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Abstract: We present results demonstrating several beneficial effects on distributed fiber optic
vibration sensing (DVS) functionality and performance resulting from utilizing standard single
mode optical fiber (SMF) with femtosecond laser-inscribed equally-spaced simple scattering dots.
This modification is particularly useful when using traditional single-wavelength amplitude-based
coherent optical time domain reflectometry (C-OTDR) as sensing method. Local sensitivity is
increased in quasi-distributed interferometric sensing zones which are formed by the fiber segments
between subsequent pairs of the scattering dots. The otherwise nonlinear transfer function is
overwritten with that of an ordinary two-beam interferometer. This linearizes the phase response
to monotonous temperature variations. Furthermore, sensitivity fading is mitigated and the
demodulation of low-frequency signals is enabled. The modification also allows for the quantitative
determination of local temperature gradients directly from the C-OTDR intensity traces. The dots’
reflectivities and thus the induced attenuation can be tuned via the inscription process parameters.
Our approach is a simple, robust and cost-effective way to gain these sensing improvements without
the need for more sophisticated interrogator technology or more complex fiber structuring, e.g., based
on ultra-weak FBG arrays. Our claims are substantiated by experimental evidence.

Keywords: fiber optic sensors; distributed vibration sensing; DVS; distributed temperature gradient
sensing; DTGS; C-OTDR; phase-sensitive OTDR; fiber structuring; fs-inscription

1. Introduction

Distributed acoustic sensing (DAS) or distributed vibration sensing (DVS) was developed more
than 15 years ago and has since been used for a wide range of monitoring applications [1–6]. There is
a large variety of sensing principles [7,8], most of which are based on the detection of Rayleigh
backscatter from coherent optical pulses introduced into single mode optical fiber (SMF). This class of
sensing schemes is called coherent optical time domain reflectometry (C-OTDR) or phase-sensitive
OTDR (Φ-OTDR). The most simple approach to C-OTDR based DAS/DVS is based on the evaluation
of varying backscatter intensity due to external perturbations [2,9–11]. However, this amplitude-based
method does not allow to quantitatively determine vibration, or rather, dynamic strain amplitudes
as it suffers from a highly nonlinear strain transfer function and signal fading [11–14]. Perturbations
can only be detected rather than measured. Many DAS/DVS approaches have subsequently been
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developed to enable quantitative strain change measurements. The most common ones are based on the
determination of the signal phase via phase demodulation or tracking [15–21]. Other state-of-the-art
DAS/DVS techniques that allow for quantification of strain involve correlation analysis to ascertain
shifts in Rayleigh backscatter profiles resulting from perturbations [22–26].

Many of the above-listed methods involve quite complex photonics on the sensing interrogator
side, often with high demands on components like laser source, pulse shaper or detection path. In
recent years, many investigations have been performed on the topic of how to improve C-OTDR DAS
sensory performance from the side of the sensing fiber, proposing the use of modified optical fiber
structured with large ultra-weak FBG arrays or continuous gratings [27–40]. Developments towards
the demodulation of phase variations using discrete reflectors in optical fiber have, however, had a
long history already. Many earlier works focused on mutiplexed interferometric sensing approaches,
some also using FBGs, see e.g., [41–45]. Many of the developed methods were commercialized,
e.g., [46] and utilized for i.a. industrial monitoring or subsea applications. Nowadays, continuous
FBG arrays can be written into the sensing fiber online during the drawing process [47,48]. In recent
works regarding DAS/DVS, the introduced FBGs took the role of strong and controllable reflectors
in order to avoid the problem of the nonlinear, quasi-random strain transfer function. This method
to improve phase-sensitive OTDR with a FBG-interferometric sensing scheme was first proposed by
Zhu et al. [28]. The different proposed FBG array-enhanced DAS/DVS methods complement and
work in conjunction with various phase demodulation approaches to C-OTDR (Φ-OTDR) in order to
raise sensitivity, increase measurement precision or to attain greater sensing ranges by enhancing the
backscatter [38–40].

However, FBG arrays used for distributed sensing exhibit unnecessary complexity and demand
highly precise manufacturing processes which can increase costs. In previous work, our group outlined
that inscribing simple strongly scattering dots (reflectors) via femtosecond laser pulses into the sensing
fiber core (as was before demonstrated for polymer optical fiber [49,50]) also results in significant
improvements of DVS with regard to sensitivity, fading and strain transfer regularization [51], which
was also shown analogously for discrete UV-enhanced strong scattering segments [52]. Very recently
Donko et al. proposed a similar technique with fs-inscribed discrete reflectors to enhance distributed
sensing performance [53–55]. Fiber structuring based on scattering dots can be considered as simpler
and has fewer demands than an FBG-based approach. FBGs are often written into a fiber using a
UV laser and a phase mask, the fiber coating has then to be removed and the fiber recoated after the
inscription, resulting in a reduced mechanical stability [48,56,57] whereas the fs-inscribed dots using a
point-by-point technique [56–58] can be added without the need for uncoating, as the ultrashort pulses
are launched to the fiber core and do not damage the coating. In order to manufacture large FBG arrays
suitable for long range distributed sensing, online inscription techniques during the fiber drawing
process like UV-laser based draw tower gratings [47,48] can be employed. This, however, adds to
the complexity of and puts a high demand for vibrational stability on the draw tower installation
to achieve high-quality gratings. Moreover, especially FBG arrays, even made of ultra-weak FBGs,
increase the transmission losses significantly and therefore reduce the sensing length for DAS / DVS.
In contrast to this, fs-laser writing is suitable to adjust the backscatter amplitude of point scatterers
and write single point arrays over kilometer lengths in an industrial process. Furthermore, unlike
inscibed dots, FBGs in arrays intended for use in distributed sensing with an interferometric approach
need to match spectrally. In contrast to scattering dots, which function as broadband reflectors, draw
tower FBGs often show inconsistencies with regard to their reflection spectra and are sensitive to
environmental temperature changes [32,48]. On the other hand, utilizing large FBG arrays offers the
possibility to combine or complement a distributed interferometric sensing approach with one making
use of the high sensitivity and precision of FBG sensors when they are used as individual point sensors.
While there are many studies describing the use of FBG arrays or continuous gratings for DAS/DVS,
an in-depth investigation with regard to DAS/DVS performance using discrete strong scatterers has
so far been lacking.
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In this paper, we follow up on this and analyze the performance enhancements resulting from a
sensing fiber structured by equally-spaced identical scatterers with strong reflectivity in the context of
DVS based on amplitude-based single-wavelength direct-detection C-OTDR, which in the following
we denote simply as (traditional) C-OTDR. Following parts of the scheme first proposed in [28],
we show that the uniformly inscribed dots lead to a simplified transfer function and thus allow
for the determination of monotonous phase changes on the period scale directly from the C-OTDR
output intensity. This enables the quantification of transient perturbations like temperature changes
or strain transients while the full sensing bandwidth which is only limited by the sensor length
can still be exploited. We show that fiber segments between subsequent pairs of scattering dots
form quasi-distributed two-beam interferometric sensing zones that, due to their extent, are less
susceptible to noise-like thermal fluctuations. Sensitivity is then stabilized and the fading phenomenon
thus mitigated. This together with the regularized transfer function also enables C-OTDR based
quantitative distributed temperature gradient sensing (DTGS) simultaneous to distributed vibration
detection under certain conditions. The distributed detection of local temperature gradients by
evaluating C-OTDR intensity changes was previously proposed by Garcia-Ruiz et al. [59,60], though
their method required averaging in the time and space domains due to fading and temperature changes
were not accurately quantified. In this paper, we show that absolute temperature changes can be
quantitatively determined in real time by observing the corresponding, comparatively slow sinusoidal
intensity modulation at discrete sensor positions in the middle of the aforementioned sensing zones,
given that monotonous temperature change can be assumed during the time interval of interest and
that there are no mechanical perturbations in the corresponding frequency range. For complementary
cases, we show that low-frequency vibrations down to sub-Hertz frequencies can be detected, which
is not possible using standard SMF and C-ODTR, if environmental temperatures remain reasonably
stable. We also demonstrate that the fs-inscribed dots can be used to enhance the local backscatter
ampitude specifically at long sensing distances, thus recovering local sensitivity to dynamic strain.

It is our intention to demonstrate, in a comprehensive way, the sensory characteristics and
benefits of this scattering dot-enhanced amplitude-based C-OTDR DAS/DVS sensing scheme. This
cost-effective scheme combines simplicity and robustness on the interrogation side with that on the
sensing fiber side. Nevertheless, we were able to gain attractive sensing performance results. This
makes the proposed scheme, in our opinion, a viable technique for commercial use, especially where
large sensing ranges are required. An example for a suitable and highly relevant field of application,
and one major motivation for this work, is DVS-based condition monitoring of submarine power
cables [61–64].

This paper is organized as follows: in Section 2, we briefly introduce the theoretical background
and the main conceptual ideas of the sensing method, in Section 3 the backscatter characteristics of the
scattering dots are discussed, in Section 4 the regularization of the transfer function is demonstrated,
in Section 5, we show, via experimental results, that simultaneous quantitative temperature gradient
sensing and distributed vibration sensing is feasible for certain monitoring applications, and in
Section 6 we demonstrate via experimental evidence that the presented method allows for sub-Hertz
vibration demodulation, that sensitivity fading is in fact mitigated and that sensitivity can be boosted
via the backscatter enhancement from the dots at large sensing distances, respectively. We summarize
our results in Section 7.

2. Theory and Concept

Rayleigh C-OTDR, in general, is a distributed interferometric method and involves a coherent
optical pulse of width W propagating through the sensing fiber and inducing Rayleigh scattering from
commonly occuring randomly distributed refractive index (or density) flucuations. Due to the pulse
coherence, the Rayleigh backscatter waves originating from the many scatterers in a fiber segment
which is currently being irradiated by the pulse and thus forming the respective current resolution
cell, have a defined phase relationship. The interference of the many individual backscatter waves
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result in a speckle-like pattern from this composite interferometer depending on the phase differences
of all pairs of backscattered waves[9,11,14,59]. These phase differences are each highly sensitive to
mechanical and thermal influences, resulting in significant flucuations of the effective backscatter
intensity in the time and the spatial domain, respectively. This, in turn, leads to a flucuating local
sensitivity, the well-known fading phenomenon [12–14]. The randomness of the scatterer distribution
and thus the distribution of relative phases leads also to a quasi-random nonlinear transfer function.
This nonlinearity is the origin of the fact, that with using traditional direct detection single frequency
C-OTDR for distributed sensing, signals can only be detected but not quantified with respect to
their amplitudes.

2.1. C-OTDR and Standard Optical Fiber

With standard C-OTDR and common optical fiber, the output intensity I(z) for a fiber position
z results from a complex interference pattern originating from the interference of many Rayleigh
backscatter waves reflected from M randomly distributed scatterers within a fiber segment of length
W/2 that is currently irradiated by the coherent interrogator pulse [11,22]. All phase differences(

φi − φj
)

between each pair of partial backscatter waves i, j within the pulse width affect, via a cosine
term which is weighted with the reflectivities ri, rj of the involved scatterers and the initial intensity I0,
the output signal of the local effective composite interferometer [9,11,14,22,28]:

I(z) ∝ I0

M

∑
m=1

r2
m + 2I0

M−1

∑
i=1

M

∑
j=i+1

rirj cos
(
φi − φj

)
(1)

The first term is due to incoherent backscatter and is not much affected by external signals. The
coherent second term, however, varies with external stimuli as the relative phases are affected by
mechanical and/or thermal inputs. The significant nonlinearity of standard C-OTDR becomes apparent
looking at the second term since the relative phases φi,j of a large number of relevant scatterers are
susceptible to stimuli; the entirety of which in turn determine the component of the output signal
intensity I(z) that is affected by perturbations.

2.2. C-OTDR and Structured Optical Fiber

Let us now compare the above case with one where the sensing fiber is structured with
equally-spaced strongly scattering dots. This mirrors the approach in [52] where equally-spaced
UV dots were used. The distance between neighboring dots l is chosen such that, within the
selected interrogator pulse width W/2, there are exactly two strong scatterers, i.e., W/4 < l <

W/2 [20,28,32,34]. These two dots have the individual phases φ∗1 , φ∗2 and reflectivities r∗1 , r∗2 � ri,j. The
arrangment in comparison to unmodified optical fiber is illustrated in the sketch in Figure 1.

Figure 1. Sketch illustrating the difference in arrangements between an unmodified standard optical
fiber and a modified scattering dot fiber using standard coherent optical time domain reflectometry
(C-OTDR). (a) unmodified standard fiber, (b) scattering dot fiber.

The strong backscatter from the inscribed dots overwrite the local nonlinear transfer function as
the output of the local composite interferometers is now dominated by the interference between the
backscatter waves from the two dots. Equation (1) can thus then be simplified to [28,29,32]
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I(z) ∝ I0

(
(r∗1)

2 + (r∗2)
2
)
+ 2I0r∗1r∗2 cos (Φ) (2)

The phase difference Φ = φ∗1 − φ∗2 is then the phase of a two-beam interferometer, where the
scattering dots take the role of reflectors. This phase (or the optical path length between the dots) is
very sensitive to perturbations. In the reduced form in Equation (2), the output intensity I(z) varies
with a phase change from a given phase position Φ of the single interferometer via a cosine. Structuring
the fiber with equally-spaced scattering dots thus makes the approach a quasi-distributed Fabry-Perot
interferometric one.

Equation (2) shows that the measured signal is only to a much lesser degree affected by thermal
noise as compared to the complex composite random phase relation descibed by Equation (1). Since
the integral phase change over the distance of the scattering dots is much less susceptible to thermal
noise, sensitivity fading is thus mitigated. The phase Φ is given by [11,29,65,66]

Φ =
4πnl

λ
(3)

where n is the refractive index of the medium between the refĺectors (scattering dots), l is the distance
between them, and λ is the wavelength of the interrogator pulse. Φ depends on the refractive index n
and the distance l, both of which are affected by external stimuli, be it thermal or mechanical.

2.3. Change of Local Interferometer Phase with Temperature Variation

In the case of a temperature change, for example, Φ changes due to the thermo-optic effect and
thermal expansion of the relevant fiber segment [66]:

∂Φ
∂T

=
4πl
λ

∂n
∂T

+
4πn

λ

∂l
∂T

=
4πl
λ

(
∂n
∂T

+ αn
)

(4)

where ∂n
∂T is the thermo-optic coefficient and α = ∂l

∂T is the thermal expansion coefficient of the fiber
material. With a temperature change ∆T, the resulting change of phase ∆Φ can with Equation (4) be
written as

∆Φ =
4πl
λ

(
∂n
∂T

+ αn
)

∆T. (5)

There is thus a linear relationship between temperature change ∆T and phase change ∆Φ of the
local interferometer formed by the pair of scattering dots.

Due to the cosine nature of the phase dependence of the intensity (Equation (2)), an approximate
phase change over time resulting from a monotonous temperature change can then be estimated
from the traversed periods in the modulated output intensity time series. Therefore, the (absolute)
temperature change can be quantitatively determined in real time with a corresponding resolution as
determined by the parameters in Equation (3). The proposed method thus allows for (quasi-)distributed
temperature gradient sensing (DTGS) with a spatial resolution determined by the spacing of the
scatterers (and the appropriately chosen interrogator pulse width). A limiting factor is the sampling
rate, so that phase changes can be monitored sufficiently. However, since realistic temperature changes
for most monitoring purposes lead to phase changes below a few Hz, this should not limit the
applicability of the proposed method for even long range monitoring applications [59,60] since the
sampling frequency is in the kHz region. One important exception would be fiber optic fire detection,
which can involve high frequency signals due to the large temperature gradients. Note that this
method only allows for the determination of absolute temperature change as the sign of ∆Φ and thus
the polarity of the optical path length change can not be determined by observing the output of an
amplitude-based single wavelength C-OTDR. The applicability of the proposed method therefore is
limited to cases where monotonous temperature changes can be assumed for distinct time intervals
(e.g., developing hotspots in cable installations). The sign of temperature change could be determined
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using other techniques. In previous work, where the fiber was structured with FBG arrays, the
issue of indeterminable signal sign was treated by using multiple interrogator pulse wavelengths
[29–31,33], which enabled actual phase recovery and thus determination of signed changes also for
time-varying perturbations.

3. Characteristics of Scattering Dots

The purpose of the scattering dots is to provide very localized Rayleigh backscatter of definable
spacing along the fiber which is strong enough to dominate the backscatter from all other randomly
distributed scattering centers in the fiber core within a selected C-OTDR interrogator pulse width yet
not strong enough to introduce unacceptable attenuation and thus severely reducing the sensing range.
Each scattering dot used for our experiments was inscribed in the fiber core of standard SMF using
a single fs-pulse. The fiber modification was carried out by the Fraunhofer Heinrich Hertz Institute
(HHI) Goslar, Germany using the method described in [57,58].

Figure 2 shows an analysis of an SMF (Corning) test specimen with inscribed scattering centers
produced using fs-pulses under different process parameters. Panel (a) shows the distributed
backscatter intensity as determined by a commercial Rayleigh OFDR device (Luna OBR 4600, Luna
Inc., Roanoke, VA, USA), (b) shows the integral backscatter power of the detected backscatter peaks,
panel (c) shows the corresponding virtual widths of the scatterers used for power integration and (d)
displays the peak backscatter amplitudes of each scatterer.

The analysis plot in Figure 2 shows 60 inscribed scatterers with varying inscription parameters,
grouped in five times three times four scatterers (outer to inner). The varied parameters for these
subgroups are (from left to right and outer to inner): 5 different inscription pulse energies 100 nJ,
150 nJ, 200 nJ, 300 nJ, 400 nJ; 3 different inscription focus points: radial offset from core center 4 µm,
radial offset from core center 2 µm and core-centered; 4 scatterers with same process parameters.

Figure 2. Properties of scattering dot specimen inscribed into the core of standard single mode optical
fiber for different inscription parameters. (a) Distributed backscatter intensity; the green shaded
(unmodified) segment is used as backscatter reference. (b) integral power of scattering dots; the
horizontal lines depict the integral backscatter power levels of segments of unmodified standard fiber
for various interrogator pulse widths W. (c) Integral width of peak as determined by OFDR and
(d) peak amplitude of individual scattering dots.
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The horizontal lines in panel (b) denote the integral backscatter power levels corresponding to
interrogator pulse widths W of different durations for an unmodified SMF calculated from the green
shaded reference segment shown in panel (a). This means, e.g., that the rightmost four scatterers
exhibit (together as pairs) an integral backscatter power larger than the resulting integral incoherent
backscatter amplitude from an interrogation length of up to 100 ns of a plain SMF fiber. Consequently
the backscatter amplitude of each pair of fs-dots dominates the backscatter amplitude for coherent
detection as well. A detailed view of a single scatterer can be seen in Figure 3. The shaded area signifies
the virtual width of the scatterer from which the scatterer’s integral power is determined.

Figure 3. Detailed view of single scattering center. The shaded area depicts the (virtual) integration
width from which the scatterer’s integral power is calculated.

Each dot was inscribed using a single fs pulse with a spot size < 1 µm [58]. The rather large
apparent size of the dot as well as its double-peak structure as depicted in Figure 3 stems from the
Dirac delta-like increase of backscatter amplitude induced by fs-laser, which could not be properly
recovered by the inverse FFT of the OFDR device. Therefore the integral power was used for the tuning
instead of the peak backscatter amplitude. The results show, that the backscatter of the inscribed dots
(reflectivity) can be tuned via the inscription pulse energy to the desired level relative to the backscatter
of unmodified segments of standard optical fiber.

This dot inscription is a simple yet efficient way to produce reflectors of defined distance and
well-reproducible backscatter amplitude. Their manufacturing for use as high quality and consistent
point reflectors is easier and more cost-effective when compared to other methods like large FBG
arrays or continuous gratings. Nevertheless, until recently investigations regarding quasi-distributed
interferometric DAS/DVS focused almost exclusively on FBGs. However, recently another group has
described the method of femtosecond laser inscription of backscatter enhanced dots and outline the
benefits [53–55], though so far no in-depth sensing performance analysis has been published.

4. Regularization of Transfer Function

In order to demonstrate the regularization of the sensing fiber transfer function, we carried
out experiments subjected our sensing fiber to a monotonous temperature gradient. A change in
environmental temperature should result in a corresponding slow linear change of the phase Φ
according to Equation (5) which is observable in a cosine-like modulation of the measured output
intensity I(z) according to Equation (2). Exposure to a prolonged monotonous temperature gradient
thus means mapping the transfer function over many periods. Additionally introduced simultaneous
vibrations with a constant small amplitude (with a resulting phase shift � 2π) should result in a
phase modulation within the transfer function which is detectable via the signal strength. This signal
strength reflects the varying local interferometer’s phase state, the tuning of which is imposed by the
temperature gradient.

4.1. Sensing Fiber and Experimental Setup

Figure 4 (blue line) shows the backscatter profile of the sensing fiber used for the experiments as
measured by a Luna OFDR. The fiber has 10 inscribed scattering dots equally spaced by 6.48 m. The
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red curve shows a long-term average of C-OTDR intensity traces using an interrogator pulse width
of 10 m (pulse duration 100 ns). The chosen pulse width correspondingly results in an interference
pattern with 9 peaks with each maximum located in the middle of an encompassing pair of scattering
dots. The inset shows a single scattering dot.

Figure 4. Backscatter profile of utilized sensing fiber from Luna OFDR measurement (blue line) and
averaged C-OTDR intensity with a selected interrogator pulse width of 10 m. The inset shows a zoomed
view upon a single scattering dot.

Figure 5 shows the experimental setup. The sensing fiber was connected via a lead-in fiber to a
commercial DAS/ DVS-interrogator device (Helios HSI, Fotech Solutions Ltd., Hampshire, UK) which
is an amplitude-based single wavelength C-OTDR (without phase recovery capabilities). The modified
fiber section was placed in a temperature-controllable water bath, with the varying temperature
being recorded by a reference Pt100 based thermistor (Ahlborn GmbH, Hildesheim, Germany). Also
submerged in the water was a piezo electric buzzer controlled by a signal generator.

Figure 5. Experimental setup with scatterer dot sensing fiber in temperature-controllable water bath.
Vibration is employed via a submerged piezo operated via a signal generator. The temperature
evolution was measured with an Almemo thermistor for reference.

During the course of the experiment, the water temperature was increased from T = 24.7 ◦C
to T = 31.2 ◦C over a time period of approx. 10 min., meaning a cumulative temperature change of
∆T = 6.5 ◦C. Meanwhile, the piezo permanently induced vibrations with frequency f = 700 Hz in
the water to be detected by the DVS device while the local backscatter intensity varied due to the
temperature gradient.

4.2. Results

Figure 6 shows the distributed C-OTDR raw data along the scattering dot sensing fiber during a
1 min interval. The dynamics show a clear periodic modulation of the signal under the influence of the
applied heat in 9 distinguishable interference maxima (9 pairs of 10 subsequent dots), as marked by
the black arrows. The leftmost modulations (marked by grey arrow) stem from interference between
the reflections from the leftmost scattering dot and the lead-in fiber splice.
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Figure 6. C-OTDR raw data along scatterer sensing fiber during heating. The black arrows mark
the sensor positions used for sensing. The local patterns result from backscatter interference from
pairs of consecutive scattering dots and are highly sensitive to thermal and/or mechanical excitation.
The signal shown at the position indicated by the grey arrow stems from interference between the
reflections from a lead-in fiber splice and the first scattering dot, respectively.

A zoomed view of the raw signal from a single sensor position located at one of the sensitivity
maxima is depicted in Figure 7a (blue line). In agreement with our hypothesis, the C-OTDR trace
indeed shows a sinusoidal-like behavior. In that way, it behaves like a two-beam interferometer whose
phase is tuned continuously in one direction. The shown dynamics demonstrate that the transfer
function is regular instead of randomized like is the case for unmodified standard SMF. Subsequent
maxima mark a full 2π change of the (return) phase Φ of the local interferometer made up of the
encompassing pair of scattering dots.

For comparison with the case of plain fiber, Figure 7b (blue line) shows the dynamics in a single
sensor range bin within the same time interval as depicted in (a) within a submerged yet unmodified
segment of the sensor fiber. In contrast to the regular sinusoidal modulation of the intensity signal
in the middle of the sensing zones in the structured part of the sensing fiber, the dynamics here
behave erratically owing to their intrinsically random transfer function. From the depicted waveform
it is impossible to make a statement about the current sensitivity or the temperature gradient for
that matter.
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Figure 7. Intensity dynamics and current signal strength during ongoing heating process: timeseries
of C-OTDR raw data (blue) in single sensor bin and corresponding log PSD at excitation frequency
f = 700 Hz (red) over time. (a) sensor bin at sensitivity maximum within modified segment of fiber
(b) sensor bin in unmodified segment of fiber.

Now we want to assertain how the regular transfer function translates to sensitivity of small
amplitude vibrations. As mentioned above, during the heating process the submerged piezo device
permanently induced vibrations of constant amplitude in the water bath which the submerged sensing
fiber was detecting. The current interferometer phase state, and thus its operating point within the
transfer function was continuously tuned due to the optical path length of the interferometer increasing
with the temperature increase. The modulation due to the vibrations depends on the current operating
point within the transfer function and manifests itself in a varying signal strength. To quantify the
varying signal strength over time, we choose the power spectral density (PSD) at the piezo frequency
f = 700 Hz within short time intervals. The red line in Figure 7a depicts the log of this time-dependent
PSD as determined from short-time Fourier transform (STFT) spectra of subsequent windows of
length 0.1 s with an overlap of 0.09 s. As expected, the signal strength exhibits minima when the
current output intensity is at or close to local extrema and shows maxima meaning maximal sensitivity
to vibrations during the linear segments of the intensity dynamics, following the derivative of the
backscatter signal. This indicates that the DVS sensitivity in fact depends on the phase state (operating
point) of the local interferometer formed by a pair of the inscribed scatterers which itself has a regular
transfer function. Our measurement results are indications for a linear phase response to vibrations,
however, our experiments are unsuitable to validate that hypothesis. Nevertheless, in cases where
the transfer function has been mapped like in our experiment and the current interferometer state can
thus be estimated and is stable, the amplitude of a small signal vibrational perturbation can rougly be
gauged from the resulting intensity modulation. In the case of stronger signals of known frequency,
resulting in an of overmodulation of the local interferometer, the excitation magnitude could possibly
be estimated by determining the most dominant higher harmonic frequency, which would not be
feasible with a random transfer function. This question, however, still needs to be properly evaluated.

As expected, the corresponding signal strength for the sensor bin in the plain fiber segment
behaves erratically due to the latter’s random transfer function.

5. Simultaneous DVS and DTGS

Because the inscription of the strongly scattering dots regularizes the transfer function, we can
quantify unidirectional phase shifts on the scale of full periods (i.e., multiples of 2π) within a certain
time interval. It is thus feasible to utilize the C-OTDR traces from the sensitivity maxima in the middle



Sensors 2019, 19, 4114 11 of 23

of each inscribed scatterer pair for simultaneous distributed temperature gradient sensing (DTGS) and
distributed vibration sensing (DVS) if certain conditions are met.

In many monitoring applications, it is of interest to measure moderate temperature gradients
while simultaneously detecting vibrations occuring at the same time. These kinds of temperature
gradients result in phase shifts that occur on much slower time scales than common vibration
frequencies. The influence of vibrations and temperature drifts can this way be separated spectrally.
This is of course only feasible in applications where no low-frequency vibrations or transient strain,
respectively, are expected. If, on the other hand, sensing targets low-frequency vibrations (like
demonstrated in Section 6.3), simultaneous DVS and DTGS using the scheme proposed here is not
possible because signal frequencies could overlap and the effects therefore not be separated. Analogous,
high temperature gradients can occur in some important monitoring applications as well, like e.g.,
fire detection. Fast (monotonous) temperature changes lead to large phase shifts in a short time. The
resulting higher frequency signal can then in general not be distinguished from vibrations and our
scheme thus not be employed.

Our proposed method for simultaneous DVS and DTGS in a single fiber depends on the
requirement that the strong phase modulation (by temperatur or strain) take place on slower time
scales than the vibrations that are to be monitored. The current temperature gradients can then be
determined from the slowly varying component of the measurement data and for vibration sensing
the higher frequency bands can be used since vibrations are modeled as elastic processes. Previously
published work demonstrated that local temperature gradients could be detected from analyzing the
intensity output of traditional C-OTDR [59,60]. However, averaging in the time and spatial domain
was necessary due to the randomly distributed scatterers in the used standard optical fibers and the
ensuing intensity fluctuations; the temperature gradients could also not be precisely quantified. In
the present case, because of our fiber modification, the transfer function is regularized and smooth
intensity modulations occur. These modulations translate from monotonous phase shifts directly
proportional to introduced temperature variations and can be observed at fixed positions.

For the experiment described in Section 4.1, we now want to compare the temperature values
as measured by the reference thermistor with those calculated from Equation (5) using the C-OTDR
dynamics in a single sensor position for the observable phase change ∆Φ. As mentioned earlier, a
modulation of the dynamics from peak to peak means a phase shift of ∆Φ = 2π, since the return-trip
phase difference between two paired scattering dots needs to be considered. From Equation (5)
it then follows with a spacing l = 6.48 m between the scattering dots, the C-OTDR interrogator
wavelength λ = 1540.55 nm, the thermo-optic coefficient of fused silica (the sensing fiber core material)
∂n
∂T = 8.57× 10−6 K−1 [67,68], the thermal expansion coefficent of fused silica α = 0.55× 10−6 K−1 [68]
and the refractive index of SMF-28 of n = 1.468 that a temperature variation of ∆T = 1 ◦C results in a
phase shift of ∆Φ1◦C = 156.8π or alternatively that an observable phase shift of ∆Φ = 2π (peak-to-peak
in the C-OTDR trace) means an absolute temperature change of ∆T2π = 0.0127 ◦C. This implies a very
high temperature gradient resolution of our method.

For the evaluation of our approach for DTGS we simply count the number of peaks Np(t) in the
raw data trace within a fixed time interval of 10 s. Np(t) corresponds to the number of full traversed
periods, i.e., a phase shift of ∆Φ(t) = Np(t) · 2π. The time-dependent temperature gradient can then
be calculated from

∆T = ∆T2π · Np(t), (6)

or the total temperature change from the number of all peaks in the C-OTDR data. The results are
displayed in Figure 8.
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Figure 8. Distributed temperature gradient sensing result for single sensor position during heating
process. (a) cumulative number of traversed periods from the C-OTDR trace (blue) and temperature
as measured by the reference thermistor (red), (b) deviation between measured relative temperature
increase and temperature increase as calculated from Equation (6), (c) corresponding number
of traversed periods (blue) and simultaneously measured temperature changes (red), both over
10 s intervals.

Figure 8a shows the evolution of the cumulative number of full periods traversed in the C-OTDR
trace (blue line) and the relative temperature increase as measured by the reference thermistor (red
line). The plot in (b) shows the deviation between the absolute temperature change as calculated
by Equation (6) with the number of periods Np and the measured relative temperature change
measured by the thermistor. Figure 8c depicts the corresponding number of periods and the measured
temperature changes in 10 s windows, respectively (same colors). It is apparent that the result from
C-OTDR based DTGS agrees quite well with the reference sensor. Even though there are temporary
deviations of up to 0.4 ◦C, the determined temperatures at the end of the measurement differ by only
0.038 ◦C. The curves shown in Figure 8c exhibit a high level of congruence. This implies a linear
response of the sensor to introduced temperature changes, at least on the 10 s time scale and a phase
change resolution of subsequent full periods.

We assume that large parts of the intermittent deviation between the measurements of our
distributed fiber optic sensing method and of the conventional point sensor, respectively, originate
from insufficiently isotropic heat distribution in the water bath. Furthermore, the heat capacity, thermal
conduction and sampling, respectively, for both sensors do not match perfectly, which can cause a
temporal offset for the temperature retrieval.

We have thus shown, that our method allows for simultaneous real time DTGS and DVS with
traditional C-OTDR in a single fiber in cases with low to moderate temperature gradients.

6. DVS Performance Benefits of Using Scattering Dots fFber

6.1. Motivation Power Cable Monitoring

When using the modified structured sensing fiber for C-OTDR DVS, several other performance
improvements as compared with cases where standard SMF is used arise. Here, we demonstrate
via experimental results that sub-Hertz vibrations can be resolved, that fading is mitigated and that
sensitivity can be boosted, especially at long sensing distances. Our experimental setup involves optical
fiber embedded in a power cable which was originally intended for telecommunications purposes.
This test object was chosen because our motivation is the application of our method for vibration (and
temperature) monitoring of extended power cable installations, e.g., subsea power cables connecting
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offshore wind farms with the shore [61]. For this application, a long sensing range is key [55,62,64], but
also the ability to demodulate and localize low frequency vibrations, e.g., from anchors being dragged
over the seabed close to and/or towards the submarine cable, is highly desirable for transmission
system operators (TSO) to avert damages or failures [62]. Furthermore, determining dynamic or
transient strain values in the power cable for conditions monitoring during the power cable installation
process via DVS [63] is an attractive application that could allow for a early detection of damages to
the cable sustained during laying thus saving costs and preventing later occuring secondary damages.

6.2. Experimental Setup

Our laboratory setup is depicted on the left of Figure 9. The test object is a 6 m long coiled
medium voltage power cable specimen with a standard SMF in a gel-filled steel tube embedded in the
outer shielding layer made up from copper wires. A photo showing details of the cable is depicted
on the rhs of Figure 9. The embedded fiber was on one side connected via a lead-in fiber to our
commercial C-OTDR interrogator (Helios HSI). On the other end, the embedded fiber was spliced with
a lead-out fiber.

Figure 9. Left: setup for vibration sensing in a medium voltage cable. One scattering dot was spliced
into each the lead-in fiber and the lead-out fiber, respectively, resulting in a distance between them
of 6.7 m. Right: detailed view of one end of the power cable with single mode optical fiber (SMF) in
stainless steel loose tube embedded in the shielding layer made up of copper wires.

On each side of the power cable a short fiber segment with one of the above described scattering
dots was spliced with the lead-in and the lead-out fiber, respectively, resulting in a single pair of dots
with a fiber distance between them of 6.7 m. The scattering dots on either side of the power cable
together with 30 m of the lead-in or the lead-out fiber, were each boxed and cushioned by foam to
exclude vibrations not exerted on the power cable from influencing the measurements. The power
cable was attached to a lab shaker via a specially made clamp. The shaker vibrations were controlled
by a signal generator. The power cable and the lead-in and lead-out fibers were positioned such that
the vibrations would not result in significant longitudinal dynamic strain between the optical fiber
coming out of the ends of the power cable and the lead-in our lead-out fibers, respectively.

This setup was used for all experiments in the following subsections and allowed us to introduce
vibrations of arbitrary frequency to the power cable to be sensed by the fiber segment between the
scattering dots. By varying the length of the lead-in fiber (55 km for the experiments described in
Sections 6.3 and 6.4, 80 km for the experiment in Section 6.5) we could ascertain the performance of the
single dot pair sensor at different sensing distances. To be able to profit from the scattering dot sensing
scheme, the distance between the introduced dots required us to set the C-OTDR interrogator pulse
width to 10 m (100 ns pulse duration) during the experiments described in this section.

6.3. Resolution of Sub-Hertz Vibrations

One sensory advantage of using the modified sensing fiber with inscribed scatterers is the
possibility to resolve low-frequency vibration signals. This was very briefly demonstrated in previous
work [51] and analogously for discrete strong scattering segments produced by UV exposure [52], each
under ideal lab conditions. Here we present results using a setup closer to reality, i.e., without thermal
insulation and with power cable monitoring close to the real application.
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When using standard optical fiber to detect low-frequency vibrations, unavoidable thermal drifts
together with the commonly random transfer function result in a sustained noise-like background in the
low frequency band. In usual conditions, vibrations with frequencies f < 5 Hz are thus unresolvable.

However, we demonstrated that the structuring of our sensing fiber with inscribed scattering
dots and the resulting regularization of the transfer function (as shown in Section 4) enables the
demodulation of low-frequency (sub-Hertz) signals. If relatively stable thermal conditions can be
assumed, corresponding signal components can be considered negligable. Thermal drifts of course
still persist, but due to the significant integration length of the relevant phase shift ∆Φ of the order
of meters, the transfer function can be considered stable. Low frequency vibrations exerted on the
sensing fiber should then be detectable. It should be noted, that these requirements naturally exclude
the possibility of simultaneous DVS and DTGS as described in Section 5 for applications where low
frequency vibrations need to be detected or monitored as our scheme depends on spectral separability
of signals induced by vibration and thermal influences, respectively. In order to demonstrate sub-Hz
signal detection, we introduced low frequency vibrations with a frequency f = 0.6 Hz via the shaker.
The sensing distance of the relevant fiber segment bounded by the scattering dots was approx. 55 km.
To this end, a lead-in fiber made up of 25 km Corning Ultra Low Loss (ULL) fiber and 30 km standard
SMF (j-fiber, Jena, Germany) was used. The sampling rate (pulse repetition frequency) was 1 kHz.

Figure 10 shows a spectrogram calculated from the backscatter signal measured at a single sensor
position within the power cable specimen. The spectrogram was produced with an FTT window
length of 10 s and a step size of 0.1 s. The excitation frequency of 0.6 Hz is clearly visible, the
frequency components at even lower frequencies we attribute to not completely stable environmental
temperatures. We therefore were able to demonstrate that sub-Hertz signals originating from dynamic
strain, too, can be resolved using our method.

Figure 10. Spectrogram calculated from C-OTDR signal in single sensor segment within the power
cable at a sensing distance of more than 55 km . The excitation frequency f = 0.6 Hz is clearly visible.

6.4. Fading Mitigation

Another benefit of our scheme is the stabilization of the sensitivity meaning the well-known
fading phenomenon which is typically associated with C-OTDR [12–14] is mitigated. Due to the
normally random transfer function of standard optical fiber, sensitivity usually fluctuates over time.
This implies that within a resolution cell as defined by the propagating interrogator pulse width,
sensitivity fluctuates also in the spatial domain. Substituting the random transfer function with that of
a simple two-reflector interferometer of a length comparable to that of the resolution cell results in
less susceptibility to noise-like thermal drifts. We validate this via another set of experiments. During
the first measurement, we used the above-described experimental setup, but without any spliced-in
scattering dots framing the power cable. During the second measurement, the setup was as shown in
Figure 9. This is meant to illustrate the performance benefit comparing the cases with scattering dots
and without them. The lead-in fiber had a length of approx. 55 km and was composed like described
in the previous subsection. The sampling rate was set to 1 kHz. The shaker was exerting vibrations
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of frequency f = 80 Hz onto the power cable during the measurements. Resulting spectrograms
from single sensor positions within the power cable for both measurements are shown in Figure 11.
The FFT window size was 1 s with an overlap between subsequent windows of 0.9 s. Both plots
show the base frequency and several higher harmonics. This common harmonic distortion results
from overmodulation respectively a large phase change (>2π). Due to the stable PSD values for the
scattering dot fiber, the total phase modulation could theoretically be estimated by determining the
dominant harmonic frequency, since the base frequency is known. In summary, it is apparent, that
without the sensing fiber modification, the PSD at the main frequencies composing the signal fluctuate
or drift over time (Figure 11a), while the results for the case with employed scatterers show almost
stable PSD values.

Figure 11. Spectrograms calculated from C-OTDR signals in single sensor segments within power
cable with applied vibration with f = 80 Hz at a measurement distance of 55 km. (a) for unmodified
standard SMF; (b) for the case using fiber-inscribed scattering dots.

In order to attain a time-varying measure of signal strength we now consider the sum s(t) of the
PSD values shown in Figure 11 at the signal frequencies f = 80, 160, 240, 320, 400, 480 Hz:

s(t) = ∑
f=n·80 Hz

PSD ( f , t) . (7)

For cross-comparability between the two fiber configurations, we define the relative normalized
PSD as s(t) relative to its average over a time interval toff at the beginning of the measurement without
the vibrations 〈s(toff)〉:

relative normalized PSD =
s(t)
〈s(toff)〉

. (8)

Figure 12 shows the evolution of the relative normalized PSD according to Equation (8) for the
two measurements in spatio-temporal plots.



Sensors 2019, 19, 4114 16 of 23

Figure 12. Normalized sum of power spectral density (PSD) at excitation frequency f = 80 Hz and its
harmonics (Equation (8)) at a measurement distance of 55 km on the basis of the spectral data shown in
Figure 11a) for unmodified standard SMF; (b) for the case using fiber-inscribed scattering dots. The
increase in sensitivity and the difference in fading behavior is clearly visible. Note the different scales
of the color coding.

The signal strength over time differs significantly between both cases: the signal strength for the
case with unmodified fiber (Figure 12a) is much lower than for the scattering dots fiber (Figure 12b) and
fluctuates strongly over time and space. In contrast, the results for the case with spliced-in scattering
dots exhibit an almost stable spatial distribution of signal strength and much lesser fluctuations over
time. The difference in fading behavior on the basis of the data shown in Figure 12 is presented in
more detail in Figure 13.

Figure 13. Measures showing sensitivity fading over time for the standard fiber (a–c) and for the
scatterer fiber (d–f). (a,d) relative change of sensor position with the maximum signal strength
(normalized PSD sum, Equation (8)); (b,e) corresponding signal strength; (c,f) signal strength in
a single sensor range bin over time. Note the different scales.

The upper panels (a)–(c) depict the situation for the case without scattering dots, the lower panels
(d)–(f) show the case with the dots in place. Figure 13a,d display the relative change of position of
the signal strength (relative normalized PSD, Equation (8)) maxima along the FUT over time. The
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unmodified sensing fiber exhibits a strong spatial drift of that signal maximum while within the
scattering dot FUT the signal maximum location stays the same over the entire measurement except for
a short intermittent period. Panels (b) and (e) of Figure 13 show the corresponding current maximum
signal strengths over time for the standard SMF and for the scattering dot FUT, respectively.

Figure 13c,f depict the signal strength over time in one fixed single sensor position within the
power cable for the unmodified FUT and for the modified FUT, respectively. Figure 13f demonstrates
that the signal strength in the range bin of the scattering dot sensor with the signal maximum remains
more or less stable (except for short period in the middle of the measurement), while the corresponding
signal strength in the unmodified sensor (Figure 13c) drifts towards noise levels over time at the end
of the measurement.

The above listed insights from experiments support our claim, that the use of a sensing fiber
structuring with scattering dots significantly reduces the effect of sensitivity fading. With a more or
less fixed position of the sensitivity maximum in the middle of each scattering dot interferometer,
spatial averaging for signal refinement [14] is not necessary to evaluate the C-OTDR signal in the
corresponding resolution cell. Concluding the results, we show that our scattering dots offer an
increase and stabilized spatial localization of dynamic strain events when compared to the plain fiber
under test.

6.5. Sensitivity Boost at Long Sensing Distances

In DAS/DVS an increased sensing range is highly desired for many applications, e.g., for subsea
power cable monitoring [55,61,62,69]. At large distances sensitivity may be raised by increasing
backscatter intensity. Currently, many works focus on enhancing the backscatter by use of continuous
gratings [38–40]. Also experiments with range-optimized fiber configurations combining low-loss
fiber with high scattering fiber have recently been published [69]. Very recently, the approach to use of
fs-inscribed reflectors in ULL fiber to attain large sensing ranges via localized enhanced backscatter
has been described [55]. However, DVS performance results are lacking. Here, we demonstrate that
the enhanced backscatter from our scattering dots leads to an increase in local DVS sensitivity at a very
long sensing distance. The local dynamic range of the sensor is also increased which leads to a better
sensing performance.

At large sensing distances where available optical power is low, sensitivity can thus be recovered
by the use of the scattering dots which increase the backscatter intensity. In order to demonstrate this,
we performed another set of measurements analogous to those described in the previous Section 6.4 but
for a sensing distance of 80 km. To that end, a lead-in fiber composed of 50 km ULL and 30 km standard
SMF was utilized. The pulse repetition frequency was again set to 1 kHz. During the measurements
here, the shaker introduced vibrations of frequency f = 25 Hz in the power cable. Figure 14 shows the
resultant signal strength (corresponding to Equation (8) but for a base frequency of 25 Hz) for the case
without any scattering dots in (a) and for the scattering dot case in (b), respectively.
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Figure 14. Normalized PSD sum (Equation (8)) at excitation frequency f = 25 Hz and its harmonics at
a measurement distance of more than 80 km. (a) for unmodified standard SMF; (b) for the modified
sensing fiber with inscribed scattering dots. Note the different scales of the color coding.

It is obvious, that without the backscatter inscrease by the dots, the signal can hardly be made
out at all, as the signal strength levels fluctuate close to the background noise levels. In contrast,
introducing the pair of scattering dot in our fiber configuration raises the signal strength and contrast
significantly. The time interval of excitation can be determined with good precision, and signal levels
show quite stable behavior over time.

This demonstrates that DVS sensitivity can be boosted when the modified scattering dot fiber is
utilized at large sensing distances.

In order to maximize the sensing range of the presented method when using long ranges of
dot-structured sensing fiber, the idea put forward in [55] to inscribe dots/ reflectors into ULL fiber
should be followed. In fact, in more application-oriented research in the context of power cable
monitoring we employed a DAS/DVS sensing cable manufactured on the basis of Corning ULL fiber
with inscribed scattering dots intended for use over large sensing ranges. The results will be published
in the future.

7. Conclusions/Summary

We have demonstrated the key characteristics and sensory benefits of equally-spaced fs-inscribed
identical strongly scattering dots from a viewpoint of distributed fiber optic sensing based on C-OTDR.
To our knowledge, this is the first time, this kind of sensing fiber structuring is investigated with
full-detail, highlighting different aspects that are highly relevant for practical application.

We have demonstrated that employing a scattering dot fiber for use with conventional C-OTDR
improves sensitivity to vibrations and reduces fading effects. Also, the detection of sub-Hertz vibrations
is enabled. Furthermore, we could show that the use of these scatterers can enhance the possible
sensing range. The feasibility to monitor and quantify monotonous temperature gradients in real
time simultaneous to vibration detection in a single sensor fiber using our approach and traditional
C-OTDR was also shown under certain conditions.

The regularization of the transfer function was demonstrated via mapping it via a continuously
applied temperature increase. This increase could in turn be quantified due to a quasi-linear response
of the sensor to temperature changes at least on the scale of full modulation periods. In this paper, we
have not systematically investigated the sensor’s response to vibrations of varying amplitude in order
to evaluate its linearity. This will be done in future work.

We could also not fully treat all questions that necessarily arise when fiber modifications resulting
in enhanced backscatter are used, like the additionally introduced attenuation and its impact on
sensing range. The limited number of scattering dots in our investigated sensing fiber resulted in no
distinguishable extra attenuation. Nonetheless, our method is also meant for application over large
sensing ranges. The number of scatterers necessary would be quite large if a spatially continuously
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structured sensing fiber of the order of tens of kilometers was to be utilized. This would result in
significant losses along the fiber, though the reduced optical power at a certain sensing distance should
to some degree be compensated for by the increased local backscatter. This issue will be further
investigated in the future. Possible approaches to mitigate attenuation problems with structured
fiber are already being investigated by several groups, like the use of special fibers, e.g., with larger
numerical aperture. The scattering dots could also be inscribed in special ultra low loss fiber as was
proposed in [55].

The method presented here of using dot-structured sensor fiber can in general improve the
performance of DAS/DVS systems based on not only tradional C-OTDR but also on other C-OTDR
schemes with more complex interrogation, detection or demodulation schemes. State-of-the-art
DAS/DVS interrogators with phase demodulation capability could still benefit from the regularization
of the transfer function and phase response. The mitigation of fading as well as the possibility to
enhance local backscatter and this way to recover sensitivity at larger sensing distances is advantageous
irrespective of the employed interrogation/ demodulation scheme.

It should be noted however, that for sensing methods based on correlation analysis of power
signatures at different interrogation wavelengths like, e.g., in [22,26], such a periodic structuring with
strongly scattering dots would most likely have a negative impact on sensing performance, since
a corresponding efficient cross-correlation analysis relies on non-periodic backscatter profiles and
benefits from the uniqueness of power signatures resulting from the random distribution of scattering
centers in optical fibers.
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Abbreviations

The following abbreviations are used in this manuscript:

C-OTDR coherent optical time domain reflectometry
DVS distributed vibration sensing
DAS distributed acoustic sensing
DTS distributed temperature sensing
DTGS distributed temperature gradient sensing
FBG fiber Bragg grating
OFDR optical frequency domain reflectometry
SMF single mode fiber
FFT fast Fourier transform
STFT short time Fourier transform
PSD power spectral density
ULL ultra low loss
FUT fiber under test
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