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Abstract: The control of Spodoptera frugiperda, the key invasive pest of maize, is a serious concern due
to its biology and the current global restriction on applying synthetic pesticides. Entomopathogenic
fungi are considered to be a potential biological control strategy. The pathogenicity of 12 isolates of
Beauveria bassiana in the immature stages and feeding efficacy of S. frugiperda were evaluated. The
B. bassiana isolates QB-3.45, QB-3.46 and QB-3.428 caused the highest egg mortality rates of 87.3, 82.7
and 79.3%, respectively, when applied at a concentration of 1 × 108 conidia/mL and measured at
7 days post-treatment. Neonate mortality rates of 45.6 to 53.6% were observed with the same isolates.
The B. bassiana isolates caused significant cumulative mortality rates ranging from 71.3 to 93.3% at
14 days post-treatment and reduced larval feeding efficacy from 69.4 to 77.8% at 48 h post-treatment.
This study supports using the effective B. bassiana isolates as a biological control agent against
S. frugiperda. The significant mortality of the eggs and neonatal larvae and the reduction in the
feeding efficacy of the second instar larvae of the S. frugiperda that were treated with isolates of
B. bassiana supports the application of entomopathogenic fungi as a biocontrol agent for the effective
control of the S. frugiperda population.
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1. Introduction

Maize is one of the primary crops producing commercial cereal commodities world-
wide, second to rice and wheat [1]. In addition to feeding animals and humans, it is also
used in the paper, bioplastic, beverage, and textile industries [2]. Maize is one of the most
economical crops in China [3], which was ranked as the second-greatest country in the
world for producing and consuming maize, after the United States [4]. One-fifth of the
yield of the country’s total maize is produced in the northeast region [5].

Fall armyworm (FAW), Spodoptera frugiperda, JE Smith, 1797, (Lepidoptera: Noctuid)
is one of the most destructive, invasive pests with more than 350 host-plant species due
to its polyphagous nature; however, it prefers to feed on maize. FAW is native to the
Americas [6,7]. Maize crops have been severely threatened due to the recent invasion of
invasive FAW in many countries, especially in China [8,9], which has raised the serious
issue of national food security [10]. FAW larvae feed on the young leaves, leaf whorl, or
tassels and might cause severe yield loss if they are not controlled in a timely fashion [11,12].

FAW is considered an A1 quarantine invasive pest in Africa [13]. In 2019, annual
yield losses of up to 6.2 billion tons were caused by FAW damage to maize in more than
44 African countries [14]. FAW has caused 16 to 52% damage to fodder maize in India [15],
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67 and 22% damage to maize in Zambia and Ghana, respectively [16], and 47 and 32%
yield losses of maize in Kenya and Ethiopia, respectively [17]. This has ultimately led to
4.66 billion dollars in economic losses for Africa [18].

The fall armyworm was first detected in Africa and it then expanded throughout
the world to locations such as Nepal, Indonesia, and Swaziland [19–21]. FAW was firstly
reported in China on 11 December 2018 [22–24], it later invaded 26 provinces of the
southern region [24,25] and caused serious damage to multiple crops [26]. The seedling
and flowering stages of the peanut were damaged by 78 and 65%, respectively [27] and
barley, wheat, tobacco, and fields have also been severely affected by FAW [9,28,29].

Most maize growers in Indonesia prefer using pesticides to control this invasive pest
in order to avoid the yield losses of maize to FAW [30]. The continuous application of
chemical pesticides leads to the development of pesticide resistance in insect pests all
over the world, especially in China [31,32]. Pesticide-based management practices are not
only considered to be unsustainable but it is also known that they negatively impact the
ecosystem, humans and the natural predators of pests [33,34]. Therefore, many studies have
focused on developing environmentally safe strategies for the management of arthropod
pests [35,36]. Currently, biopesticides are one of the most sustainable and economical
practices that could be a key component of integrated pest management [37–41]. A strong
association has been reported between many pathogens, including viruses and fungi, with
FAW [42], but only a few among them have been able to infect to the pest directly or
indirectly [43–49].

Biocontrol agents, such as entomopathogenic fungi, have prominent virulence factors
and are rapidly emerging as prime substitutes for synthetic insecticides [50]. Metarhizium
anisopliae, Beauveria bassiana and Bacillus thuringiensis are the most effective biocontrol agents
among the active biopesticide products that have been registered by the United States
Environmental Protection Agency as of 2016 [51]. The most commonly used biopesticide is
B. bassiana, which can be effectively transmitted and produces a variety of toxin-causing
infections in the host [52,53]. B. bassiana was first isolated from silkworm cadavers by
Agostino Bassi in the 19th century and it has since infected more than 200 species of insects
belong to different orders [54].

Beauveria bassiana is competitive with synthetic insecticides against forest and farm
insect pests in China [55]. Six isolates of B. bassiana were screened in order to evaluate their
pathogenicity against the S. frugiperda adult in Nairobi, Kenya [56]. Tomato plants that were
treated with the B. bassiana resulted in affecting the larval development of S. frugiperda in
Eldoret, Kenya [57]. Entomopathogenic fungi can strengthen Integrated Pest Management
(IPM) programs and reduce the environmental impact of pesticides against S. frugiperda
in Mexico [58,59]. The isolates of B. bassiana proved to be effective for the management of
S. frugiperda in Thailand [60]. B. bassiana isolates are considered to be a sound biocontrol
agent for the management of FAW [61,62].

Among the identified species of fungi, the most utilized are in the genus Beauveria,
from which several bio-insecticides have been derived and used in Indonesia [63]. Ento-
mopathogenic fungi (EPF) will ensure a healthy environment and a food-secure world
when they are used as a biological method of pest control [64]. Twelve B. bassiana isolates
were used in the present study, originating from different hosts and already tested for their
virulence against Solenopsis invicta Buren, one of the most important pests in China [65].
B. bassiana was indicated to be an entomopathogen in many insects’ orders; lepidopteran
pests in particular have been effectively controlled by this fungus [66]. Three different
doses were tested in the present study as is the ideal method to use when testing any fungal
isolate against any agricultural insect pest. Indeed, many previous studies have already
used multiple doses to assess the virulence of EPF [67]. Consequently, there is a dire need
to develop an alternative and sustainable strategy to suppress FAW.

Entomopathogenic fungi (EPF) are environmentally friendly and could replace syn-
thetic insecticides. However, one negative impact of the EPFs is that they kill or infect
the insect much more slowly than a synthetic insecticide due to their different modes
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of action depending on which insect continuously feeds on the crop. The different life
stages of any insect do not respond to any pathogenic stress in the same way. So, it is very
normal to test EPF on various life stages in order to understand which life stage is most
susceptible or to find the stage that is the most resistant to the said fungal isolate. This
method is able to inform the users of the most appropriate stage of the insect to target for
effective biological control programs. Our previous study has concluded that the eggs are
the most susceptible stage for targeting as compared to the other life stages of FAW [61,62].
It has further been confirmed that EPF have the potential to infect any stage of the insect’s
life; however, this does not mean that all of the insect’s stages are equally susceptible to
pathogenic infection [68].

These isolates of B. bassiana were proved to be pathogenic against S. invicta in 2018 [65]
but afterwards no further research work has been done on the use of these isolates against
other insect pests. Little information is available about the virulence of these isolates of
B. bassiana against the immature stages (eggs, neonates, larvae and pupae) and the feeding
efficacy of FAW. Therefore, the present study aims to investigate the bioassay of isolates of
B. bassiana for the management of FAW.

2. Materials and Methods
2.1. Insect Rearing

The FAW eggs were established using a collection of larvae that were found on
maize crops from Guangdong province, China, during the maize growing season. The
collected larvae were cultured on an artificial diet [69] and the resultant adults were fed
artificial diets of a 10% honey solution soaked into sterile cotton balls. The larvae were kept
under laboratory conditions at 25 ± 2 ◦C, with a photoperiod of 12:12 (dark: light) and
65% ± 5% relative humidity (RH). Once oviposited, the egg batches were maintained in
an environmental growth chamber under laboratory conditions and, upon hatching, the
neonatal larvae were shifted to a transparent rectangular plastic box (28 × 17 × 18 cm).
The FAW larvae were obtained from uniform culture following 35 generations of laboratory
mass rearing [61] at the Institute of Zoology, Guangdong Academy of Sciences (IZ-GDAS).

2.2. Preparation of B. bassiana Isolates

The pathogenicity of 12 isolates of B. bassiana was evaluated against the immature
stages and the feeding efficacy of FAW. B. bassiana isolates that were obtained from the
IZ-GDAS’s laboratory were cultured on potato dextrose agar (PDA) and maintained at
25 ± 2 ◦C in the dark. The tested isolates of B. bassiana were previously identified by
Li et al. [65] using their cultural and morphological characteristics. Macroscopic obser-
vations were assessed with colony characteristics, i.e., shape, growth pattern and color.
Molecular analysis was carried out using multiplex PCR in order to verify the morpho-
logical identification of the tested isolates of B. bassiana. The information regarding the
B. bassiana isolates is available in (Table 1).

The fungal conidia were suspended in a 10 mL distilled water volume with 0.05%
Tween-80 in a universal bottle containing glass beads. The fungal conidia suspension was
vortexed for five minutes at 700 rpm in order to break the conidial clumps so as to ensure
homogenous suspension. Using a hemocytometer, the conidial suspensions were adjusted
to concentrations of 1 × 106, 107 and 108 conidia/mL [59]. A dose-dependent mortality
effect has already been observed in previous laboratory studies by many authors, so as
such three doses were selected in the present study in order to investigate if there is any
different observation between this study with multiple doses and previous studies that
used multiple doses to assess the virulence of B. bassiana isolates against FAW [60,61].
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Table 1. Information about the isolates of B. bassiana tested against FAW in this study.

Isolates Host Site of Origin (Country) Year of Isolation

QB-3.45 Dendrolimus punctatus punctatus
(Lepidoptera: Dendrolimus) Guangdong (China) 2014

QB-3.46 Ostrinia nubilalis
(Lepidoptera: Pyralidae) Guan, Hebei (China) 2014

QB-3.428 Ostrinia nubilalis
(Lepidoptera: Pyralidae) Changchun, Jilin (China) 2014

QB-3.436 Nilaparvata lugens
(Homoptera: Delphacidae) Philippines 2013

LNSE-22 Ostrinia nubilalis
(Lepidoptera: Pyralidae) Guangdong (China) 2019

SPLE-24 Ostrinia nubilalis
(Lepidoptera: Pyralidae) Guangdong (China) 2019

ZGNKY-01 Ostrinia nubilalis
(Lepidoptera: Pyralidae) Urumqi, Xinjiang (China) 2015

ZGNKY-1 Ostrinia nubilalis
(Lepidoptera: Pyralidae) Beijing (China) 2015

ZGNKY-2 Ostrinia nubilalis
(Lepidoptera: Pyralidae) Beijing (China) 2015

ZGNKY-3 Ostrinia nubilalis
(Lepidoptera: Pyralidae) Beijing (China) 2015

ZGNKY-4 Ostrinia nubilalis
(Lepidoptera: Pyralidae) Suining, Liaoning (China) 2015

ZGNKY-5 Ostrinia nubilalis
(Lepidoptera: Pyralidae) Chaozhou, Guangdong (China) 2015

Prior to the start of the experiments, germination tests were also conducted [70]. The
length of the germ tube was equal to twice the conidium diameter indicated at the germi-
nation of the conidia [71,72]. The twelve isolates of B. bassiana showed ≥90% germination
rate 18 h post-incubation at 25 ± 2 ◦C (Supplementary Table S1).

2.3. Pathogenicity of B. bassiana Isolates against Eggs and Neonate Stage of FAW

FAW eggs (1 to 2 days of age) were obtained from the adult cylindrical cages. A
batch of 50 eggs was separated with a light microscope using a camel hairbrush. Then,
10 mL of the spore suspension at each concentration was sprayed on a set of 50 eggs using
manual atomized spray bottles (20 mL). A sterilized paper towel was used at the bottom of
the Petri plate for the absorption of the extra spore suspension. The control was treated
with distilled water containing 0.05% Tween-80. The batch of treated eggs was air-dried
for 1 h under a laminar hood. The eggs (hatched and non-hatched) were recorded at
7 days post-treatment.

The FAW neonatal larvae that emerged from the eggs that were treated with the isolates
of B. bassiana were fed fresh maize leaves in a rectangular plastic box (28 × 17 × 18 cm3) that
was lined with moist filter paper, incubated at 25 ± 2 ◦C and monitored daily. The maize
was grown under lab conditions in order to ensure that the maize leaves were fresh
and insecticide-free.

The mortality of the neonatal larvae that were treated with the isolates was further
recorded daily for 7 days post-emergence. The bioassays were laid out according to a
completely randomized design with three replications for each treatment. Mycosis was
assessed for the dead cadavers by following the approach of Aktuse et al. [60]. The dead
larvae were surface-sterilized with 70% alcohol and rinsed thrice in distilled water. The
surface-sterilized dead larvae were kept in Petri dishes containing sterile filter paper in
order to observe their fungal growth. The mortality due to the treated fungal isolate
was confirmed by the presence of hyphae and conidia on the bodies of dead larvae. The
cumulative mortality of both the neonates and larvae of the FAW was calculated by counting
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the dead eggs and neonatal larvae divided by a total number of eggs at 14 days post-
treatment [61].

2.4. Pathogenicity of B. bassiana Isolates against Second Instar Larvae of FAW

Fresh maize leaves were placed individually in a perforated rectangular plastic box
(28 × 17 × 18 cm3). A group of 30 second instar larvae of FAW was shifted into the box
containing the maize leaves. Each group of 30 larvae represented one replicate and three
replications were used for each treatment with a completely randomized design. Each
group of second instar larvae in each plastic box was provided with fresh maize leaves
that had been treated with 10 mL of 1 × 106, 107 or 108 conidia/mL using a spray tower.
Each concentration was sprayed on every second instar larva to ensure that none escaped
from the fungal spore suspension by hiding beneath the leaves’ surfaces. The control larvae
were treated with distilled water (0.05% Tween-80). The treated larvae were incubated at
25 ± 2 ◦C and fresh maize leaves were provided daily. The larval mortality rate was
recorded daily for 7 days. A mycosis test was conducted in order to confirm that the
mortality of the larvae was due to a fungal infection, as described above.

2.5. Pathogenicity of B. bassiana Isolates against Feeding Efficacy of Second Instar Larvae of FAW

A group of 15 second instar stages of FAW was treated with 10 mL of 1 × 106, 107 or
108 conidia/mL using a manual atomizer sprayer bottle (20 mL) [59]. Fresh maize leaves
(12 g) were placed in a rectangular plastic box (28 × 17 × 18 cm3). The control was treated
with distilled water containing 0.05% Tween-80. The maize leaves that were provided to the
group of second instar larvae as an insect diet were weighed before and after being treated.
The feeding efficacy percentage was measured by calculating the total weight of the fresh
maize leaves, in grams, that were provided to the larvae divided by the total weight of
the leaves that were not fed on by the larvae, multiplied by 100 [61]. The feeding efficacy
data were collected 24 and 48 h post-treatment. The bioassays were laid out according to a
completely randomized design with three replications for each treatment.

2.6. Pathogenicity of B. bassiana Isolates against Pupae of FAW

The isolates of B. bassiana were screened for their ability to cause the mortality of
the pupae of FAW. The pupae of the FAW were treated with 10 mL of 1 × 106, 1 × 107,
or 1 × 108 conidia/mL using manual atomizer sprayer bottles (20 mL). The FAW pupae
were placed in a perforated rectangular plastic box (28 × 17 × 18 cm3). Each group of
10 pupae represented one replicate and three replications were used for each treatment.
The control was treated with a solution of distilled water containing 0.05% Tween-80. The
pupal mortality rate was recorded for 15 days [32]. A pupa was considered dead if it didn’t
show even slight movement upon being touched nor did it turn black nor did it emerge
within 15 days after pupation. All of the treatments were administered using a completely
randomized design.

2.7. Data Analysis

The mortality data for all of the stages were analyzed using Abbott’s formula [73] and
the Shapiro–Wilk [74] test was used to analyze the normality of all of the stages before
they were subjected to a one-way analysis of variance (ANOVA) using Tukey’s highly
significant difference (HSD) post-hoc test at a 95% level of significance. Factorial ANOVA
was used to analyze the interaction of the various factors, including the fungal conidial
concentrations, treatments and immature stages, and this was followed by Tukey’s highly
significant difference (HSD) post-hoc test. SPSS (version 22.0) and Statistix® version 8.1
(Analytical Software, Tallahassee, FL, USA) were used to perform for the data analysis and
to calculate the homogeneous letters, respectively.
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3. Results
3.1. Effect of B. bassiana Isolates on Eggs of FAW

The results revealed that the QB-3.45 and QB-3.428 isolates of B. bassiana induced
egg mortality rates of 30.0 and 28.7%, respectively, followed by the QB-3.46, LNSE-22 and
QB-3.436 isolates, which caused 25.3, 24.0 and 20.7% FAW egg mortality when applied at a
concentration of 1 × 106 conidia/mL and measured at 7 days post-treatment (F19.5 = 12;
p < 0.000). (Figure 1 and Supplementary Table S2). QB-3.45 and QB-3.46 were outperformed
by causing egg mortalities of 70.0 and 64.7%, respectively, followed by the QB-3.428 isolate
(54.7%) when the treatment concentration was 1 × 107 conidia/mL (F69.9 = 12; p < 0.000).
However, the QB-3.436 and LNSE-22 isolates caused egg mortality rates of 40.0 and 35.3%
(Figure 1 and Supplementary Table S3). The QB-3.45, QB-3.46 and QB-3.428 isolates of
B. bassiana induced the highest egg mortalities of 87.3, 82.7 and 79.3%, respectively, followed
by the QB-3.436 and LNSE-22 isolates, which induced egg mortalities of 56.0 and 50.0%,
respectively, when applied at a concentration of 1 × 108 conidia/mL (F60.3 = 12; p < 0.000).
However, the XJWLMQ-32 and SPLE-24 isolates of B. bassiana caused 39.3 and 30.7% egg
mortality, respectively, 7 days post-treatment (Figure 1 and Supplementary Table S4).
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3.2. Effect of Isolates against Neonate Larvae of FAW

The results indicated that the effects of the QB-3.428 and QB-3.46 isolates of B. bassiana
were the least significant and induced additional mortality rates of 14.9 and 13.4% when ap-
plied at a concentration of 1 × 106 conidia/mL (F3.63 = 20; p < 0.002) against the neonatal lar-
vae of FAW and measured at 7 days post-treatment (Figure 2 and Supplementary Table S2).
The QB-3.46 and QB-3.428 isolates of B. bassiana caused neonatal mortality rates of 34.6
and 30.8%, respectively, followed by QB-3.436, LNSE-22 and QB-3.45, which caused
25.6, 21.7 and 20.0% neonatal mortality, respectively, when applied at a concentration of
1 × 107 conidia/mL (F10.3 = 12; p < 0.000) (Figure 2 and Supplementary Table S3). The
QB-3.46, QB-3.45 and QB-3.428 isolates of B. bassiana induced neonatal mortality rates
of 53.6, 47.6 and 45.3%, respectively, followed by QB-3.436 and LNSE-22, which caused
34.8 and 30.7% neonatal mortality rates, respectively, when applied at a concentration of
1 × 108 conidia/mL (F11.6 = 12; p < 0.000) (Figure 2 and Supplementary Table S4). Further-
more, only 10% of the insect cadavers showed mycosis.
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3.3. Effect of Beauveria bassiana Isolates on Cumulative Mortality

The results showed that the QB-3.428, QB-3.45 and QB-3.46 isolates of B. bassiana
induced cumulative mortality rates of 39.3, 36.7 and 35.3% against eggs and neonates,
respectively, followed by the QB-3.436 and LNSE-22 isolates’ mortality rate of 31.3% at a
concentration of 1 × 106 conidia/mL and measured at 14 days post-treatment (F16.1 = 20;
p < 0.000). However, ≤16.7% cumulative mortality was observed for the other tested
isolates (Supplementary Table S2). The B. bassiana isolates QB-3.46, QB-3.45 and QB-3.428
induced 77.3, 76.0 and 68.7% cumulative mortality rates, respectively, followed by the
QB-3.436 and LNSE-22 isolates that caused cumulative mortality rates of 55.3 and 49.3%,
respectively, when applied at a concentration of 1 × 107 conidia/mL (F52.5 = 12; p < 0.000).
Furthermore, the rest of the other isolates of B. bassiana caused ≤26.0% cumulative mortality
rates (Supplementary Table S3). However, the QB-3.45, QB-3.46 and QB-3.428 isolates of
B. bassiana induced the highest cumulative mortality rates of 93.3, 92.0 and 88.7%, respec-
tively, followed by QB-3.436 and LNSE-22 which caused 71.3 and 65.3% cumulative mortal-
ity rates, respectively, when applied at a concentration of 1 × 108 conidia/mL (F90.3 = 12;
p < 0.000). Furthermore, 50.0 and 44.7% cumulative mortality rates were observed with the
ZGNKY-01 and SPLE-24 isolates of B. bassiana (Supplementary Table S4).

3.4. Effect of Beauveria bassiana Isolates on Second Instar Larvae of FAW

The results revealed that the isolates of B. bassiana did not show significant differences
in their ability to cause larval mortality for FAW when applied at a concentration of
1 × 106 conidia/mL and measured at 7 days post-treatment; except the QB-3.45 iso-
late, which caused ≤10.0% mortality against the second instar larvae of FAW (F2.89 = 12;
p > 0.011). The QB-3.428, QB-3.46 and QB-3.436 isolates of B. bassiana caused 13.4% to 14.9%
mortality rates of larvae of FAW that were treated with 1 × 107 conidia/mL (F6.35 = 12;
p > 0.000). The QB-3.45 and QB-3.45 isolates of B. bassiana caused larval mortality of 25.6
and 20.0% and the QB-3.428 and QB-3.436 isolates caused 17.8 and 14.4% larval mortality of
FAW when applied at a concentration of 1 × 108 conidia/mL (F7.13 = 12; p > 0.000) (Figure 3
and Supplementary Table S5).



J. Fungi 2022, 8, 717 8 of 16J. Fungi 2022, 8, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 3. Mortality of second instar larvae of FAW infected with different concentrations of B. bas-
siana isolates. Means followed by the same letters of alphabets are not significantly different accord-
ing to Tukey’s test at p < 0.05. 

3.5. Effect of Beauveria bassiana Isolates Against Feeding Efficacy of Second Instar FAW Larvae 
The results indicated that the QB-3.45 and QB-3.46 isolates of B. bassiana significantly 

reduced the feeding efficacies of the second instar larvae of FAW by 56.9 and 54.2%, re-
spectively, followed by QB-3.428 and QB-3.436, which reduced the feeding efficacy to 48.6 
and 43.1% when applied at a concentration of 1 × 106 conidia/mL and measured at 48 h 
post-treatment (F17.2 = 12; p > 0.000). The QB-3.45 and QB-3.46 isolates of B. bassiana reduced 
the feeding efficacy to 65.3 and 61.1%, respectively, followed by QB-3.428 (58.3%), in sec-
ond instar larvae when applied at a concentration of 1 × 107 conidia/mL (F13.7 = 12; p > 
0.000). The QB-3.45 and QB-3.46 isolates of B. bassiana reduced the feeding efficacy rates 
to 77.8 and 72.2%, respectively, followed by QB-3.428 (69.4%), against the second instar 
FAW larvae (F24.8 = 12; p > 0.000). The QB-3.436 and LNSE-22 isolates of B. bassiana moder-
ately reduced the feeding efficacy to 54.2 and 51.4%, respectively, against the second instar 
larva of FAW (Figure 4 and Supplementary Table S6). 

 
Figure 4. The feeding efficacy of second instar FAW larvae infected with different concentrations of 
B. bassiana isolates. Means followed by the same letters of alphabets are not significantly different 
according to Tukey’s test at p < 0.05. 

Figure 3. Mortality of second instar larvae of FAW infected with different concentrations of B. bassiana
isolates. Means followed by the same letters of alphabets are not significantly different according to
Tukey’s test at p < 0.05.

3.5. Effect of Beauveria bassiana Isolates against Feeding Efficacy of Second Instar FAW Larvae

The results indicated that the QB-3.45 and QB-3.46 isolates of B. bassiana significantly
reduced the feeding efficacies of the second instar larvae of FAW by 56.9 and 54.2%,
respectively, followed by QB-3.428 and QB-3.436, which reduced the feeding efficacy to
48.6 and 43.1% when applied at a concentration of 1 × 106 conidia/mL and measured at
48 h post-treatment (F17.2 = 12; p > 0.000). The QB-3.45 and QB-3.46 isolates of B. bassiana
reduced the feeding efficacy to 65.3 and 61.1%, respectively, followed by QB-3.428 (58.3%),
in second instar larvae when applied at a concentration of 1 × 107 conidia/mL (F13.7 = 12;
p > 0.000). The QB-3.45 and QB-3.46 isolates of B. bassiana reduced the feeding efficacy
rates to 77.8 and 72.2%, respectively, followed by QB-3.428 (69.4%), against the second
instar FAW larvae (F24.8 = 12; p > 0.000). The QB-3.436 and LNSE-22 isolates of B. bassiana
moderately reduced the feeding efficacy to 54.2 and 51.4%, respectively, against the second
instar larva of FAW (Figure 4 and Supplementary Table S6).
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3.6. Effect of B. bassiana Isolates against FAW Pupae

The results showed that the isolates of B. bassiana were not significantly responsible
for the causation of the mortality of the pupae of FAW that were treated with 1 × 106 and
1 × 107 conidia/mL conidia/mL. The QB-3.45 and QB-3.46 isolates of B. bassiana were
found to be effective by causing pupal mortality rates of 20.0 and 16.7% when applied at a
concentration of 1 × 108 conidia/mL and measured at 15 days post-treatment (F2.38 = 12;
p > 0.000) (Figure 5 and Supplementary Table S7).
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Figure 5. The mortality of pupae infected with different concentrations of B. bassiana isolates. Means
followed by the same letters are not significantly different according to Tukey’s test at p < 0.05.

Factorial analysis of variance revealed a significant effect of the conidial concentrations
(F2, 286 = 280.34; p > 0.000), the treatments (F11, 286 = 106.20; p > 0.000), the life stages (F3,
286 = 432.47; p > 0.000), and the interaction (F66, 286 = 1.66; p > 0.002) on the mortality of
FAW (Table 2 and Supplementary Table S8).

Table 2. Percent mortality (Means ± SE) of immature stages of FAW treated with different concentra-
tions of isolates of Beauveria bassiana.

Percent Mortality ± Means Standard Error

Concentrations Isolates Eggs A Neonates B Larvae C Pupae D

1 × 106

Conidia/mL C

QB-3.45 A 30.0 ± 1.7 a 9.5 ± 0.3 ab 10.0 ± 1.0 a 6.7 ± 0.3 a
QB-3.46 AB 25.3 ± 1.2 a 13.4 ± 2.1 ab 8.9 ± 1.2 a 3.3 ± 0.3 a
QB-3.428 B 28.7 ± 1.8 a 14.9 ± 1.5 a 7.8 ± 0.9 a 3.3 ± 0.3 a
QB-3.436 C 20.7 ± 1.5 ab 13.4 ± 1.2 ab 7.8 ± 0.7 a 3.3 ± 0.3 a
LNSE-22 D 24.0 ± 1.5 a 9.6 ± 0.9 ab 4.4 ± 0.9 a 0.0 ± 0.0 a
SPLE-24 E 10.7 ± 0.9 bc 6.7 ± 1.2 ab 4.4 ± 0.3 a 3.3 ± 0.3 a

ZGNKY-01 E 11.3 ± 0.7 bc 4.5 ± 1.0 ab 1.1 ± 0.3 a 0.0 ± 0.0 a
ZGNKY-1 FG 4.0 ± 0.6 c 6.3 ± 0.6 ab 1.1 ± 0.3 a 0.0 ± 0.0 a
ZGNKY-2 G 5.3 ± 1.5 c 3.5 ± 0.3 ab 1.1 ± 0.3 a 0.0 ± 0.0 a
ZGNKY-3 G 2.0 ± 0.6 c 4.8 ± 0.9 ab 1.1 ± 0.3 a 0.0 ± 0.0 a
ZGNKY-4 EF 8.0 ± 1.5 c 2.2 ± 0.6 ab 2.2 ± 0.3 a 0.0 ± 0.0 a
ZGNKY-5 G 3.3 ± 0.9 c 1.4 ± 0.7 b 1.1 ± 0.3 a 0.0 ± 0.0 a
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Table 2. Cont.

Percent Mortality ± Means Standard Error

Concentrations Isolates Eggs A Neonates B Larvae C Pupae D

1 × 107

Conidia/mL B

QB-3.45 A 87.3 ± 1.5 a 47.6 ± 1.2 ab 9.5 ± 0.3 a 10.0 ± 0.0 a
QB-3.46 AB 82.7 ± 2.4 a 53.6 ± 1.5 a 13.4 ± 2.1 ab 6.7 ± 0.3 a
QB-3.428 B 79.3 ± 2.2 a 45.3 ± 0.9 a 14.9 ± 1.5 abc 6.7 ± 0.3 a
QB-3.436 C 56.0 ± 2.3 b 34.8 ± 1.2 abc 13.4 ± 1.2 abc 6.7 ± 0.3 a
LNSE-22 D 50.0 ± 2.0 bc 30.7 ± 1.2 abcd 9.6 ± 0.9 abc 3.3 ± 0.3 a
SPLE-24 E 30.7 ± 0.3 def 20.2 ± 1.2 bcde 6.7 ± 1.2 bc 3.3 ± 0.3 a

ZGNKY-01 E 39.3 ± 2.2 bcd 17.6 ± 0.7 cde 4.5 ± 1.0 bc 3.3 ± 0.3 a
ZGNKY-1 FG 20.0 ± 2.3 efg 15.8 ± 1.2 cde 6.3 ± 0.6 c 3.3 ± 0.3 a
ZGNKY-2 G 12.7 ± 1.5 fg 12.2 ± 1.2 cde 3.5 ± 0.3 c 3.3 ± 0.3 a
ZGNKY-3 G 15.3 ± 1.5 fg 10.2 ± 1.5 de 4.8 ± 0.9 c 3.3 ± 0.3 a
ZGNKY-4 EF 35.3 ± 1.5 cde 10.3 ± 0.9 cde 2.2 ± 0.6 bc 3.3 ± 0.3 a
ZGNKY-5 G 18.7 ± 2.0 efg 8.2 ± 0.9 de 1.4 ± 0.7 c 3.3 ± 0.3 a

1 × 108

Conidia/mL A

QB-3.45 A 70.0 ± 1.2 a 20.0 ± 0.6 abcd 25.6 ± 1.2 a 20.0 ± 0.6 a
QB-3.46 AB 64.7 ± 1.9 ab 34.6 ± 0.9 a 20.0 ± 1.0 ab 16.7 ± 0.7 ab
QB-3.428 B 54.7 ± 1.8 b 30.8 ± 1.5 a 17.8 ± 0.9 abc 13.3 ± 0.3 ab
QB-3.436 C 40.0 ± 2.3 c 25.6 ± 1.2 ab 14.4 ± 1.5 abcd 10.0 ± 0.0 ab
LNSE-22 D 35.3 ± 1.2 c 21.7 ± 0.6 abc 10.0 ± 1.0 bcd 6.7 ± 0.3 ab
SPLE-24 E 15.3 ± 1.2 de 12.6 ± 0.9 bcde 10.0 ± 1.0 bcd 6.7 ± 0.3 ab

ZGNKY-01 E 18.7 ± 0.9 d 10.6 ± 0.9 bcde 7.8 ± 0.3 bcd 3.3 ± 0.3 ab
ZGNKY-1 FG 10.0 ± 1.2 de 9.6 ± 0.9 cde 5.6 ± 0.3 cd 3.3 ± 0.3 ab
ZGNKY-2 G 6.7 ± 0.9 de 7.9 ± 1.2 cde 4.4 ± 0.3 cd 6.7 ± 0.3 ab
ZGNKY-3 G 8.0 ± 0.6 de 7.2 ± 0.7 cde 5.6 ± 0.7 cd 6.7 ± 0.3 ab
ZGNKY-4 EF 17.3 ± 2.3 d 5.6 ± 0.3 cde 12.2 ± 0.3 abcd 3.3 ± 0.3 ab
ZGNKY-5 G 8.7 ± 0.9 de 3.6 ± 0.9 de 3.3 ± 0.0 d 3.3 ± 0.3 ab

For each concentration, values within a column followed by the same small letters are not significantly different
(one-way ANOVA; HSD post-hoc test at p ≤ 0.05). Capital letters along conidial concentration isolate or FAW’s
immature stages indicate the statistical difference among the treatments (factorial ANOVA; HSD post-hoc test at
p ≤ 0.05).

4. Discussion

The present study evaluated the pathogenicity of 12 isolates of Beauveria bassiana
against invasive FAW. The eggs are immobile and, therefore, were most easily controlled
during the egg development process before hatching [75–77]. Excessive nutrients are
required for the egg development until hatching. In the present study, the isolates of
B. bassiana caused 87.3% egg mortality in FAW. Our results are supported by those of
previous studies, wherein different isolates of B. bassiana were found to be able to induce
the egg mortality of S. frugiperda [61,62,78], Spodoptera exigua [79], Maruca vitrata [80],
Perileucoptera coffeella [81] and Phthorimaea operculella [82].

Our findings are consistent with those of previous studies wherein different isolates of
B. bassiana induced FAW neonatal mortality [61,62]. Other isolates of B. bassiana significantly
induced cumulative mortality in the eggs and neonates of FAW in the present study. The
findings of our results are inconsistent with those of previous studies wherein different
isolates of B. bassiana caused cumulative mortality to the eggs and neonates of FAW [61,62].

Although some fungal isolates were found to be less pathogenic, some of the studied
fungal isolates showed effective pathogenicity. The results of a previous study are not
consistent with our finding that the isolates of B. bassiana caused larval mortality [59]. The
pathogenicity of some fungal isolates is directly associated with the stage of the instar, e.g.,
the fungal isolates proved to be more effective against early instar larvae than later instar
lepidopterans larvae [83]. In one study, an isolate of B. bassiana caused larval mortality
against a second instar of FAW [62]. However, B. bassiana that was isolated from soil caused
higher larval mortality than the same strain that was isolated from maize [84]. Variations
in the effectiveness of B. bassiana have also been reported against different instar stages
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of FAW larvae [85]. In contrast, it was observed that isolates of B. bassiana proved to be
the least effective against larvae of FAW compared with the other lepidopteran pests [86].
Previous studies reported that the virulence of B. bassiana depends on the passage and
climate conditions of the strain through certain hosts [87–89]. Therefore, more research is
needed to explore the mechanisms behind the least pathogenicity of B. bassiana isolates
against the larvae of FAW in the present study.

Interestingly, one isolate of B. bassiana caused significant larval mortality against
FAW [44,60]. Another study reported that the presently studied isolates of B. bassiana
significantly affected the larval growth of Dendrolimus pini [90]. The resistance of mature
larvae compared with that of young larvae may be due to the composition of the larval
integument [91]. Molting may be another factor that is responsible for the lack of inoculum
and hence the lower chances of fungal infection [92]. Another challenge the we repeatedly
faced was the process of surface-sterilizing the neonates’ (very small) cadavers. If the dead
larvae do not show mycosis, then it is difficult to say that they had died due to EPF, because
mycosis is the only strong evidence of larval mortality due to EPF. We assumed from the
results of the present study that the larvae might have died due to diminished feeding
efficacy leading to the physiology of the larvae to be disturbed, which ultimately lead to
larval mortality (antifeedant effects).

A variety of toxins, such as beauvericin, bassianin, bassianolide and oxalic acid are
secondary metabolites that are produced by B. bassiana. B. bassiana parasitizes and kills
its hosts with the help of these toxins [93]. In the present study, the isolates of B. bassiana
reduced the feeding efficacy of the FAW larvae [61], this reduction in the feeding efficacy of
the larvae that were treated with isolates of B. bassiana might be due to the production of
these toxins which first parasitize the larvae and then affect the feeding efficacy of larvae,
the same as occurs in other insect species [94–97]. The reduction in the feeding efficacy of
the larvae that were treated with the isolates of B. bassiana in the present study might be
due to the production of these toxins which parasitize the larvae and then the larvae cannot
feed on the provided maize leaves efficiently. Our results contrast those of a previous study
wherein the feeding efficacy of Heliothis zea was not reduced after treatment with isolates of
B. bassiana [98]. The results of that previous study are consistent with our findings revealing
the induced change in the feeding behavior of infected larvae of D. pini that were treated
with isolates of B. bassiana [99]. The reduction in the feeding efficacy of the larvae that
are treated with fungi is one of the main reasons for underlying pest mortality, providing
evidence for the pathogenicity of fungi, but this phenomenon needs to be further assessed
in order to determine the antifeedant effects that can be caused by fungi [100]. Toxins in
fungi might cause the mechanical disruption of insects’ structural integrity that leads to the
considerable reduction in their feeding efficacy [101].

The isolates of B. bassiana were significantly ineffective in inducing the pupal mortality
of FAW. It was observed that the early immature stages are more sensitive to the fungal
isolates than the later stages of the insects’ growth. Previous studies have supported our
findings, wherein isolates of B. bassiana did not show significant pathogenicity against
the pupae of Spodoptera litura [102,103]. Therefore, we recommend implementing control
practices at early stages of the larval cycle in order to minimize the damage to maize by
invasive FAW.

5. Conclusions

The bassiana isolates were effective against the immature stages (egg and neonatal
larvae) of FAW. These isolates also showed effectiveness in reducing the feeding efficacy
of the treated larvae. In the present study, the QB-3.45, QB-3.46 and QB-3.428 isolates of
B. bassiana proved to be the most effective for the management of the FAW population.
Therefore, these isolates perhaps provide bases for the development of commercial biologi-
cal insecticides. Further research is needed to find the main toxins that affect the virulence
factors of the entomopathogenic fungal isolates.
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Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/jof8070717/s1. Table S1: Germination rates of the B. bassiana isolates used
in this study against FAW; Table S2: Cumulative mortality of eggs and neonate larvae of S. frugiperda
induced by B. bassiana isolates treated with 1 × 106 conidia/mL; Table S3: Cumulative mortality of
eggs and neonate larvae of FAW induced by B. bassiana isolates treated with 1 × 107 conidia/mL;
Table S4: Cumulative mortality of eggs and neonate larvae of FAW induced by B. bassiana isolates
treated with 1 × 108 conidia/mL; Table S5: Mortality of second instar larvae of FAW infected with
different concentrations of B. bassiana isolates; Table S6: Feeding efficacy of second instar larvae of
FAW infected with different concentrations of B. bassiana isolates; Table S7: Mortality of pupae of
FAW infected with different concentrations of B. bassiana isolates and Table S8: Analysis of variance
comparison table for mean percent mortality of eggs, neonate, larvae and pupae of FAW treated with
different concentrations of isolates of B. bassiana under laboratory conditions.
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99. Kovač, M.; Lacković, N.; Pernek, M. Effect of Beauveria bassiana Fungal Infection on Survival and Feeding Behavior of Pine-Tree
Lappet Moth (Dendrolimus pini L.). Forests 2020, 11, 974. [CrossRef]

100. Ondiaka, S.; Maniania, N.K.; Nyamasyo, G.H.N.; Nderitu, J.H. Virulence of the Entomopathogenic Fungi Beauveria bassiana and
Metarhizium anisopliae to Sweet Potato Weevil Cylas puncticollis and Effects on Fecundity and Egg Viability. Ann. Appl. Biol. 2008,
153, 41–48. [CrossRef]

101. Tefera, T.; Pringle, K.L. Food consumption by Chilo partellus (Lepidoptera: Pyralidae) larvae infected with Beauveria bassiana and
Metarhizium anisopliae and effects of feeding natural versus artificial diets on mortality and mycosis. J. Invertebr. Pathol. 2003, 84,
220–225. [CrossRef] [PubMed]

102. Asi, M.R.; Bashir, M.H.; Afzal, M.; Zia, K.; Akram, M. Potential of Entomopathogenic Fungi for Biocontrol of Spodoptera litura
Fabricius (Lepidoptera: Noctuidae). J. Anim. Plant Sci. 2013, 23, 913–918.

103. Anand, R.; Prasad, B.; Tiwary, B.N. Relative Susceptibility of Spodoptera litura Pupae to Selected Entomopathogenic Fungi.
BioControl 2009, 54, 85–92. [CrossRef]

http://doi.org/10.1134/S002626171204011X
http://doi.org/10.1134/S0026261710020207
http://doi.org/10.15177/seefor.18-17
http://doi.org/10.25100/socolen.v30i1.9535
http://doi.org/10.3389/fmicb.2021.705343
http://doi.org/10.1093/jee/87.1.67
http://doi.org/10.1046/j.1570-7458.2000.00624.x
http://doi.org/10.1111/j.1744-7917.2009.01272.x
http://doi.org/10.1016/j.biocontrol.2010.09.013
http://doi.org/10.1016/0022-2011(82)90054-4
http://doi.org/10.3390/f11090974
http://doi.org/10.1111/j.1744-7348.2008.00236.x
http://doi.org/10.1016/j.jip.2003.11.001
http://www.ncbi.nlm.nih.gov/pubmed/14726244
http://doi.org/10.1007/s10526-008-9157-x

	Introduction 
	Materials and Methods 
	Insect Rearing 
	Preparation of B. bassiana Isolates 
	Pathogenicity of B. bassiana Isolates against Eggs and Neonate Stage of FAW 
	Pathogenicity of B. bassiana Isolates against Second Instar Larvae of FAW 
	Pathogenicity of B. bassiana Isolates against Feeding Efficacy of Second Instar Larvae of FAW 
	Pathogenicity of B. bassiana Isolates against Pupae of FAW 
	Data Analysis 

	Results 
	Effect of B. bassiana Isolates on Eggs of FAW 
	Effect of Isolates against Neonate Larvae of FAW 
	Effect of Beauveria bassiana Isolates on Cumulative Mortality 
	Effect of Beauveria bassiana Isolates on Second Instar Larvae of FAW 
	Effect of Beauveria bassiana Isolates against Feeding Efficacy of Second Instar FAW Larvae 
	Effect of B. bassiana Isolates against FAW Pupae 

	Discussion 
	Conclusions 
	References

