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Abstract
SARS-CoV-2 COVID-19, coronavirus, has created unique challenges for the medical community after national guidelines called
for the cancellation of all elective surgery. While there are clear cases of elective surgery (benign cranial cosmetic defect) and
emergency surgery (hemorrhage, fracture, trauma, etc.), there is an unchartered middle ground in pediatric neurosurgery.
Children, unlike adults, have dynamic anatomy and are still developing neural networks. Delaying seemingly elective surgery
can affect a child’s already vulnerable health state by further impacting their neurocognitive development, neurologic function-
ing, and potential long-term health states. The purpose of this paper is to demonstrate that “elective” pediatric neurosurgery
should be risk-stratified, and multi-institutional informed guidelines established.
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Introduction

The COVID-19 pandemic has created unique challenges
for pediatric neurosurgeons. Elective procedures have
been postponed at virtually all major pediatric neurosur-
gery centers. While there has been some centralized effort
in adult surgery to standardize and stratify low vs. high
acuity [1], this has not yet occurred for pediatric neuro-
surgery. Given these new restrictions, many fields of
medicine have made some general recommendations in-
cluding head and neck surgery [2], anesthesia [3], cardiac

electrophysiology [4], and colorectal surgery [5]. While
some recommendations apply to neurosurgery, particular-
ly endoscopic sinonasal and skull base recommendations
[2], no manuscripts exist to systematically stratify risk
associated with delay in common pediatric neurosurgical
procedures.

The purpose of this paper is to outline the risks associated
with delaying elective pediatric neurosurgery. Urgent cases
that present an immediate threat to the patient’s life or neu-
rologic well-being (e.g., shunt malfunction, acute hemato-
ma evacuation, tumor with hydrocephalus, empyema, spi-
nal cord compression) are straightforward and undergo
prompt surgical intervention. Elective surgery is readily de-
fined as cases that offer a negligible or minimal threat of
harm to the patient if surgery is delayed for several months.
Examples might include skull dermoids/epidermoids, pro-
phylactic spinal lipoma untethering operations, and some
craniofacial procedures. These are similarly less challeng-
ing in the current environment. However, there are a large
number of procedures which are less straightforward in
which lack of prompt surgery, while not emergent, may
result in neurologic harm to the patient. Delaying all “elec-
tive” surgeries in this population poses health-related risks,
and a review of best available evidence on harm imposed by
delaying these operations is warranted.
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Methods

The authors have identified a sample of pediatric neurosurgery
procedures that are neither clearly emergent nor purely elec-
tive. Cases considered for review include the following diag-
noses/scenarios:

1. Tumor recurrence without hydrocephalus
2. Chiari I malformation
3. Medically resistant epilepsy
4. Craniosynostosis—single suture and syndromic multi-

suture synostosis
5. Tethered spinal cord
6. Brachial plexus
7. Moyamoya disease

A PubMed-based literature survey was conducted for man-
uscripts that addressed morbidity arising from delay in inter-
vention for these diagnoses. Manuscripts were prioritized on
the basis of relevance of study design and evidence quality
and were excluded for the following reasons: opinion paper,
review paper, single case report, lack of outcomes results, or
pertaining to the adult population. Papers that presented out-
comes from delayed surgery were included in this review.

1. Tumor recurrence without hydrocephalus or symptoms of
mass effect (i.e., purely radiographic recurrence):

i. Issues/threats with surgical delay:

(a) Sudden decline from hemorrhage into tumor or
acute development of hydrocephalus

(b) Risks of dissemination or de-differentiation into
higher grade lesion.

Supporting evidence Low-grade neoplasms characteristically
show slow, linear growth with a minimal risk of rapid decline
from mass effect [6]. For pilocytic astrocytomas, the greatest
risk is likely the development of a cystic component that may
show focal accelerated growth [7]. Other lesions such as
craniopharyngiomas show highly variable growth patterns
and often have a cystic component that may expand more
rapidly to cause mass effect or obstruction [8]. Another im-
portant consideration in predicting potential risk for focal
mass effect is the degree of surrounding edema elicited by
the tumor. This risk also correlates with tumor histology [9].
Low-grade tumors such as pilocytic astrocytomas,
glioneuronal tumors (DNT, ganglioglioma, etc.) and grade I
gliomas typically offer a low risk for acutely developing ede-
ma [10]. High-grade pediatric lesions such as PNTs, embryo-
nal tumors, choroid plexus carcinomas, or high-grade gliomas
(e.g., glioblastoma multiforme) harbor substantially greater

risk for edema and secondary rapid increase in mass effect
[10].

Similarly, the incidence of hemorrhage into a tumor recur-
rence is predominantly determined by histologic diagnosis
[11]. The pediatric brain tumors with the highest risk for hem-
orrhage include high-grade embryonal neoplasms of infancy
[12], glioblastoma [13], and mixed malignant germ cell tu-
mors [14]. As such, the prior histology of a recurrent lesion
is the principle determinant of the acute risk for a sudden
decline from hemorrhage or sudden edema. For example,
Donofrio et al. [15] noted thin-walled, small, and closely
packed vascularization in pediatric patients with cerebellar
hemorrhage from pilocytic astrocytomas 10]. White et al.
[16] characterized three distinct histological subtypes which
correlated with hemorrhagic events in pilocytic astrocytomas
[16]. Specifically, thick-walled hyalinized vessels with
glomeruloid structures of vascular endothelial hyperplasia
with ectatic vessels serve as a nidus for bleeds [16]. Multiple
studies in the literature outline the relationship between histo-
logic features and intratumor hemorrhage [15, 17–20]. Pagano
et al. [21] describe recurrent hemorrhage of pilocytic astrocy-
tomas and stressed the importance of VEGF for aberrant neo-
v a s c u l a r i z a t i o n a n d hyp e r p e rme a b i l i t y [ 2 1 ] .
Immunohistochemistry is now being better understood
through genetic markers. As described by Phoenix et al.
[41], medulloblastoma genotype highly dictates the vascular
environment and hemorrhagic tendencies of tumors [22].
Most recently, Ishi et al. demonstrated the association of
FGFR1 mutation with hemorrhagic events in low-grade pedi-
atric gliomas [23].

2. Chiari malformation with syrinx

i. Issues/threats with surgical delay:

(a) Neurologic decline in upper extremities from
syrinx

(b) Dysesthetic pain from syrinx.

Supporting evidence Chiari I malformation has a range of
clinical presentations from headaches to brainstem-related
symptoms [24]. When patients are asymptomatic, the clinical
course is benign overall [25, 26]. However, neurologic deficits
arising secondary to syringomyelia may not be reversible with
surgery. A recent practice preference survey by Rocque et al.
[27] of the membership of the American Society of Pediatric
Neurosurgery (ASPN) demonstrated a strong preference for
using presence of a syrinx regardless of symptoms in the set-
ting of Chiari I malformation as a threshold for surgery [27].
Most surgical series have reported a 60–85% incidence of
syrinx with CIM but larger radiographic series show that only
10–15% of patients with a C1M have a syrinx [28, 29]. This
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suggests that patients with syrinxes are selected in surgical
series.

Several principles emerge that are helpful in approaching
the dilemma of acceptable delay challenge for an asymptom-
atic patient with a C1M-related syrinx:

(1) The onset of neurologic symptoms from a C1M syrinx is
usually insidious and gradual but can rarely be acute
[30]. Only a limited number of papers address acute de-
cline from C1M related syringomyelia [28, 31–34].
Massimmi [35] and colleagues identified 3 patients in
their center experience and then identified 38 more pa-
tients from the literature that showed acute clinical de-
cline [35]. They concluded in 2012 that only 41 of such
patients had ever been identified and concluded that sud-
den presentation is extremely rare [35]. However, mor-
bidity (irreversible motor 37%, 29% respiratory failure)
and mortality (20%; 14.5% cardiac arrest) were severe
when it did occur [35].

Almotairi and colleagues [36] observed 3 patients to
acutely decline in a cohort of 65 (3/65 = 4.6%) adult
patients from Sweden who were followed and treated
for C1M-related syrinx [36]. In this series, the patients
that declined acutely demonstrated longer and wider syr-
inxes that extended more rostrally (above C1) than the
larger group who demonstrated no acute decline [36].
The extent of tonsillar herniation did not correlate [36].

(2) The response time of a syrinx to operative decompres-
sion is unknown and appears gradual. Wetjen and
Oldfield [37] studied 29 patients who underwent poste-
rior fossa decompression for C1M and found a median
time of 3.6 months (95%CI = 3.0–6.5 months) [37].
Experienced Chiari surgeons typically advocateMRI im-
aging follow-up in 6–12 months.

(3) Surgical decompression has a consistently good but var-
iable impact on syrinx. Tubbs et al. [29] found that only 4
out of 285 patients with syrinx demonstrated progression
after posterior fossa decompression and cranioplasty
[29]. Zhang and colleagues [38] demonstrated that 60%
of patients who underwent posterior fossa decompres-
sion with duraplasty showed a reduction in size. Less is
written or available on the time course of syrinx change
and the common time point for observations is 6 months.
A large meta-analysis by Durham and Fjeld-Olenec [39]
that compared techniques of C1M decompression (de-
compression alone vs. decompression with duraplasty)
demonstrated 56–87% syrinx resolution with operative
decompression [39]. However, small numbers of syrinx-
es associated with Chiari I decrease in size over time
without operative intervention and some syrinxes do
not change after posterior fossa.

(4) Recovery of neurologic symptoms from a Chiari related
syrinx is typically incomplete and permanent. The

presence of a syrinx then represents a non-predictable
risk factor for irreversible neurologic dysfunction from
intrinsic chronic stress and injury to the spinal cord.
Sudden decline is very rare but can occur especially from
minor injury [28, 31–34].

Thus, it appears that there is a strong preference by expe-
rienced pediatric neurosurgeons to intervene for a syrinx as-
sociated with a C1M but the supporting evidence is incom-
plete and imperfect. The presence of the syrinx represents a
threat to stress and low-grade chronic injury to the cord. It is
very uncommon for acute symptoms to develop and the re-
sponse to treatment usually occurs over months. Therefore, a
modest delay appears of low risk but the presence of a syrinx
appears to be a justifiable intervention in an environment of
imposed surgical slow down due to rare but possible neuro-
logic insult that is permanent.

3. Medically resistant epilepsy

By convention, only children with medically resistant epi-
lepsy (MRE) are candidates for epilepsy surgery and most
epilepsy surgery can be elective. There are however important
criteria within the designation of MRE that help stratify pa-
tients with regard to the risk associated with operative delay.
These include the risk for sudden death in epilepsy (SUDEP),
the frequency and severity of status epilepticus (including sta-
tus epilepticus in sleep or ESES), the overall seizure burden
for the child, and the degree of medical resistance that the
seizures demonstrate.

Issues/threats with surgical delay:

(a) Acute threat of catastrophic epilepsy: sudden death in
epilepsy (SUDEP), non-reversible injury to the brain
from status epilepticus, and ESES

(b) Sub-acute/chronic impact of uncontrolled seizures: the
adverse effects to normal neurologic development from
prolonged seizures

(c) Presence of a lesion (e.g., tumor, cavernomas)
(d) Palliative interventions: e.g., vagus nerve stimulator

implantation.

Supporting evidence

Medical resistance/acute threats of MREDefining and charac-
terizing medical resistance (MRE): Candidacy for epilepsy
surgery hinges upon defining medical resistance as a failure
of 2 anti-epileptic medications at proper dose to confer control
of seizures. Approximately one-third of patients with epilepsy
will demonstrate MRE. These patients are candidates for sur-
gical intervention and the overwhelming majority can be
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evaluated and operated upon electively. However, an in-
creased percentage of children have catastrophic epilepsy
which is characterized by highly resistant and threatening gen-
eralized seizures. These often culminate in repeated episodes
of status epilepticus and raise the risk for sudden death in
epilepsy (SUDEP). Children with congenital or acquired
s t r u c t u r a l a n om a l i e s o f t h e b r a i n s u c h a s
hemimegalencephaly, holohemispheric dysplasias, hemi-
spheric atrophy, and cystic encephalomalacia (often due to
perinatal infarcts/ischemia) are more frequently found to have
catastrophic epilepsy than those patients with more normal
MRI findings. Syndromic epilepsies such as Lennox-Gastaut
and Rasmussen’s encephalitis are highly resistant and associ-
ated with progressively severe and difficult to control disease.

Similarly recurring episodes of status epilepticus, Epilepsia
partialis continua, or electrical status epilepticus in sleep (ESES)
threaten the child’s safety and neurologic development.
Childrenwithmalignant, threatening patterns such as thesewar-
rant an assertive, proactive approach to control and localization
of their seizures. When accompanied by a structural change,
these epilepsies are typically focal in onset and are amenable
to surgical resection. Due to the acute risk and lack of other
effective strategies, surgery for these cases is often considered
urgent and is justifiable and appropriate to proceed to surgery in
an environment in which elective cases are suspended.

Threat to cognition and neurocognitive development

There remains little doubt that uncontrolled epilepsy in children
is injurious to the developing brain and adversely impacts nor-
mal neurocognitive development. The timing of epilepsy sur-
gery is critical to achieve optimal long-termneurocognitive ben-
efit. A retrospective study conducted by Jenny et al. [40] dem-
onstrated higher seizure-free rate in infants (89.5%) vs. children
(72.9%) [40]. Additionally, binary logistic regression demon-
strated that younger children (less than 3 years of age) were 2.76
times more likely to achieve a seizure-free outcome compared
with older children (4 to 17 years of age) [40]. Furthermore,
developmental outcome as assessed by Loddenkemper et al.
[41] using Bayley Scales of Infant Development demonstrated
that younger age at time of epilepsy surgery was correlated with
a higher improvement in the development quotient (correlation
coefficient 0.72, p < 0.001) [41]. Finally, Pelliccia et al. [42]
performed multivariate analysis using stepwise logistic regres-
sion to determine factors associated with seizure freedom and
found a shorter duration of epilepsy to be significant (OR 0.92,
95% CI 0.89–0.94; p < 0.001) [42].

Lesional epilepsy

Lesional epilepsy represents a unique situation with regard to
surgical decision-making. There are often 2 indications for
intervention: (1) removal and histologic diagnosis of the

lesion and (2) improved seizure control. The presence of a
visible lesion in the region implicated by EEG and functional
imaging to be epileptogenic markedly increases the likelihood
of successful surgery. The most common etiologies for
lesional epilepsies in children are ganglioneuronal tumors,
cavernomas, and visible cortical dysplasias.

Gangl iog l iomas (GGs) and dysembryoplas t ic
neuroepithelial tumors (DNETs) are low-grade brain tumors
that commonly present with seizures. Seizure-freedom in this
group of children is critical. As demonstrated by Englot et al.
[43], seizure freedom is achieved with higher success in chil-
dren less than or equal to 1 year of life compared with those
greater than 1 year of age (OR 9.48; 95% CI, 2.26–39.66).
Nolan et al. [44] performed a univariate chi-squared analysis
to determine factors influencing favorable prognosis in chil-
dren with DNTs and found shorter duration of epilepsy (p =
0.01) and younger age at surgery (p = 0.04) to be significant
[44]. Finally, when evaluating cognitive outcomes, earlier sur-
gery for tumor-related epilepsy is ideal. Ramantani et al. [45]
conducted a retrospective review in children with
glioneuronal tumors to determine factors that influenced cog-
nitive outcomes. Lower full-scale IQ (FSIQ) and verbal IQ
(VQ) were related to longer duration between diagnosis and
surgery, when controlled for age at epilepsy onset (FSIQ r =
20.537, df = 22, p = 0.007; VIQ r = 20.504, df = 17, p = 0.028)
[45].

The nearly uniform good outcomes from lesional resec-
tions for epilepsy along with a need for histopathologic diag-
nosis in many cases make a convincing case for proceeding to
surgery even in the presence of initiatives to limit elective
cases.

4. Craniosynostosis—single suture non-syndromic
synostosis

(1) Issues/threats with surgical delay:

ii. Candidacy for endoscopic techniques—typically en-
doscopic preferred less than 12 months

iii. Capacity for bony defects to fill in declines with age
iv. Thicker bone is more rigid and offers greater techni-

cal challenges with more bleeding, higher morbidity,
and associated longer stay and higher cost.

(2) Supporting evidence:
Endoscopic techniques in craniofacial surgery are be-

ing increasingly utilized due to good outcomes, lower
morbidity, costs, blood loss, and equivalent or superior
aesthetic outcomes. As demonstrated by Thompson et al.
[46], endoscopic treatment utilizes less blood (26% vs.
81%, p < 0.001), coagulation products (3% vs. 16%, p <
0.001), anesthesia (168 vs. 248 min %, p < 0.001), surgi-
cal duration (70 vs. 130 min%, p < 0.001), days in ICU (0
vs. 2%, p < 0.001), and hospital LOS (2 vs. 4%, p < 0.001)
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[46]. However, if a child is not seen within an appropriate
timeframe, endoscopic craniosynostosis repair is no lon-
ger possible. While there remains debate about the supe-
riority of endoscopic versus open repair, it is clear that in
older children, only open repair can be performed.

As the skull matures, the capacity for spontaneous fill-
ing in of bony defects or gaps between bone grafts be-
comes reduced. Under the age of 18 months, the gaps
between bone grafts are largely filled with fibrous tissue
and islands of cartilage. The capacity to spontaneously fill
and remodel bony defects dissipates with increasing age
resulting in less satisfactory results in older children.

A retrospective study spanning 6 years, 44 states, and
8417 children under the age of 3 was conducted by Bruce
et al. [47] to determine the optimal time to surgically repair
craniosynostosis. Using the Healthcare Cost and
Utilization Project Kids’ inpatient database (KID), the
overall complication rate was 8.6%: 6.6% for children
aged 0 to 6 months, 10.3% for patients aged 7 to 12
months, and 13.9% in children aged 12 to 36 months
[47]. Additionally, a multivariable logistic regression
model to identify factors that increase perioperative surgi-
cal complication demonstrated age as a significant factor
(OR = 2.53 at 3 years vs. < 1, 95% CI 1.67–3.82) [47].
Another study using the KID database showed delayed
repair of craniosynostosis to be associated with longer
length of stay (LOS) and increased cost [48]. In a sample
of 3246 patients with an average age of 181 days, LOS
directly impact mean charge and total cost [48]. When
creating a regression model for factors that significantly
impacted the length of stay, age was the most significant
[48]. Older aged children had up to a three times greater
odds of a longer LOS [48].

Syndromic multi-suture synostosis (e.g., Apert, Crouzon,
Saethre-Chotzen, or Cloverleaf deformity): Multiple suture
synostoses can give rise to brain constriction and elevated
intra-cranial pressure that can be threatening to brain growth
and optic nerve function. In the syndromic cases, the charac-
teristic brachycephaly requires bi-frontal orbital advancement
or distraction. The skull characteristically can be molded and
reossification occurs readily until about the age of 2 years.
After this, the bone is thicker, more brittle, and does not con-
tour as readily. Consequently, there is likely limited harm in
delaying syndromic cases inside of 2 years of age. Treatment
of midface hypoplasia occurs in mid-childhood via distraction
or LeFort midface advancement procedures.

5. Tethered spinal cord

The tethered cord syndrome (TCS) may arise from a vari-
ety of pathologic entities that share the capacity to fix the

spinal cord to surrounding mesenchymal structures (e.g., bony
spine or surrounding muscle and connective tissues) [49].
Symptoms usually consist of pain in the back, buttocks, and
legs and variable but progressive loss of neurologic function
in the legs and bladder [49]. Prevailing wisdom in pediatric
neurosurgery is that once function is lost, it is typically not
regained. Thus, the critical immediate distinction in tethered
cord is between symptomatic and asymptomatic tethered cord.
Intervention for asymptomatic tethered cord is largely prophy-
lactic and is variably controversial depending on the underly-
ing tethering lesion. For example, split cord malformations
have a high incidence of inducing progressive neurologic de-
cline unless repairedwhereas the natural history of a low-lying
spinal conus medullaris is less well established and there is
significant controversy surrounding prophylactic untethering.

The fundamental question is the likelihood that delay in
surgery may impart a decline in neurological function.
Koyangi et al. [50] retrospectively described the efficacy of
surgery given the natural history of tethered cord syndrome.
Post-operatively, 7/8 (88%) asymptomatic patients remained
this way, 6/26 (23%) improved, and 15/26 (58%) patients
were unchanged [50]. Hoffman et al. [51] describe a similar
relationship in a cohort of 97 pediatric patients. Fifty-six pa-
tients presented before the age of 6 months, and 35 of these
patients were neurologically intact [51]. However, of the 41
patients presenting after the age of 6 months, only 12 patients
were neurologically intact [51]. Surgery should be performed
prior to the onset of neurologic deficits. As demonstrated by
Kanev et al. [52] in a cohort of 42 patients presenting with
neurologic deficit, 0/42 (0%) of patients regained bladder or
bowel function post-operatively [52]. A logarithmic model
developed by Kanev et al. using data from two series [51,
52] demonstrates that all patients would develop neurological
deficits over time by 12 years of age [53]. While these studies
do not provide definitive evidence of a danger with delay, they
do suggest that prevention of deficit or worsening of deficits
might be more successful with earlier surgery.

6. Obstetrical brachial plexus injury

Prompt neurosurgical evaluation is necessary to determine
the level of the lesion and distribution of neurological injury
[54]. While the most common presentation is that of an upper
plexus injury (Erb’s palsy) with damage occurring to the C5
and C6 roots [54], the most serious lesion is a total plexus
lesion, which involves C5, C6, C7, and C8, with or without
T1 [54]. The patient will present with a flail limb and possibly
Horner’s syndrome [54]. Prevailing opinion among surgeons
from multiple disciplines is that these children require urgent
exploration of the brachial plexus with appropriate nerve
grafts and transfers [54].

For patients with an Erb’s palsy, upper plexus, and pattern
of lesion, there are multiple competing studies of various
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quality regarding the ideal time of surgery [55–57]. A recent
multicenter study [58] evaluated microsurgical outcomes in
children who underwent plexus reconstruction before versus
after 6 months of age. In the multivariable model, accounting
for Horner syndrome and baseline Toronto score, there was no
statistical difference in outcome between the early and late
surgery (AMS score difference = 0.6, 95% CI = − 8.0 to 9.3,
p = 0.88) [58].

In sharp contrast, total obstetric brachial plexus palsy injury
requires more prompt surgical treatment and should ideally be
performed around 3 months of age [59]. In a cohort of 35
patients with total obstetric brachial palsy injury, younger
age at the time of surgery correlated with better functional
recovery (r = − 0.356, p = 0.049), particularly with finger
and thumb flexion [59].

Discussion

The onset of COVID-19 and the national guidance to delay
elective surgery has changed the paradigms of operative pedi-
atric neurosurgical practice. The need for social distancing and
preservation, or limited availability, of personal protective
equipment has resulted in widespread curtailment of elective
operative procedures. During this time, it is essential to estab-
lish an informed hierarchy of need for pediatric neurosurgical
cases. Many pediatric neurosurgery cases are urgent and must
proceed. Examples include shunt obstructions, infections,
post-traumatic hematomas, and myelomeningocele closures.
Other cases are clearly elective and results are not likely im-
pacted by limited delays. However, there exist a significant
number of pediatric neurosurgical cases for which the impact
of time delay in intervention is unknown. Some cases appear
elective but review of published experience demonstrates that
poorer outcomes or higher risk accompanies delay. An in-
formed hierarchy of need incorporates the potential increase
into adverse outcomes associated with delay as well as the
imminent threat to the patient in the short term. The cases
selected for this report are not comprehensive but are repre-
sentative of a substantial component of elective pediatric neu-
rosurgical practice. Within these cases, there are multiple ex-
amples of how a delay in performing surgery during an opti-
mal eligibility window is associated with more adverse effects
over the life span.

Additional factors that should be considered include the
potential for exposure of risk to the operative team.
Exposure risks not only center on airway control and intu-
bation but also extend to risks associated with aerosolized
particles including blood, CSF, and bone. Cases involving
invasion into the airways and bony sinuses also carry ele-
vated risks. Examples would include anterior skull base
procedures, craniofacial procedures, and evacuation of em-
pyemas that arise from erosion through bony sinuses.

Presurgical COVID19 screening should be implemented
in areas where there is no current shortage of testing for
symptomatic patients. If limited testing is available, cases
in which exposure is gained endonasally should require pre-
operative COVID19 screening.

Ultimately, ideal timing should be explored for all pediatric
neurosurgery. However, an effort that exhaustive is outside
the scope of this manuscript’s purpose of creating awareness
on delay of common pediatric neurosurgical procedures. For
the sake of completeness, some basic recommendations can
be made regarding the procedures listed. For example, cranio-
synostosis repair should not exceed 4 months to prevent open
surgery. Total obstetrical brachial plexus repair should be per-
formed by 3 months of age to prevent neurologic deficit.
Additionally, asymptomatic tethered cord and Chiari I malfor-
mation with syrinx should not be postponed longer than 6
months as the purpose of surgery is symptom prophylaxis.
Lesional epilepsy represents a more complex disease process
and a case-by-case evaluation is necessary depending on sei-
zure burden, medication use, and concurrent tumor. As the
referenced literature demonstrates, there are clear transition
points in childhood (1 year of age and 3 years of age) that
represent important checkpoints for intervention.

In sum, there are multiple levels of consideration when
properly assessing the timing of surgery. Imminent danger to
the patient is foremost but the potential for adverse outcomes
from missing an optimal time window of eligibility should
also be considered. This review has demonstrated multiple
examples of common pediatric neurosurgical procedures
where such phenomena are observed. Finally, considerations
of operative team exposure and resource utilization need to be
considered.

Conclusion

Proper evaluation of the timing of a pediatric neurosurgery
case must extend beyond the period of an imminent threat to
the patient. Evaluation of a representative sample of pediatric
neurosurgical cases demonstrates how adverse outcomes arise
consistently when important optimum time windows of can-
didacy are missed. In addition, exposure risk and resource
consumption in an era of scarcity must be considered to attain
the best overall decision regarding the timing of pediatric neu-
rosurgical intervention.
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