was read (Aexc=360 nm, Aem=460 nm, Safire; Tecan”,
Zurich, Switzerland).

Results Exploitation and Statistical Analysis

All data for microtitration were obtained in fluorescence or absorbance units and expressed as a
percentage of the negative control (culture medium). Each point was tested in three different wells,
and experiments were reproduced in triplicate. Data are expressed as means + standard deviation.
The mean values for each test were analyzed by one-way ANOVA followed by the Dunnett test
(SigmaStat 2.0; Chicago, Illinois, USA), and the level of significance was fixed at 0.05.

Results

Cell Viability in Ap-Incubated MIO-M1 Cells

First, we investigated cell viability in A-incubated MIO-M1 cells. A at 25 uM did not
induce any significant decrease in cell viability according to the alamarBlue assay (Fig. 1a).
The LDH activity assay showed no significant change in the plasma membrane integrity which

was detected in Af3-incubated MIO-M1 in comparison to negative control (Fig. 1b).
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P2X7 Activation, Chromatin Condensation and Caspase Activity

Figure 2 shows a strong labeling of MIO-M1 cell membranes using a specific anti-P2X7
antibody (Fig. 2a, right) compared to the isotype control antibody (Fig. 2a, left).

Then, we analyzed P2X7 pore formation by the YO-PRO-1 assay. Fluorescence signal
significantly increased (%3.16, p<0.001) when MIO-M1 were incubated with A3 compared to
negative control (Fig. 2b). When the A 3-incubated MIO-M1 were preincubated with the P2X7
inhibitor, BBG, the fluorescence signal significantly decreased (%0.48, p<0.001) compared to
A-incubated MIO-M1 without preincubation, confirming activation of P2X7 by A{3. We also
observed that a specific P2X7 receptor activator, BZATP, increased P2X7 pore formation,
which confirms the specificity of the YO-PRO-1 assay to evaluate P2X7 activation. We also
studied chromatin condensation, an irreversible early phase of apoptosis assessed by the
Hoechst 33342 assay, because even no loss of cell viability at 48 h does not mean no apoptosis
at 48 h. In Fig. 3, Hoechst 33342 fluorescence was significantly increased (x2.11, p<0.001) in
Afp-treated MIO-M1 compared to negative control. Preincubation of Af-treated MIO-M1
with BBG totally inhibited chromatin condensation compared to A (3-treated MIO-M1 without
preincubation increased (%0.53, p<0.001), indicating the central role of P2X7 in the mediation
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Fig. 2 Expression and activation of P2X7 receptor in MIO-M1 cells. a Isotype control (/eff) and P2X7 receptor
labeling (right). Cells were observed using confocal microscopy (200x). Pictures show mergence between nuclei
and P2X7 staining. b P2X7 receptor activation using the YO-PRO-1 assay was evaluated after incubation of
25 uM A for 48 h. BBG at 25 uM was used as a P2X7 receptor potent inhibitor and BzATP at 300 uM was
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of AB3-induced condensation of Miiller cell chromatin. Finally, we evaluated caspase activa-
tion. We focused our attention on caspase 8 and caspase 3. No significant difference was
observed between Af3-treated MIO-M1 compared to negative control (Fig. 4a, b).

Altogether, these data indicated that A3 first alters the chromatin state of Miiller cells
without inducing cell death at 48 h.

Protective Effects of EPA/DHA Associated in Fish Oil and BBG on A 3-Cytotoxicity

EPA and DHA have antioxidant and antiapoptotic roles in the retina, but their protective
effects on Miiller cells against A3 remains undetermined. P2X7 pore formation was signifi-
cantly decreased (x0.77, p<0.001) when Af-treated MIO-M1 were preincubated with EPA—
DHA fish oil compared to A3 alone, but the signal remains significantly higher than in the
negative control (Fig. 5a), suggesting that P2X7 receptor is a target for protective effects of
EPA and DHA in AB-treated Miiller cells. Preincubation of MIO-M1 with both EPA-DHA
fish oil and BBG totally inhibited P2X7 pore formation (x0.33, p<0.001), meaning that BBG
and EPA-DHA fish oil act synergically.

Analysis of chromatin condensation, an irreversible early phase of apoptosis assessed by
the Hoechst 33342 assay, showed a significant decrease (x0.78, p<0.001) in Hoechst 33342
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signal when the A{3-treated MIO-M1 were preincubated with EPA-DHA fish oil compared to
ApB-treated MIO-M1 without preincubation (Fig. 5b). Preincubation of A-treated MIO-M1
with both EPA-DHA fish oil and BBG totally inhibited chromatin condensation compared to
Ap-treated MIO-M1 with or without preincubation with EPA-DHA fish oil (x0.42, p<0.001),
confirming the P2X7 receptor-mediated deleterious effects of A3 and the potential protective
role of EPA-DHA against these effects in Miiller cells.

Discussion

Miiller cells have been shown to be implicated in AMD [47, 48], and selective ablation
of these cells led to photoreceptor apoptosis, blood—retinal barrier breakdown, and retinal
neovascularization [49]. We studied the A3 effects on MIO-M1 cells to study the impact
of this peptide involved in AMD pathogenesis on Miiller cells. The lack of necrosis in
the cells was determined by no increase in LDH levels and low levels of propidium
iodide (data not shown). Apoptosis was revealed by higher levels of YO-PRO-1 and
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Hoechst 33342 fluorescence signals in Af3-incubated cells than in control cells.
Therefore, we report that oligomerized A3 induces apoptosis rather than necrosis on
human retinal Miiller cells (MIO-M1). P2X7 receptor is involved in oxidative stress, cell
death, and inflammatory processes, all of which have been linked to AMD. Af-induced
apoptosis appears to be P2X7 cell death receptor-dependent and caspase-independent,
but further investigations are needed to confirm that. We showed for the first time that
P2X7 receptor activation plays a pivotal role in AB-induced apoptosis in Miiller cells.
Indeed, P2X7 receptor inhibition using a specific antagonist (BBG) drastically decreased
Af-induced apoptosis. Our results are in accordance with previous results that showed
that P2X7 receptor blockade prevents photoreceptor cell apoptosis and confers neuro-
protection in the brain of a rat model of Alzheimer’s disease [50, 51]. However, the
mechanism by which BBG acts remains to be deeper studied. In our model, P2X7
activation was not associated with extrinsic caspase 8 activation, as previously described
[52, 53]. Caspase 3, which is involved both in the extrinsic and the intrinsic pathways,
was not activated in our model, meaning that A3 peptide induces P2X7 activation
leading to caspase-independent chromatin condensation in Miiller cells. Apoptosis-
inducing factor (AIF) translocates from mitochondria to nuclei in a caspase-
independent fashion, leading to DNA fragmentation and chromatin condensation in cells
undergoing apoptosis [54, 55]. It was previously described that AB-induced cell death
was associated with AIF translocation [56, 57].

The Age-Related Eye Disease Study 2 (AREDS2) was a multi-center, randomized trial
designed to assess the effects of oral supplementation of DHA and EPA on the progression
to advanced AMD. The results of this trial showed that addition of DHA and EPA as ethyl
esters did not further reduce the risk of progression to advanced AMD. In our model, EPA
and DHA as triglycerides in fish oil had preventive effects towards P2X7 cell death
receptor-dependent apoptosis induced by Af3. We previously demonstrated that individual
synthetic DHA or EPA are not as efficient as DHA and EPA associated in fish oils in the
prevention of some ocular stresses [31]. Moreover, appropriate proportions of DHA/EPA
seem to be needed to observe the most potent effect. Fatty acids contained in the lipid
formulation we selected incorporate into retinal cell membranes [31], which can increase
membrane fluidity and disrupt lipid rafts [S8—61]. The activity of the numerous receptors
expressed in lipid rafts, such as P2X7 receptor [62], may be modified. Effectively, we
observed that A3-induced P2X7 receptor activation was reduced by our lipid formulation.
This P2X7 cell death receptor blockade could occur through lipid raft disruption, as we
previously showed that the EPA-DHA fish oil we used is able to modulate lipid rafts
organization [63].

DHA (22:6 w-3) is the precursor of EPA (20:5 w-3), which is the omega-3 homologue of
arachidonic acid (20:4 w-6). Arachidonic acid is at the origin of pro-inflammatory mediators
(prostaglandin E2); on the contrary, EPA is at the origin of anti-inflammatory mediators
(prostaglandin E3) after metabolism by COX enzymes [64]. As we observed in a previous
study, an increase in EPA can lead to a decrease in arachidonic acid in cell membranes and then
to a decrease in the pro-inflammatory response [32]. It is thus suggested that the high content
of EPA in our fish oil formulation could help in diminishing the inflammation associated to
AMD. Fish EPA-DHA and BBG exerted synergic effects in the prevention of A3 damages in
our model. As the potential application of BBG as a neuroprotective therapy has already been
suggested [50], the mixture of fish EPA-DHA and BBG opens further new strategic
therapeutics.
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Conclusion

For the first time, our study showed that A3 seems to induce caspase-independent apoptosis
through P2X7 receptor activation in human retinal cells. We showed that marine lipid
formulation containing EPA and DHA as triglycerides, in combination with BBG, a specific
P2X7 receptor inhibitor, fully prevented A3 cytotoxic effects in our model. Therefore, marine
oils rich in EPA and DHA, in combination with a potent P2X7 receptor antagonist, could
represent a promising efficient modulator of A toxicity.
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