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Abstract: Scant attention has been given to understanding the impact of creaming stability on the
final structure of semi-sweet biscuits, an aspect that has traditionally concerned the biscuit industry.
Accordingly, the aim of this study was to analyze the influence of the creaming phase stability on the
quality attributes of rotary-molded biscuits. Doughs were formulated with 10.2% of fat (wet basis)
and 16.3% of sucrose (w.b.), using two sucrose particle sizes, which were either added directly or
after dilution in water at different concentrations. Additionally, the creaming phase was prepared
using either a low-shear or a high-shear mixer. The results show that an aqueous-phase migration
occurred when the creaming was blended in a low-shear mixer, when using either powdered sucrose
or granular sucrose diluted in water at a high concentration. The phase separation was inhibited with
the high-shear mixer, which provided a stable creaming. Notwithstanding the variation in creaming
stability, no differences were observed in hardness, aeration, sweetness, color and noise intensity.
Additionally, the micro-CT analysis revealed that biscuits had a similar microstructure (air porosity
and thickness of biscuit walls) when they were prepared with either an unstable or a stable creaming
phase. Consequently, creaming stability does not seem to affect the structure and the most relevant
sensory attributes of rotary-molded biscuits under this set of experimental conditions, which are
representative of those used by the industry for this product category.

Keywords: rotary-molded biscuits; granulated sucrose; powdered sucrose; low-shear mixer; high-
shear mixer; creaming stability; X-ray micro-CT; sensory profiling; image analysis

1. Introduction

Biscuits are classified according to their formulation and the way they are produced,
giving rise to the following biscuit categories: deposited, wafer, laminated, sugar-snap,
rotary-molded and wire-cut [1]. Sugar-snap, rotary-molded and wire-cut biscuits are
obtained from a short dough, which differentiate them from the other classes as they have
a higher amount of sugar and fat and a lower amount of water [2]. In general, short doughs
contain soft flour (9–11% total weight of protein), 17–33% of sugar (dough weight, w.b.)
and 9–21% of fat (dough weight, w.b.) [1]. However, there is a group of rotary-molded
doughs that contain lower amounts of sugar (10–20% dough weight, w.b.) and fat (6–12%
dough weight, w.b.), and their effect on biscuit making has received less attention.

The mixing process is a critical stage of biscuit manufacture as it influences gluten
development and hence the rheological properties of the short dough [3]. Accordingly,
horizontal mixers with a low rotation speed are usually used during this stage. The
geometry of mixers may include single or double sigma blades or a shaftless mixer blade.
Industrial mixers operate between 30 and 70 rpm, whereas the speed of laboratory mixers
can reach up to 200 rpm [4]. The mixing process is generally divided into two steps in
order to constrain the water–flour interaction as much as possible so that the formation of
the gluten network is restricted: these are referred to as the creaming (or cream-up) and
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dough-up stages. During creaming preparation, fat, sucrose, water, leavening agents and
surfactants are blended together to produce a homogeneous, emulsified and aerated phase.
During the dough-up phase, the flour and the rest of the leavening agents are added to
the creaming phase, using a low mixing speed and in the shortest possible time, in order
to restrict the mechanical work and gluten development hindrance [5–7]. At the end of
mixing, a short dough is obtained, which is described as a suspension of proteins and
starch granules in a continuous liquid–sugar solution, where lipids are emulsified and
constitute the disperse phase [8]. Sugars can be added to the dough formulation as crystals
or as a sugar solution. Several studies have focused on the impact of sugar dissolution
and its particle size on the quality attributes of sugar-snap and wire-cut biscuits, which
have shown to be crucial parameters during biscuit processing as they influence dough
expansion during baking [9–13]. It has been suggested that fine sucrose particles dissolve
faster in water during baking, promoting the lateral spread of the dough that subsequently
allows a larger and thinner biscuit to be obtained compared to the effect of coarser crystals,
which produce shorter and thicker biscuits as a consequence of their slower dissolution in
water during heating [12]. Both the sugar crystal size and the concentration of the sugar
solution may provide a better understanding of their concomitant influence on the final
attributes of rotary-molded biscuits, which contain lower amounts of sugar than wire-cut
or sugar-snap biscuits. However, to date no studies have addressed this effect on this
biscuit category.

Furthermore, it has been stated that the creaming phase should be homogeneous and
emulsified to prevent flour hydration during the dough-up phase [2,5,6,14]. However,
limited attention has been given to understanding whether an unstable creaming phase
would actually have a negative effect on the final attributes of biscuits. An unstable
creaming phase could potentially affect dough processing as the water or the sugar solution
may influence the functionality of flour polymers. Although the addition of a sugar solution
delays the hydration of flour compared to just water, this phenomenon is not inhibited [13].
Kweon et al. [15] declared that the hydration of gluten proteins with a sugar solution
is thermodynamically more favorable than hydration with just water, but the kinetics
of gluten development are retarded when increasing the sugar concentration. Different
mixing methods have been examined to assess the impact of flour hydration on the quality
attributes of biscuits. Manohar et al. [3] observed that the elastic recovery and cohesiveness
of rotary-molded dough increased when all the ingredients were blended at once during
mixing (all-in-one method), instead of when using two stages (with a creaming step),
attributing this behavior to the gluten development due to the higher water availability
in the system. Regarding the mixing time and the mixing speed, most of the studies
focused on the effect of these parameters during the dough-up phase [16,17]. However,
it is still necessary to understand the impact of mixing parameters on the stability of
the creaming phase and how this condition may affect the quality attributes of biscuits.
High-shear mixers offer higher rotation speeds than horizontal mixers, ranging from 1000
to 25,000 rpm [18], but they are not commonly used during creaming elaboration. These
types of mixers may provide a stable and emulsified creaming phase due to their high
mechanical energy input, which increases the interfacial area of the disperse phase and
consequently may influence rotary-molded dough performance.

Accordingly, the aim of this study was to determine whether an unstable or stable
creaming phase may modify the quality attributes (i.e., dimensions, microstructure, hard-
ness and sensory profiling) of rotary-molded biscuits when using different sucrose particle
sizes and sugar concentrations when adding a sugar solution.
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2. Materials and Methods
2.1. Ingredients of Rotary-Molded Biscuits

The dough was prepared using commercial soft-wheat flour (Molinera San Cristobal,
Santiago, Chile) [composition: 70% starch, 13.9% moisture, 10% proteins, 3.6% total fiber,
2% lipids, 0.5% ash; 55% water absorption; 8.1% dry gluten; 4.3% damaged starch], palm
oil (Teamfoods, Santiago, Chile), granulated or powdered sucrose (Iansa, Santiago, Chile),
soy lecithin (Cargill, Santiago, Chile), ammonium bicarbonate (Basf, NJ, USA), sodium
bicarbonate (Andimex S.A., Santiago, Chile), monocalcium phosphate (Blumos, Santiago,
Chile) and salt (K + S Chile S.A., Santiago, Chile).

2.2. Biscuit Formulation and Preparation

The standard dough was formulated by mixing refined flour (65.2%, d.b.), sucrose
(19.7%, d.b.), fat (12.3%, d.b.), leavening agents (2.5%, d.b.), soy lecithin (0.2%, d.b.), salt
(0.1%, d.b.) and water (10.2% d.b.). Two sucrose particle sizes were used: granulated (GS,
D90 = 978 µm) and powdered sucrose (PS, D90 = 98 µm). The amount of water (150 g,
10.2% d.b.) was divided into two fractions. Fifty grams was used to dissolve the leavening
agents and the salt in all formulations. The remaining portion (100 g) was used to prepare
four sugar solutions, based on sugar saturation (ST), which are referred to as 0%ST, 50%ST,
100%ST and >100%ST, in order to study the effect of the addition of a sugar solution on the
stability of the creaming phase. These solutions were prepared considering the solubility of
sucrose at 20 ◦C (i.e., 204 g of sucrose per 100 g of water). 0%ST refers to pure water. In this
case, 288 g of sucrose (19.7%, d.b.) and 100 g of water were separately added to the mix.
The 50%ST solution means that 102 g of sugar was dissolved in 100 g of water, and the
remaining fraction (186 g) was added as crystals to the formulation. The 100%ST solution
means that 204 g of sugar was dissolved in 100 g of water, and the remaining 84 g was
added as crystals to the mix. The >100%ST solution was an oversaturated sugar solution,
which was obtained by dissolving 288 g of sucrose in 100 g of water by heating and stirring
it at 70 ◦C, in order to ensure the complete dissolution of sucrose crystals. This solution
was finally cooled down and added to the dough preparation at 25 ± 1 ◦C.

The dough was prepared in two steps, including a creaming and a dough phase,
as illustrated in Figure 1. During the creaming step the fat, sugar crystals and/or sugar
solution, sodium bicarbonate, ammonium bicarbonate, lecithin, salt and water were mixed
for 5.5 min. This phase was prepared using two different mixers, in order to examine
the effect of creaming stability on the quality attributes of rotary-molded biscuits. To do
so, either a horizontal mixer at the highest nominal speed (166 rpm average, Laboratory
Z-blade mixer, Morton-Mixers, United Kingdom) or a vertical high-shear mixer at the
highest nominal speed (9000 rpm, SL2T, Silverson, United Kingdom) was used. Thereafter,
the flour and monocalcium phosphate were added to the creaming phase and the mix
was blended in a horizontal mixer for 60 s at minimum speed (85 rpm) to obtain the
dough. The dough was then molded into square molds (4 × 4 cm) using a minilab rotary
moulder (RTech Limited, Merseyside, United Kingdom), and the thickness of the dough
was 2.5 mm. Seventy-eight dough pieces per tray were baked at 150 ◦C for 8 min using
a convection oven (SALVA, Gipuzkoa, Spain) until the biscuits reached a final moisture
content of 2.0 ± 0.2% (w.b.).
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Figure 1. Elaboration process of rotary-molded biscuits.

2.3. Aqueous-Phase Migration from the Creaming Phase

The stability of the creaming phase was analyzed by transferring the cream to a
separating funnel, where it was left for phase separation until equilibrium (1 h at 21 ±
1 ◦C). The aqueous phase was then collected and weighted. The aqueous-phase migration
was reported as the percentage of the aqueous-phase weight over the cream weight [19].

2.4. Firmness of the Creaming Phase

The firmness of the creaming phase was determined at 21 ± 1 ◦C using a penetration
test in a TA.XT Texture Analyzer (5 kg loadcell, Stable Microsystems, Surrey, United
Kingdom), employing a conical TTC spreadability rig (HDP/SR). Prior to the analysis,
the probe height was calibrated to ensure a starting point at the same height for each test
(25.0 mm). The creaming phase was filled into the female cone, and the male cone was
lowered up to 23 mm at a test speed of 3 mm/s. Five measurements per batch were taken.
The force (N) at the maximum penetration depth was taken as a texture parameter of
firmness [20].

2.5. Properties of Rotary-Molded Biscuits

The moisture content of biscuits was analyzed thermogravimetrically using a HB43
halogen moisture analyzer (METTLER TOLEDO, Lutz FL, USA), where 5 g of ground
sample was heated at 125 ◦C with a switch-off criterion 3. The dimensions of the biscuits
(i.e., length, width and thickness) were measured with a digital vernier caliper (0–150 mm,
Würth, Guelph, Canada), and thirty biscuits per batch were evaluated. The maximum
breaking force of biscuits was measured after two days, using a TA.XT Texture Analyzer
(5 kg loadcell, Stable Microsystems, Surrey, United Kingdom). Prior to the analysis, the
samples were hermetically sealed using a trilaminate film, PET/BOPP Met/PE, and were
then stored at 20 ± 1 ◦C. Twenty biscuits per batch were analyzed employing a three-point
bending test (HDP/3PB probe) with a support span of 36 mm, using a test speed of 1 mm/s.
The maximum breaking force (N) upon compression was used as a texture descriptor of
biscuit hardness [21].

2.6. X-ray Micro-Computed Tomography (X-ray µCT)

The microstructure of rotary-molded biscuits was analyzed using a Skyscan 1272
X-ray micro-computed tomography system v.1.1.7 (Bruker Corp., Kontich, Belgium), where
the X-ray source operated at a voltage of 45 kV and a current of 222 µA. Images were
acquired using an exposure time of 480 ms, with a rotation step of 0.2◦ over an interval of
0◦–360◦, and two frames averaging. Three samples were scanned for each condition.

Around 1800 projection images were obtained from the image acquisition, which
were then further processed using reconstruction software NRecon v. 1.7.3 (Bruker Corp.,
Billerica, MA, USA) to obtain 2D cross-sectional images (resolution 2016 × 1344 pixels,
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voxel size of 10.7 µm3). During the reconstruction step, thermal correction (X/Y alignment
with a reference scan), misalignment compensation (post-alignment), smoothing (1, using
Gaussian kernel = 2), ring artifacts reduction (=5) and beam hardening correction (=45%)
were set to obtain a good quality of the reconstructed images. The reconstructed images
were processed and analyzed using CTAn software v. 1.17 (Bruker Corp., Belgium), accord-
ing to the following steps: (i) selection of a volume of interest (VOI); (ii) removal of residual
noise; (iii) definition of a region of interest (ROI) prior to segmentation; (iv) segmentation
of biscuit components (biscuit matrix and air pores); and (v) 3D quantification using the
structure thickness, which enables a 3D representation of the size distributions of biscuit
components to be obtained [22].

2.7. Sensory Analysis

The sensory attributes of biscuits (i.e., hardness, aeration level, noise intensity, gritti-
ness, sweetness, color and thickness) were analyzed with 10 trained panelists using the
monadic profiling technique. The definition of each sensory attribute is presented in Table 1.
The intensity of the sensory attributes was evaluated in two assessments, as recommended
by Meyners et al. [23] and Moser et al. [24]. An eleven-point hedonic scale was used during
the evaluation, from 0 to 10, where the intensity ranges were defined as follows: 0.1 to
2 (weak); 2.1 to 4 (slightly weak); 4.1 to 6 (moderate); 6.1 to 8 (slightly strong); and 8.1
to 10 (strong). During the test, the panelists inserted the samples into their mouths and
the sensory attributes were evaluated during biscuit chewing using FIZZ software v. 5.2
(Biosystemes, France). After consuming each sample, panelists were instructed to rinse
their mouths by drinking water and eating some plain crackers, as proposed by Kohyama
et al. [25], and to rest for 15 min before taking the following sample test. A total of five
sessions were required to conduct the whole evaluation.

Table 1. Definitions of sensory attributes analyzed by the trainee panel.

Attribute Definitions

Aeration Visible air pores at the cross-section of the biscuit.

Color Level of roasted color at the surface of the biscuit.

Grittiness Perception of sugar crystals between the tongue and palate or the tongue
and teeth.

Hardness Force required to break the biscuit after the first bite with incisors.

Noise intensity Overall noise during chewing of biscuit.

Sweetness Level of perceived sweetness during mastication of biscuit.

Thickness How thick the biscuit is when looking at its cross-section.

2.8. Statistical Analysis

The experimental data were acquired in triplicate (3 batches per condition) and they
were analyzed with R (R Foundation for Statistical Computing, Vienna, Austria), version
3.6.1. A one-way Welch ANOVA was applied when n ≥ 30 (biscuit dimensions and maxi-
mum breaking force), in order to analyze whether the treatment means differed from each
other. This test is used when homoscedasticity cannot be assumed but normally distributed
data are required, where the central limit theorem approximation is good enough if the
sample size is greater than 30 [26]. The pairwise post hoc analysis was performed using
the Games–Howell test at 95% confidence, which does not assume homoscedasticity and
equal sample sizes [27]. However, when n < 30, the bootstrap method, introduced by
Efron [28], was used as it does not make any assumption on the underlying population
distribution (i.e., a non-parametric approach) [29]. In particular, the analysis performed
in this study did not assume that the data came from a normal distribution and instead
it fully accepted that the population distribution was unknown. The bootstrap method
uses sampling with replacement on the existing data to recover the unknown population
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distribution of the parameters of interest (mean in this case) and to estimate confidence
intervals. To estimate this effect, one thousand replicates were created, and 95% confidence
intervals were obtained to test differences between the means of the different formulations.

3. Results and Discussion

In order to determine whether the stability of the creaming phase has an impact on
the quality and the sensory attributes of rotary-molded biscuits, stable and unstable creams
were prepared by modifying the mixer configuration, the sucrose particle size and the
concentration of the sucrose solution. Accordingly, the characterization of the creaming
phase and the associated results are described in the following sections.

3.1. Characterization of the Creaming Phase

Figure 2 shows the aqueous-phase migration, which was obtained as explained in
Section 2.3. It can be observed that when the cream was prepared using a low-shear mixer
(166 rpm) (Figure 2A,B), the sucrose particle size and the concentration of sugar in the
sucrose solution affected the stability of the cream. While granulated sucrose allowed
a stable cream to be obtained when adding either the 0%ST or the 50%ST solution, the
cream was unstable with powdered sucrose at all concentrations, and ~53–59% of the
aqueous-phase migrated from the cream. During mixing of the creaming phase, two
phenomena occur simultaneously: (i) sugar dissolution, and (ii) emulsifier adsorption at
the interface between the oil and water. Sugar dissolution depends on the sucrose particle
size. Accordingly, powdered sucrose will probably dissolve faster than granulated sucrose
because its surface-area-to-volume ratio is approximately four times higher (28.1, 1/mm)
than the value for granulated sucrose (6.7, 1/mm) [30]. Moreover, in oil-in-water emulsions,
stabilization of oil droplets requires mechanical energy to disrupt coarse droplets and an
effective adsorption of the emulsifier, which is able to reduce the interfacial tension at the
interface, strongly bind to the interface and protect the oil droplets against flocculation
and coalescence [31]. Due to the slow rotational speed that may be achieved with the
horizontal mixer, it is suggested that a stable creaming phase is difficult to obtain due to the
insufficient disruptive force to fragment large oil droplets into smaller ones, as referred to
by McClements et al. [32]. On the other hand, according to Figure 2C,D, it can be observed
that the aqueous-phase migration was inhibited when using a high-shear mixer during
creaming preparation, as neither the sucrose particle size nor the sugar solution affected
the stability. The high-shear action of the mixer, and its disintegrating head geometry, most
probably enhanced the homogenization of the water (or sugar solution) and the oil phase.
The energy applied when using a high rotation speed (9000 rpm, nominal) helps to increase
the interfacial area of the dispersant phase (into droplets) and improve the distribution of
the surfactant [33], so that a stable creaming phase may be obtained.
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Figure 2. Aqueous-phase migration (%) of the creaming phase, which was elaborated using granulated (A,C) or powdered
(B,D) sucrose and was then subjected to low-shear (A,B) or high-shear (C,D) mixing. Additionally, sucrose was dissolved in
water to obtain the following sugar solutions: 0%ST, 50%ST, 100%ST or >100%ST. Data are mean ± confidence intervals at
95% (n = 3). Different scripts denote significant differences (p < 0.05).

The firmness of the stable creaming phases was measured using a spreadability test,
in order to understand whether this variable may influence the way biscuit dough spreads
during baking and, consequently, whether it may be related to the final dimensions of the
biscuits. As shown in Figure 3, the highest degree of firmness (~13 N) was obtained in
creamings formulated with granulated sucrose and prepared using a low-shear mixer, and
no significant differences (p > 0.05) were observed when water (0%ST) or an unsaturated
sugar solution (50%ST) was used (Figure 3A). The use of a high-shear mixer significantly
decreased (p < 0.05) the firmness of the cream (Figure 3B,C), and the sucrose particle size
affected this parameter. As a matter of fact, solutions prepared with powdered sucrose
were consistently less firm than those prepared with granulated sucrose. The shearing
action and the mixing time are possibly not enough to transform all the coarser sugar
crystals (granulated sucrose) into finer particles with a similar distribution to that from
powdered sucrose, leading to greater firmness. Interestingly, an increase in the amount
of sugar dissolved in water tended to decrease the firmness of the cream. This could
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be related to the extra volume of the aqueous phase that is obtained as a result of sugar
dissolution, as suggested by Ghiasi and RC [34]. However, when a >100%ST sugar solution
was used, the firmness of the creaming phase increased, becoming similar to the value
observed in creams prepared with a 0%ST sugar solution. This result does not follow the
trend that was observed in the other samples and was expected to obtain a similar or even
lower firmness value to that found in creams prepared with a sugar solution at 100% ST.
This behavior could be related to sucrose crystallization induction in a supersaturated
solution, which is catalyzed by the agitation energy input and the presence of small sugar
crystals acting as secondary nuclei, as explained by Hartel [35]. These factors could affect
the sucrose–water interaction [36], thus modifying the structure of the creaming phase
to a system similar to that obtained using a 0%ST sugar solution. Notwithstanding the
foregoing, further studies are necessary to better understand the effect of sugar dissolution
and the saturation point on the rheology and the microstructure of the stabilized creaming
phase of rotary-molded biscuits.

Figure 3. Firmness (N) of the creaming phase, which was elaborated using granulated (A,B) or powdered (C) sucrose and
was then subjected to low-shear (A) or high-shear (B,C) mixing. Additionally, sucrose was dissolved in water to obtain the
following sugar solutions: 0%ST, 50%ST, 100%ST or >100%ST. Data are means ± confidence intervals at 95%. Different
scripts denote significant differences (p < 0.05).

3.2. Dimensions of Rotary-Molded Biscuits

The dimensions of rotary-molded biscuits were measured following baking. Results
are reported in Table 2. Horizontal dimensions are linked to the lateral spread of the
dough during baking from its original size (40 × 40 mm2), while the thickness is related
to the vertical expansion of the dough. It can be observed that the length and width
were smaller (p < 0.05) in biscuits for which creaming was prepared using the high-shear
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mixer compared to those subjected to low-shear mixing, with only one exception in both
dimensions (granulated sucrose at >100%ST sugar solution). For instance, the length and
width of samples elaborated with granulated sucrose and a sugar solution of 0%ST were
39.53 and 39.88 cm for biscuits prepared using a high-shear mixer and 39.95 and 40.30 cm
for those when a low-shear mixer was used, respectively. Nevertheless, the differences did
not exceed 0.8 mm in length (2%) and 0.25 mm in width (1%), meaning that the variation
was considered rather negligible. These results may indicate that the differences observed
in the firmness of the creaming did not modify the lateral spread of the dough during
baking because minor changes were obtained in the horizontal dimensions of rotary-
molded biscuits. In turn, the thickness was similar between samples, as no differences
(p > 0.05) were found when comparing the effect of each mixer. When evaluating biscuits
that were prepared using low-shear mixing, it was determined that the sucrose particle
size did not modify (p > 0.05) the length of biscuits, and the width was, at most, 0.39 mm
smaller (p < 0.05) in biscuits with powdered sucrose. A similar behavior was observed
in biscuits prepared with high-shear mixing, where minor differences (<0.45 mm) were
detected among samples. Furthermore, the concentration of the sucrose solution slightly
affected the dimensions of the biscuits. However, no clear pattern was observed, and the
differences were not larger than 0.73 mm (1.8%) for the horizontal dimensions and 0.2 mm
(3.7%) for the thickness. Previous studies have shown that the horizontal dimensions of
sugar-snap and wire-cut biscuits are greater in products elaborated with finer sucrose
crystals or when using a sugar solution [7,12,37]. In particular, Kweon et al. [12] observed
that biscuits prepared with coarser sugar crystals (>500 µm) had smaller diameters than
those prepared with finer crystals (<500 µm), a result that was attributed to the slower
dissolution of coarse crystals during mixing and baking. Overall, results presented in
Table 2 show that the sucrose particle size and the percentage of sugar dissolved in water
practically do not modify the horizontal dimensions of rotary-molded biscuits, as opposed
to what has been found in wire-cut and sugar-snap biscuits.

Table 2. Dimensions (i.e., length, width, thickness) of rotary-molded biscuits, which were elaborated using granulated or
powdered sucrose.

Type of Mixer Type
of Sucrose

Sugar Saturation
(%ST) Creaming Stability Length (mm) Width (mm) Thickness (mm)

Low-shear
Granulated

0 Stable 39.95 ± 0.14 c,e,f 40.30 ± 0.06 g 5.39 ± 0.04 a,c,d,e

50 Stable 40.06 ± 0.17 c,d,e 40.27 ± 0.06 g,h 5.23 ± 0.05 b

100 Unstable 40.26 ± 0.12 c,d 40.35 ± 0.06 g 5.43 ± 0.05 c,d,e

>100 Unstable 40.42 ± 0.16 d 40.40 ± 0.07 g 5.40 ± 0.05 a,c,d,e

High-shear
Granulated

0 Stable 39.53 ± 0.12 a,b 39.88 ± 0.06 a,b,c,d 5.29 ± 0.05 a,b

50 Stable 39.38 ± 0.17 a 39.88 ± 0.06 a,c,d 5.37 ± 0.04 a,c,d,e

100 Stable 39.40 ± 0.15 a 39.97 ± 0.07 c,d,e 5.45 ± 0.05 c,d,e

>100 Stable 40.11 ± 0.14 c,d,e 40.24 ± 0.10 f,g,h 5.48 ± 0.06 d,e

Low-shear
Powdered

0 Unstable 40.26 ± 0.13 c,d 40.05 ± 0.06 e,f 5.35 ± 0.04 a,c,d

50 Unstable 39.96 ± 0.36 a–f 40.04 ± 0.07 c,e,f 5.41 ± 0.06 a,c,d,e

100 Unstable 39.96 ± 0.12 c,e 40.10 ± 0.08 e,f,h 5.40 ± 0.05 a,c,d,e

>100 Unstable 40.09 ± 0.14 c,d,e 40.01 ± 0.08 c,e 5.39 ± 0.06 a,c,d,e

High-shear
Powdered

0 Stable 39.78 ± 0.15 a,b,e,f 39.76 ± 0.06 a,b 5.35 ± 0.04 a,c

50 Stable 39.83 ± 0.16 b,e,f 39.79 ± 0.08 a,b,d 5.50 ± 0.06 e

100 Stable 39.50 ± 0.18 a,b 39.74 ± 0.08 a,b 5.39 ± 0.06 a,c,d,e

>100 Stable 39.66 ± 0.12 a,b,f 39.72 ± 0.07 b 5.40 ± 0.05 a,c,d,e

Sucrose was dissolved in water to obtain the following sugar solutions: 0%ST, 50%ST, 100%ST or >100%ST. The creaming phase was
subjected to low-shear or high-shear mixing. Data of each dimension are means ± confidence intervals at 95%. Different superscripts (a–h)
denote significant differences (p < 0.05).
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3.3. Hardness of Rotary-Molded Biscuits

In order to understand the effect of creaming stability on the texture of rotary-molded
biscuits, the maximum breaking force was measured using a texture analyzer (Figure 4).
The maximum breaking force in all biscuits ranged between 13.1 and 16.7 N. Moreover,
biscuits whose creaming was prepared using a low-shear mixer (Figure 4A,B) were be-
tween 1 and 3 newtons less hard (p < 0.05) than biscuits prepared with a high-shear mixer
(Figure 4C,D). For instance, in biscuits prepared with granulated sucrose and water (0%ST
sugar solution), this value was ~14.2 and 15.8 N in samples prepared using a low-shear
(Figure 4A) and a high-shear mixer (Figure 4C), respectively. Furthermore, the concentra-
tion of the sucrose solution did not impact (p > 0.05) the maximum breaking force except in
biscuits prepared with granulated sucrose at the >100%ST sugar solution. However, the
difference was lower than 0.83 (5.8%) and 1.13 N (7.1%) compared to samples prepared
with water (0%ST), when using low- and high-shear mixing, respectively (Figure 4A,C). In
addition, the sugar crystal size did not influence the maximum breaking force (p > 0.05) in
biscuits prepared with low-shear mixing. In turn, the sucrose particle size only influenced
the maximum force at 50%ST in samples prepared with a high-shear mixer, where the
value was only 1.65 N higher in biscuits prepared with granulated sucrose.

1 
 

 
Figure 4. Maximum breaking force (N) of rotary-molded biscuits, obtained by texture analyzer.
Biscuits were elaborated using granulated (A,C) or powdered (B,D) sucrose. Sugar was dissolved
in water to obtain the following sugar solutions: 0%ST, 50%ST, 100%ST or >100%ST. Further, the
creaming phase was subjected to low-shear (A,B) or high-shear (C,D) mixing. Data are means ±
confidence intervals at 95%. Different scripts denote significant differences (p < 0.05).

A sensory analysis was also performed to examine the perception of biscuit hardness
by a trained panel. Additionally, the maximum breaking force and the hardness at the first
bite were compared to ascertain whether the force increment within the range of 1 to 3 N
could actually be perceived by the panelists. As can be seen in Figure 5, all biscuits were
scored between 4.6 and 5.1, which corresponds to a moderate hardness in the intensity
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range. The concentration of the sugar solution did not affect the hardness at the first
bite except in biscuits prepared with powdered sucrose using low-shear mixing at the
50%ST and >100%ST sugar solutions (Figure 5B). Despite this difference, the results were
in the same range within the sensory scale, and a variation of 0.27 between them may be
considered negligible. Additionally, the differences determined with the texture analyzer
(Figure 4) were not perceived by the sensory panelists. Regarding the sugar crystal size,
this variable did not impact the hardness at the first bite (p > 0.05) (Figure 5), and the
differences obtained instrumentally were not detected by the panelists. Furthermore, they
did not detect any variation in biscuit hardness when its corresponding creaming phase
was prepared using a low-shear or a high-shear mixer (Figure 5A,C and Figure 5B,D). Kim
et al. [38] prepared biscuits with different amounts of sugar to investigate the correlation
between the hardness response obtained by three instrumental tests and by a trained
sensory panel. When replicates of biscuits with the same amount of sugar were analyzed
(for instance, 13.4% w.b.), and even though the same level of hardness was detected by the
panelists, the bending test showed differences in hardness of up to 4.6 N between samples.
Similar results were obtained by Yılmaz et al. [39], who also found that a difference of 5 N
(measured using a texture analyzer) between two samples was not detected by the trained
panel. Accordingly, it seems reasonable that a difference of 3 N measured instrumentally
would not be perceived by trained panelists and even less by consumers.

Figure 5. Hardness at the first bite of rotary-molded biscuits, obtained by a trainee sensory panel. Biscuits were elaborated
using granulated (A,C) or powdered (B,D) sucrose. Sugar was dissolved in water to obtain the following sugar solutions:
0%ST, 50%ST, 100%ST or >100%ST. Further, the creaming phase was subjected to low-shear (A,B) or high-shear (C,D)
mixing. Data are means ± confidence intervals at 95%. Different scripts denote significant differences (p < 0.05).
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3.4. Additional Sensory Attributes of Rotary-Molded Biscuits

To better understand the effect of creaming stability and sucrose (particle size, sugar
in solution) on the sensory profiling of rotary-molded biscuits, the aeration, noise intensity,
grittiness, sweetness, color and thickness were determined using a monadic profile with a
trained sensory panel. Figure 6 displays a 2D radar graph, where the sensory attributes
of different biscuits are compared. In addition, Table 3 shows the statistical analysis and
confidence intervals at 95% of these sensory attributes. It can be observed that all samples
had similar sensory profiling (Figure 6), where the mean score range for each attribute
was as follows: 2.7 to 3.3 for aeration, which corresponds to a slightly weak intensity; 4.4
to 4.9 for noise intensity, which is a moderate intensity; 2.0 to 2.5 for grittiness (slightly
weak intensity), which is associated with the presence of sugar crystals, indicating that
they were not perceived by the panelists; 5.0 to 5.4 for sweetness, which corresponds to
a moderate intensity; 2.0 to 2.6 for color (slightly weak intensity), which is related to a
light yellowish color; and 3.9 to 4.3 for thickness. Regarding the sucrose particle size,
no significant differences (p > 0.05) were observed in any of the sensory attributes when
biscuits were prepared with a low-shear mixer (Table 3). The same trend was observed
in samples prepared using a high-shear mixer, apart from color, where a slight but minor
difference was observed between samples prepared with the >100%ST sugar solution.
Furthermore, at equal sugar crystal sizes, the type of mixer did not influence the sensory
attributes (p > 0.05) at any concentration of the sugar solution. Accordingly, these results
also show that a stable or unstable creaming phase does not produce any variation in the
sensory attributes of rotary-molded biscuits.

Figure 6. Sensory attributes (i.e., aeration, noise intensity, grittiness, sweetness, color, thickness) of rotary-molded biscuits.
Biscuits were elaborated using granulated (A,C) or powdered (B,D) sucrose. Sugar was dissolved in water to obtain the
following sugar solutions: 0%ST (yellow), 50%ST (blue), 100%ST (green) or >100%ST (red). Further, the creaming phase was
subjected to low-shear (A,B) or high-shear (C,D) mixing. Data (n = 20) are expressed as observed mean.
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Table 3. Confidence intervals at 95% of sensory attributes for rotary-molded biscuits.

Sensory
Attributes Aeration Noise Grittiness Sweetness Color Thickness

Sugar Saturation
(%ST) A: Low-Shear Mixer—Granulated Sucrose

0 (2.94, 3.63) b (4.31, 5.01) a (1.88, 2.68) a (5.00, 5.56) a,b (2.20, 2.92) b (3.98, 4.43) a–c

50 (2.64, 3.14) a,b (4.07, 4.92) a (1.72, 2.55) a (5.19, 5.65) b (2.17, 2.74) b (3.86, 4.16) a,b

100 (2.94, 3.45) b (4.10, 4.88) a (1.91, 2.77) a (4.73, 5.29) a (2.02, 2.54) a,b (3.96, 4.19) a–c

>100 (2.68, 3.37) a,b (4.23, 5.02) a (1.69, 2.59) a (5.08, 5.73) a,b (2.21, 2.70) b (3.99, 4.25) a–c

Sugar Saturation
(%ST) B: Low-Shear Mixer—Powdered Sucrose

0 (2.55, 3.16) a,b (4.19, 5.01) a (1.82, 2.82) a (5.01, 5.70) a,b (2.18, 2.60) b (4.00, 4.26) b,c

50 (2.32, 2.94) a (4.03, 4.77) a (2.06, 2.85) a (4.96, 5.57) a,b (2.09, 2.65) a,b (3.80, 4.33) a–c

100 (2.61, 3.18) a,b (4.22, 5.00) a (1.89, 2.81) a (4.74, 5.43) a,b (2.10, 2.69) b (4.07, 4.55) c

>100 (2.97, 3.56) b (4.30, 5.02) a (1.86, 2.59) a (5.04, 5.65) a,b (2.03, 2.51) a,b (4.01, 4.66) b,c

Sugar Saturation
(%ST) C: High-Shear Mixer—Granulated Sucrose

0 (2.73, 3.24) a,b (4.24, 5.09) a (1.87, 2.57) a (5.09, 5.67) a,b (2.29, 2.67) b (3.70, 4.06) a

50 (2.90, 3.61) b (4.54, 5.34) a (1.72, 2.48) a (4.87, 5.40) a,b (2.13, 2.68) b (3.95, 4.28) a–c

100 (2.65, 3.39) a,b (4.38, 5.11) a (1.62, 2.25) a (4.99, 5.55) a,b (2.02, 2.50) a,b (3.88, 4.24) a–c

>100 (2.62, 3.18) a,b (4.29, 5.16) a (1.62, 2.30) a (4.89, 5.54) a,b (2.29, 2.80) b (3.97, 4.34) b,c

Sugar Saturation
(%ST) D: High-Shear Mixer—Powdered Sucrose

0 (2.44, 3.20) a,b (4.44, 5.15) a (1.67, 2.52) a (4.81, 5.28) a (1.92, 2.49) a,b (3.78, 4.36) a–c

50 (2.67, 3.33) a,b (4.17, 4.95) a (1.70, 2.46) a (4.94, 5.51) a,b (2.17, 2.49) b (4.09, 4.56) c

100 (2.46, 3.25) a,b (4.33, 5.19) a (1.95, 2.81) a (4.83, 5.36) a,b (2.02, 2.50) a,b (3.83, 4.42) a–c

>100 (2.84, 3.32) a,b (4.51, 5.22) a (1.68, 2.45) a (4.84, 5.41) a,b (1.68, 2.25) a (3.97, 4.36) a–c

Biscuits were elaborated using granulated or powdered sucrose. Sugar was dissolved in water to obtain the following sugar solutions:
0%ST, 50%ST, 100%ST or >100%ST. Further, the creaming phase was subjected to low-shear or high-shear mixing. Different superscripts
per attribute denote significant differences (p < 0.05). Bolded values indicate significant differences at different sugar solutions.

Regarding the concentration of the sucrose solution used for creaming preparation, it
was only in four attributes that some significant differences between samples (p < 0.05) were
found (bold marks in Table 3): aeration in “B” samples with 50%ST and >100%ST sugar
solutions; sweetness in “A” samples with 50%ST and 100%ST sugar solutions; color in “D”
samples with 50%ST and >100%ST sugar solutions; and thickness in “C” samples with
0%ST and >100%ST sugar solutions. Despite this, the intensity range was similar between
each pair, and no specific relationship was found among these samples. Furthermore, the
sweetness and the grittiness were similar between samples, indicating that these attributes
were not perceived as being different when sucrose was incorporated as crystals or pre-
dissolved in water. Analyzing the biscuit formulation, the sucrose/added water ratio was
1.9. In most of the samples, part of the sugar crystals was pre-dissolved prior to mixing,
although a fraction also remained as crystals. Bearing in mind that the solubility of sucrose
increases with temperature, for instance, from 2.07 g sucrose

g water at 25 ◦C to 4.76 g sucrose
g water at

100 ◦C [40], it is suggested that the remaining part of the sugar crystals can be completely
dissolved during baking when the sucrose/added water ratio is well below the solubility
of sucrose at 100 ◦C.
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3.5. Microstructure of Rotary-Molded Biscuits

The mechanical properties of biscuits are related to their microstructure and affect
the perception of their sensory attributes during chewing [41]. To better understand the
effect of creaming stability on the microstructure of biscuits, the air porosity and the size
distribution of air pores were analyzed (3D quantification), as shown in Figure 7. Only
biscuits prepared with water (0%ST sugar solution) were selected as previous results
showed that the concentration of the sugar solution did not alter either the maximum
breaking force or the sensory attributes of the biscuits. Figure 7A presents the 2D cross-
sectional images of biscuits prepared with an unstable or stable creaming phase, where the
air pores are represented in black and the biscuit matrix in beige white. The air porosity
(%) was measured from 3D micro-CT images and corresponded to the percentage of the
volume of voxels of air pores over the total volume of voxels. All samples had a similar
air porosity (p > 0.05), which is consistent with that obtained in the aeration attribute by
sensory analysis, and their mean values were 47.6% (Figure 7A(i)), 47.8% (Figure 7A(ii)),
47.0% (Figure 7A(iii)) and 47.2% (Figure 7A(iv)). Besides this information, the thickness
distribution of the structure of air pores was also examined through micro-CT image
analysis, as shown in Figure 7B. Around 30% of air pores were smaller than 96 µm, ~70%
of them were less than 225 µm and about 98% were located below 546 µm, which is in
agreement with Pareyt et al. [42], who found that a sugar-snap biscuit with 17.6% sugar
(w.b.) had most of its air pores below 637.26 µm. Moreover, at equal sucrose particle sizes,
the type of mixer did not produce significant differences (p > 0.05) in the air pores size
distribution of rotary-molded biscuits, except for biscuits with powdered sucrose in the
range of (96, 225) µm. The difference was not pronounced because biscuits prepared with a
high-shear mixer (stable creaming) had 42.6% of air pores located in that range compared
to 40.2% for biscuits prepared with a low-shear mixer (unstable creaming).

Furthermore, the wall thickness distribution of the biscuit matrix was quantified (3D
quantification) also through micro-CT image analysis, as shown in Figure 8. It can be
observed that the thickness of biscuit walls is within the range of 21 and 200 µm, and no
differences were obtained among the cumulative distributions of samples. For instance,
the D50 and D80 were 86.4 ± 0.1 and 108.8 ± 0.2 for biscuits formulated with granulated
sugar and a stable creaming phase (Figure 8A), 84.0 ± 1.0 and 105.6 ± 0.6 for biscuits
elaborated with powdered sugar and an unstable creaming phase (Figure 8B), 86.2 ± 0.7
and 108.6 ± 1.5 for biscuits elaborated with granulated sugar and a stable creaming phase
by high shearing (Figure 8C) and 82.5 ± 0.3 and 104.5 ± 0.2 for biscuits prepared with
powdered sugar and a stable creaming phase by high shearing (Figure 8D). These results
show that the stability of the creaming phase did not modify the thickness distribution of
the inner walls in rotary-molded biscuits, which could explain the similar results obtained
when analyzing the texture and the remaining sensory attributes.
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Figure 7. 2D X-Y cross-sectional images (by X-ray µCT) of biscuits (A) and structure thickness distribution of air pores
inside the biscuit structure (B), which were formulated with a sugar solution at 0%ST, using granulated (GS) or powdered
(PS) sucrose, and the creaming phase was subjected to low-shear (Hor) or high-shear (HSh) mixing. Porosity is means ±
standard deviation (n = 3). Data from air pores distribution are means ± confidence intervals at 95%. Different scripts in
each range interval denote significant differences (p < 0.05).
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Figure 8. The structure thickness cumulative distribution of the biscuits’ walls, which were elaborated with a sugar solution
at 0%ST, using granulated (A,C) or powdered (B,D) sucrose, and the creaming phase was subjected to low-shear (A,B) or
high-shear (C,D) mixing. Data are means ± standard deviation (n = 3).

4. Conclusions

This study examined the effect of creaming stability on the quality attributes of rotary-
molded biscuits. Results show that creaming was unstable when it was produced using
a low-shear mixer, where the sucrose particle size and saturated or supersaturated sugar
solution also influenced the aqueous-phase migration. However, the use of a high-shear
mixer allowed a stable creaming phase to be obtained. Despite the variation in creaming
stability, no significant differences were observed in the sensory profile (aeration, noise
intensity, grittiness, sweetness and color) of rotary-molded biscuits. In addition, the
variation in biscuit dimensions was either inexistent or negligible. The micro-CT analysis
revealed that biscuits prepared with an unstable or a stable creaming phase had a similar
air porosity and thickness of the biscuit walls. Until now, it was generally accepted that
the creaming phase of short doughs had to be stable and emulsified in order to obtain an
adequate biscuit. This study suggests that the stability of the creaming phase does not
seem to be a relevant factor to determine the quality attributes of rotary-molded biscuits,
using the formulations and conditions studied herein.
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