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Abstract

Background

Aging processes and several vascular burden factors have been shown to increase the risk

of dementia including Alzheimer's disease. While pathological alterations in dementia pre-

cede diagnosis by many years, reorganization of brain processing might temporarily delay

cognitive decline. We hypothesized that in healthy elderly individuals both age-related neu-

ral and vascular factors known to be related to the development of dementia impact func-

tional cortical hemodynamics during increased cognitive demands.

Methods

Vascular burden factors and cortical functional hemodynamics during verbal fluency were

assessed in 1052 non-demented elderly individuals (51 to 83 years; cross-sectional data of

the longitudinal TREND study) using functional near-infrared spectroscopy (fNIRS). The

prediction of functional hemodynamic responses by age in multiple regressions and the

impact of single and cumulative vascular burden factors including hypertension, diabetes,

obesity, smoking and atherosclerosis were investigated.

Results

Replicating and extending previous findings we could show that increasing age predicted

functional hemodynamics to be increased in right prefrontal and bilateral parietal cortex,

and decreased in bilateral inferior frontal junction during phonological fluency. Cumulative

vascular burden factors, with hypertension in particular, decreased left inferior frontal junc-

tion hemodynamic responses during phonological fluency. However, age and vascular bur-

den factors showed no statistical interaction on functional hemodynamics.
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Conclusion

Based on these findings, one might hypothesize that increased fronto-parietal processing

may represent age-related compensatory reorganization during increased cognitive

demands. Vascular burden factors, such as hypertension, may contribute to regional cere-

bral hypoperfusion. These neural and vascular hemodynamic determinants should be

investigated longitudinally and combined with other markers to advance the prediction of

future cognitive decline and dementia.

Introduction
Aging as well as neurodegenerative diseases, such as different forms of dementia including Alz-
heimer's disease (AD), have been associated with vascular, metabolic, structural and functional
alterations of the brain [1, 2]. These complex and multifaceted alterations may precede detect-
able deficits in cognitive performance in the elderly and demented individuals by many years
[3–7]. In this regard, reorganization of brain processing and activation has been suggested to
partly and temporarily compensate for aging and neurodegenerative processes [8–10]. For
instance, age-related upregulation of activation in prefrontal and fronto-parietal networks
underlying attention and cognitive control may represent a compensation strategy of cognitive
processing in neural circuits [10–12]. Another neural compensation strategy might be a
decrease in lateralization of brain activation with increasing age [13]. Thereby, cognitive per-
formance may not differ between elderly and young participants, or cognitive decline as char-
acteristic for mild cognitive impairment (MCI) and dementia might be delayed in the elderly.
However, (compensatory) changes in brain processing might represent an early indicator of
age-related and neurodegenerative processes, and combined with other risk factors of neurode-
generation further predictive value of future cognitive decline might be provided.

Vascular burden factors represent important risk factors of neurodegeneration contributing
to pathomechanisms of dementia and cognitive decline via their impact on neural and hemo-
dynamic functions. (1) Chronic brain hypoperfusion leading to cerebral hypoxia has been
shown to have profound effects on neural functions and to represent one important etiological
factor of neurodegenerative processes in AD and vascular dementia [14–16]. (2) Many vascular
burden factors including hypertension, diabetes, obesity, hypercholesterolemia, smoking or
stroke have been shown to increase the risk of dementia [16–21] and the conversion fromMCI
to AD [22].

Difficulties in effortful word retrieval during verbal fluency are among the earliest signs of
dementia [23]. Phonological and semantic verbal fluency has been shown to elicit cortical acti-
vation, i.e. hemodynamic responses within prefrontal, fronto-temporal and parietal regions
[10, 24–26]. Previously, we showed in a cohort of 325 non-demented elderly individuals that
increasing age predicts increased hemodynamic correlates of fronto-parietal and decreased
inferior frontal junction activation during verbal fluency [10].

Using cross-sectional data of the largest functional near-infrared spectroscopy (fNIRS)
study so far, the present study first aimed at replicating these previous findings of age-related
reorganization during verbal fluency in a large sample of non-demented elderly individuals
(TREND study). Second, the impact of vascular burden factors on functional hemodynamic
responses during verbal fluency processing was investigated. Third, a possible interaction
between age and vascular burden factors on these hemodynamic responses was analyzed.
Thus, the present cross-sectional study aimed to provide age-related vascular/neural markers,
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which may be validated as predictors of cognitive decline as investigated in future longitudinal
analyses of the TREND study.

Methods

2.1 Participants
In total, 1102 non-demented elderly individuals (age: 51–84 years) participated in the TREND
study (Tübinger evaluation of Risk factors for Early detection ofNeuroDegeneration; first fol-
low-up, March 2011—April 2012, see: http://www.trend-studie.de/english/ and [10, 27–30]).
Analyses of fNIRS and vascular burden factor data varied in sample size due to differences in
data availability or analysis strategy. 1) fNIRS data (n = 1052): Data of 50 individuals were
excluded from fNIRS analyses due to technical problems or missing data (n = 20), excessive
motion artifacts as identified by visual inspection (n = 17), or non-German mother language
(n = 13) as important for verbal fluency performance. Since a first strategy was to replicate pre-
vious findings (n = 325) of age-effects on fNIRS signals, an independent sample including the
remaining 727 individuals was established.2) Vascular burden factors and fNIRS: For analyses
of effects of vascular burden factors on fNIRS signals the entire fNIRS sample (n = 1052) was
investigated; however, data of vascular burden factors of 49 individuals (smoking history,
n = 40; body-mass-index, n = 9) were not available. This resulted in differences in sample size
regarding analyses of the number of vascular burden factors (n = 1003) and analyses of the sin-
gle vascular burden factors.

2.2 Hemodynamic measurements during verbal fluency
We used fNIRS recordings to assess cortical hemodynamic responses elicited during the per-
formance of phonological and semantic verbal fluency as previously described [10, 25]. Briefly,
changes in relative light absorbance corresponding to changes in concentration of oxygenated
(oxy-Hb) and reduced hemoglobin (deoxy-Hb), respectively, were measured. The attenuation
of light absorbance is related to hemodynamic changes along an ellipsoid pathway through
scalp, skull and cortical tissue between a light emitter and a detector [31]. We used an array of
emitter-detectors (3-cm distance) to record hemodynamic responses from two probe-sets com-
prising a total of 44 channels (ch). The probe sets were adjusted using head surface position
markers of the international 10–20 system and covered bilateral prefrontal, parietal and fronto-
temporal cortex regions. For the left probe-set the optode between left ch 1 and 2 was posi-
tioned on T3, and for the right side the corresponding contralateral optode was positioned on
T4. The most caudal row of optodes was adjusted on a horizontal line of Fpz-T3 and Fpz-T4,
respectively. Based on these spatial specifications channels-wise anatomical information were
derived using probabilistic anatomical labeling [32]. The estimation error (standard deviation)
of the projection of channels onto the cortical surface of the standard brain is indicated by the
size of circles.

To account for possible systemic artifacts, e.g. arousal and increases in blood pressure and
heart rate, the global signal of all channels was subtracted from the single channel's signal at
each sampling point (common average reference correction) [10, 33]. Thus, reported hemody-
namic responses of single channels are relative to the global hemodynamic response. Oxy-Hb
has been suggested to represent a more sensitive and reliable indicator of changes in regional
cerebral blood flow compared to deoxy-Hb, and as in our previous study [10] oxy-Hb data was
thus the primary dependent variable of the fNIRS data [34–36]. The oxy-Hb time-series signal
was averaged over respective verbal fluency task conditions (30-s blocks each: phonological
task: words starting with the letter: A/F/M; semantic task: words of the category: professions/
fruits/flowers; control task: weekdays from Monday to Sunday). The magnitude of task-related
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hemodynamic response was indicated by the mean amplitude of each channel. Lateralization
magnitude was assessed by subtracting the right channels' hemodynamic response amplitude
from the corresponding contralateral left channel.

2.3 Vascular burden factors
We previously identified vascular factors predicting increased carotid intima-media thickness
independent of age and sex, thus indicating vascular burden effects in the TREND cohort [37].
The identified vascular burden factors include diabetes mellitus (diabetes; life-time medical
diagnosis, intake of antidiabetic medication or HbA1c levels� 6.5), arterial hypertension
(hypertension; life-time medical diagnosis), obesity (body mass index> 30 kg/m2), smoking
(> 15 pack-years) and atherosclerosis (life-time medical diagnosis). Assessment of these fac-
tors involved questionnaires and personal medical history interviews.

2.4 Statistical analysis
First, to replicate previous findings of aging-related changes of cortical hemodynamic changes
during verbal fluency, fNIRS and statistical analyses were analogously performed in an inde-
pendent sample of 727 individuals as published (n = 325; [10]). Accordingly, multiple regres-
sion analyses of channel-wise hemodynamic response amplitudes (oxy-Hb; Letter-Weekday
(phonological) or Category-Weekday (semantic)) as criterion variable and the predictors
(inclusion algorithm) age, sex, years of education and task performance were conducted. The
prediction of the lateralization magnitude by age was investigated accordingly. To account for
the multiple testing situation, the significance threshold was adjusted using false-discovery-rate
(FDR) corrections [38]. As indicator of the size of effect the standardized β-weight of the pre-
dictor in the multiple regression is reported.

Second, we analyzed the prediction of vascular burden factors on hemodynamic response of
the channel showing the highest response amplitude (peak channel). Therefore, we additionally
included the number of vascular burden factors (0, 1, 2+) in the regression models (also com-
prising the other predictors reported above). We then tested the single vascular burden factors
accordingly for an prediction of the peak channel response. For display purposes, mean values
and standard error of hemodynamic response amplitudes of the vascular burden factor groups
were, in the respective figure, adjusted for the influence of covariates (i.e., the other predictors
in regressions) using analyses of covariance.

Third, interaction effects between vascular burden factors and age impacting the peak
hemodynamic response amplitude were analyzed by also entering an interaction term in the
regression models. Here, centered values of age and the dummy variable hypertension, their
product (the interaction term), as well as sex, years of education and task performance were
entered as predictors in the regression model.

The significance threshold was set to α = 5%. The fNIRS data were analyzed using custom
routines in Matlab 2009b (The MathWorks, Natick, MA, USA). Statistical analyses were per-
formed using IBM SPSS 22 (SPSS, Inc., Chicago, IL, USA).

Results

3.1 Descriptive statistics
Overall (n = 1052), the mean age of individuals was 65.2 ± 6.8 years (mean ± standard devia-
tion; range: 50.8–83.7 years) with females (64.3 ± 6.9 years; n = 504) being younger than males
(66.1 ± 6.7 years; n = 548; t1050 = -4.3, p< .001). Females obtained shorter formal education
(13.0 ± 2.8 years) than males (14.6 ± 2.6 years; t1050 = -9.2, p< .001). Within blocks of 30-s
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participants pronounced on average 6.1 ± 2.0 correct words in the phonological, and 9.7 ± 2.0
correct words in the semantic verbal fluency task condition.

The independent sub-sample (n = 727; 302 females, 425 males) had a lower percentage of
females than the rest of the sample (n = 325; 202 females, 123 males; χ2 = 38.2, p< .001). How-
ever, age, years of education, and phonological and semantic verbal fluency performance did
not differ between sub-samples (p> .05).

Predefined vascular burden factors including hypertension (41% of 1052; n = 431), diabetes
(9.4% of 1052; n = 99), obesity (13% of 1043; n = 140), smoking more than 15 pack-years
(14.2% of 1012; n = 149), and atherosclerosis (5.1% of 1052; n = 54) were considered for analy-
ses of single vascular factors. Groups of individuals without vascular burden factors (44.7%;
n = 448 of 1003), with one (35.6%; n = 357), or with two or more (19.7%; n = 198) vascular bur-
den factors were defined.

3.2 Hemodynamic responses elicited by verbal fluency
Phonological as well as semantic verbal fluency elicited strong hemodynamic responses com-
pared to the control task. Responses were most pronounced in bilateral inferior frontal junc-
tion (peak channel 3, left) and fronto-temporal areas (Fig 1), where phonological compared to
the semantic task conditions elicited stronger responses in both hemispheres (ch 3, left: t1051 =
14.5, p< .001; right: t1051 = 12.1, p< .001). The peak latency within the 30-s task blocks did
not differ between phonological (23.2 ± 6.3 s) and semantic fluency (23.4 ± 5.6 s; p> .1).

For phonological fluency significant lateralization effects (p< .05, FDR-corrected) were
observed within the inferior frontal gyrus (left> right, ch 4, 8, 12; peak ch 4: t1051 = 7.50, p<
.001) as well as in the postcentral gyrus (right> left, ch 20) and middle temporal gyrus
(right> left, ch 2, 6; peak ch 6: t1051 = -4.14, p< .001). For semantic fluency lateralization was
not as pronounced with inferior frontal (left> right, ch 4, 8, peak ch 4: t1051 = 6.83, p< .001)
and middle temporal gyrus (right> left, ch 6; t1051 = -2.87, p< .001) exhibiting significant
hemispheric differences (p< .05, FDR-corrected).

3.3 Age effects on hemodynamic responses during verbal fluency
In the replication sample (n = 727), age significantly predicted increased hemodynamic
responses during phonological fluency in right prefrontal (middle frontal gyrus) and bilateral
inferior parietal regions (supramarginal gyri) extending towards postcentral gyri. At the same

Fig 1. Topography of significantly increased hemodynamic responses during phonological fluency
compared to the control condition (FDR-corrected) in the total sample. Channel numbers of the left
hemisphere correspond to contralateral channel numbers.

doi:10.1371/journal.pone.0138863.g001
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time, age predicted decreased hemodynamic responses in bilateral fronto-temporal areas (infe-
rior frontal junction) (Fig 2a). For semantic fluency, age only predicted decreased hemody-
namic responses in bilateral fronto-temporal areas but not increased responses in middle
frontal gyrus or inferior parietal regions (Fig 2b). All age effects were small as indicated by stan-
dardized β-weights of -0.2< β< 0.2.

Lateralization of hemodynamic responses (left> right: inferior frontal gyrus) during verbal
fluency showed a non-significant statistical trend toward prediction of decreased lateralization
with increasing age (ch 8; β = -.06, p = .053, uncorrected).

3.4 Effects of sex, education and task performance
In addition to age other variables showed significant prediction (FDR-corrected) in the chan-
nel-wise regression models of hemodynamic responses during verbal fluency. During phono-
logical fluency (n = 727), females showed higher hemodynamic responses compared to males
in bilateral inferior frontal junction (peak effect: ch 3; left: β = -.181, p< .001; right:-.185, p<
.001; FDR-corrected), whereas males exhibited higher hemodynamic responses than females in
right middle frontal gyrus (ch 21; β = .136, p< .001; FDR-corrected). For the semantic fluency
condition sex was no significant predictor of hemodynamic responses. Years of education pre-
dicted increased right middle frontal gyrus responses for both phonological (ch 22; β = -.131, p
= .002, FDR-corrected) and semantic fluency task conditions (ch 21; β = -.127, p = .002, FDR-
corrected). In the regression models of each channel none of the hemodynamic responses was
significantly (uncorrected) predicted by the respective verbal fluency task performance.

3.5 Impact of vascular burden factors
In the total sample, an increasing number of vascular burden factors significantly predicted a
decrease in hemodynamic response amplitude in the peak activation region (ch 3, left inferior
frontal junction) during phonological fluency (β = -.097, p = .002). Here, the additional predic-
tors age (β = -.150, p< .001), sex (β = -.220, p< .001), education (β = .083, p = .016) and task
performance (β = .041, p = .210) were also entered in the regression model. Vascular burden
group differences in left IFJ hemodynamic responses adjusted for the influence of age, sex, edu-
cation and performance are shown in Fig 3a.

However, this effect of vascular burden factors was largely due to hypertension (β = -.086, p
= .005), which was the only significant single vascular burden factor predicting the decreased

Fig 2. Standardized β-weights of the predictor age in multiple regression analyses of hemodynamic responses in the replication sample of 727
individuals (a/b) and the initial sample (c/d; n = 325).Channels with significant (FDR-corrected) prediction of hemodynamic responses by age during (a)
phonological fluency, and (b) semantic fluency. Regression models included the predictors age, sex, years of education and task performance.

doi:10.1371/journal.pone.0138863.g002
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left IFJ hemodynamic response. Individuals with hypertension (n = 431) showed decreased
hemodynamic response amplitude compared to those without (n = 621; Fig 3b).

For the semantic fluency task, the number of vascular burden factors showed no significant
prediction (p> .1), while hypertension (β = -.053, p = .084) showed a statistical trend towards
a prediction of decreased left IFJ hemodynamic response amplitudes.

The global hemodynamic response amplitude, i.e. mean of all channels, during phonological
or semantic fluency was not impacted by single or the cumulative number of vascular burden
factors (p> .1).

3.6 Age and hypertension
Differences in age-related reorganization of cortical processing during verbal fluency between
individuals with and without hypertension were investigated (Fig 4). Age and hypertension
were tested for an interaction on the peak hemodynamic response (phonological fluency, left

Fig 3. Mean hemodynamic response amplitudes (left channel 3, indicated in black, left inferior frontal junction) with standard errors of the mean in
the peak activation region during phonological fluency.Mean amplitudes were adjusted for the covariates age, sex, education and performance of mean
amplitudes. Values are shown for a) individuals without, with one, or with two or more vascular burden factors, and b) for individuals without and with
hypertension.

doi:10.1371/journal.pone.0138863.g003

Fig 4. Standardized β-weights of the predictor age in channel-wise (FDR-corrected) multiple regression analyses of hemodynamic response
amplitudes during phonological fluency in a) individuals without hypertension, and b) individuals with hypertension. Regression models included
the predictors age, sex, years of education and task performance. Interaction analyses of factor age and hypertension were not significant.

doi:10.1371/journal.pone.0138863.g004
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IFJ, ch 3). However, the interaction variable entered in the regression did not significantly pre-
dict hemodynamic responses in the left IFJ (p> .1). Also, including the interaction term did
not improve the fit of the regression model to the hemodynamic response data.

Discussion
The present study provides further evidence of age-related reorganization of cortical processing
during verbal fluency. Replicating previous findings [10], this largest fNIRS study so far showed
that increasing age is a predictor for increased hemodynamic response within right prefrontal
(middle frontal gyrus), bilateral inferior parietal regions (supramarginal gyri) and postcentral
gyri, while at the same time predicting decreased responses in bilateral inferior frontal junction
(IFJ). Here, magnitude and topography of the association between age and NIRS activation
during verbal fluency was highly comparable to our previous study (n = 325) [10]. Moreover,
the number of vascular burden factors, with hypertension in particular, predicted decreased
hemodynamic responses in left IFJ.

Dorsolateral prefrontal and inferior parietal regions are part of a superordinate fronto-cin-
gulo-parietal cognitive control network, which is involved in executive domains, such as flexi-
bility, inhibition, initiation, and working memory [39]. Increased activation with increasing
age in these areas during demanding cognitive tasks, such as phonological verbal fluency, may
thus reflect increased recruitment of attention, executive and cognitive resources. This may
indicate aspects of a neural basis of cognitive reserve [9], however whether compensatory reor-
ganization might delay cognitive decline due to age/neurodegenerative processes or increase
resilience of some individuals needs is still unclear. In contrast to age-related compensatory
reorganization or overrecruitment, an alternative interpretation of increased activation with
increasing age may be based on the concept of neural dedifferentiation. Accordingly, increasing
age might be accompanied with a loss in functional specificity and/or regional specialization of
neural processing [40, 41]. Moreover, the overactivation and underactivation often observed in
older compared to younger adults may be interpreted on the basis of the compensation-related
utilization of neural circuits hypothesis (CRUNCH) [42]. According to the CRUNCHmodel,
in order to meet task demands at relatively low cognitive loads older adults may increase fron-
tal or bilateral neural engagement compared to young adults, who show more focal activation.
However, at higher cognitive demands older adults may have already reached limits of neural
capacities, thus, showing underactivation and a decline in performance, whereas younger
adults show relative overactivation and better performance than older adults. In the present
study, the phonemic fluency task performance (which is considered more difficult than seman-
tic fluency) was not correlated with age, while in the semantic fluency condition increasing age
was associated with a slight decline in performance (partial correlation corrected for sex: r =
.13, p< .001). Thus, in terms of cognitive load this differential association is in contrast with
the CRUNCHmodel positing an increase, and not decrease, in age-related task performance
differences with task difficulty. However, phonemic and semantic fluency may differ in behav-
ioral strategies and neural processing complicating direct comparisons of performance and
neural effects between these conditions. Possibly, the lack of age-related differences in the pho-
nemic fluency condition may suggest a compensatory overactivation (e.g. frontal) rather than
dedifferentiation of activation. Semantic fluency, however, may to a greater extent require tem-
poral cortex processing resources [43] and age-related performance differences could not be
neurally compensated through the observed age-related increase in activation in semantic
fluency.
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Here, for both task conditions longitudinal analyses should investigate whether the inability
to reorganize neural processing or the loss in functional specificity, respectively, in specific
individuals may reflect an increased risk of future cognitive decline.

However, effect sizes of age-effects on hemodynamic responses were small (-0.2< β< 0.2).
Therefore, large sample sizes may be required to detect this effect and other putative predictors
of cognitive decline should, in combination with the presented factors, also be considered to
improve prediction models of cognitive decline. Thus, the neural/vascular correlates of cogni-
tive processing with small effect will need to be integrated into prediction models of cognitive
decline which collate different markers of small to intermediate effects to provide a valid and
reliable detection of individuals at risk of neurodegeneration. Here, fNIRS as a stand-alone
marker might not be adequate. Also, we did not find any association between hemodynamic
responses elicited by the verbal fluency tasks and task performance indicated by the number of
correct words when accounting for age, sex and education. Thus, the relationship between neu-
ral/hemodynamic correlates of verbal fluency and task performance/behavior/strategies needs
to be further investigated. Since this lack of association might partly be due vascular/neural
[44], anatomical [31] and task strategic differences [45] between individuals, longitudinal
intraindividual changes might show a closer association between neural/vascular and cognitive
indices of verbal fluency. In addition to alterations in neural processing, the reliable supply of
oxygen and glucose to the brain might be insufficient in individuals with increased vascular
burden; particularly in regions and situations of increased metabolic demands, e.g. neural
regions highly engaged in cognitive task processing. Thus, decreased functional hemodynamic
responses in the left IFJ, the region exhibiting the peak response during verbal fluency process-
ing, observed in individuals with vascular burden factors may indicate a critical vascular and
neural situation preceding cognitive decline and dementia. While the effect size was small (β =
-.097), the impact of the number of vascular burden factors (hypertension, diabetes, obesity,
smoking, atherosclerosis), with hypertension in particular, on hemodynamic responses within
left IFJ complements previous positron emission tomography findings. Glucose hypometabo-
lism in the left IFJ was shown in patients with early dementia compared to healthy individuals,
which was correlated with executive performance during verbal fluency [46, 47]. Moreover,
glucose hypometabolism in the left IFJ has recently been shown for healthy elderly (mean: 70
years) compared with young individuals (29 years), which was correlated with decreased struc-
tural white matter fiber integrity in short fibers to the prefrontal cortex as well as in long associ-
ation fronto-temporo-occipital fibers [1]. Thus, the present finding converges with previous
evidence suggesting that the left IFJ is a region highly susceptible for vascular burden factors
reducing functional hemodynamic responses, i.e. the supply of oxygen and glucose to this
region. This impact may contribute to very early pathological processes underlying structural
alterations and cognitive decline preceding neurodegenerative diseases, such as AD or other
forms of dementia. Such vascular etiological aspects of dementia, with AD in particular, may
also converge with β-amyloid pathomechanisms as suggested by amyloid depositions in vascu-
lar compartments, and associations between β-amyloid burden and arterial stiffness in elderly
individuals without dementia [48]. Also, cardiorespiratory fitness has been shown to mediate
the effects of age on cerebral blood flow which was negatively correlated with blood pressure
[49]. Possibly, improving vascular health may be a mechanism through which exercise and fit-
ness prevents cognitive decline.

Individuals with hypertension showed a similar fronto-parietal topography and no statisti-
cal difference regarding the predictive value of age for the hemodynamic responses compared
to individuals without. Hypertension and age did not significantly interact in the regression
models of the hemodynamic responses. Thus, the age-related reorganization of processing may
not be modulated by vascular burden factors, and both measures of neural reorganization as
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well as vascular functions might be independently integrated into prediction models of future
cognitive decline and dementia.

As in our previous study, also the extended sample showed a non-significant statistical
trend of age as a predictor of reduced lateralization (left> right) in the inferior frontal gyrus.
Alterations in activation lateralization as compensation strategy have been suggested by the
HAROLD model [13], which was derived from findings related to memory and inhibitory pro-
cesses, but specifically from verbal fluency data. As verbal fluency elicited bihemispheric
fronto-temporal activation, age-related compensation by decreasing lateralization might not be
efficient. The observed (non-significant) lateralization effects might therefore be modest in the
present study. However, conclusions from the present lateralization findings have to be cau-
tiously drawn, since compared fNIRS channels of the two hemispheres might differ in the
path-lengths of the fNIRS light and scull-cortex distances.

Sex effects predicting of hemodynamic responses during phonological fluency were consis-
tent with previous findings showing higher hemodynamic response amplitudes in females
compared to males in bilateral inferior frontal junction, while males exhibited higher hemody-
namic responses than females in right middle frontal gyrus [10]. Elderly females compared
with males have been shown to employ more switching strategies (compared to clustering
within word categories) in phonological as well as semantic fluency [45]. Thus, differences in
activation might result from different performance strategies.

Both age-related reorganization as well as effects of vascular burden factors were more pro-
nounced for the more difficult phonological compared to the semantic verbal fluency condi-
tion. Thus, increased task difficulty and resulting cognitive demands may increase the impact
of both age and vascular burden on functional hemodynamic responses. Subjective task diffi-
culty (and possibly the selection of task strategies [45]) might change with increasing cognitive
impairment which needs to be considered for neural/vascular predictors of cognitive decline.

Limitations
Several limitations of the present findings have to be considered. (1) Functional hemodynamic
responses as measured using fNIRS or fMRI may only represent a correlate of the underlying
neural activity during performance of a given task. Thus, (neuro)vascular functions may be
partly related to age-related effects on functional hemodynamic and not neural functions per
se. However, we found age to predict both region-dependent increase and decrease, respec-
tively. Also, the impact of vascular burden factors was regionally specific indicating that these
factors did not generally affect hemodynamic measurements limiting their interpretation as
correlates of neural activity. (2) Changes in skin blood flow have been argued to modulate
fNIRS signals elicited by a phonologic verbal fluency [50]. To correct for such systemic artifacts
the global fNIRS signal was subtracted from each channel's time-series [10, 33]. Moreover, to
eliminate arousal confounders and signal changes related to word production, we contrasted
the mean amplitudes of experimental with the control condition, where a comparable number
of words were verbally articulated. Thereby, blood flow changes within the skin/muscle mask-
ing the functional hemodynamics within the cortical gray matter of interest were hopefully
minimized. (3) Individual differences in (neuro)anatomy have been shown to affect fNIRS sen-
sitivity and relative channel positions and might therefore account for some error variance in
the fNIRS data [31, 44]. Also, age-related decrease in brain volume and changes in differential
path-length [51] may have added error variance to the data and contributed to the reported
age-effects. However, by correcting for global hemodynamic responses we aimed to (partially)
correct for individual (age-related) cortical atrophy. Also, since with increasing age both
increased and decreased hemodynamic responses were observed general age-related cortical
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atrophy may not underlie the present findings. (4) We only used questionnaires and personal
medical history interviews for the assessment of vascular burden factors and their definitions
involving diseases and medication data. However, it was emphasized that all indications, diag-
noses and medications must have been confirmed by a medical doctor. (5) The present results
might not be fully generalizable as TREND study participants were partly selectively included
due to the presence of prodromal markers for neurodegeneration (REM-sleep behavior disor-
der, hyposmia and/or depression).

Conclusions
Age-related reorganization of verbal fluency processing and vascular burden factors represent
regionally specific determinants of cortical functional hemodynamics during increased cogni-
tive demands. Showing only small age-related effect these neural and vascular characteristics
determinants should be investigated longitudinally (e.g. in the TREND study) and combined
with other markers in order to detect individuals at risk for future cognitive decline and
dementia.
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