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Abstract

Colorectal cancer (CRC) is the second most common cause of cancer mortality, with mismatch repair proficient (pMMR)
and/or microsatellite stable (MSS) CRC making up more than 80% of metastatic CRC. Programmed death-ligand 1 (PD-
L1) and programmed death 1 (PD-1) immune checkpoint inhibitors (ICIs) are approved as monotherapy in many cancers
including a subset of advanced or metastatic colorectal cancer (CRC) with deficiency in mismatch repair (AIMMR) and/
or high microsatellite instability (MSI-H). However, proficient mismatch repair and microsatellite stable (pMMR/MSS)
cold CRCs have not shown clinical response to ICIs alone. To potentiate the anti-tumor response of PD-L1/PD-1 inhibitors
in patients with MSS cold cancer, combination strategies currently being investigated include dual ICI, and PD-L1/PD-1
inhibitors in combination with chemotherapy, radiotherapy, vascular endothelial growth factor (VEGF) /VEGF receptor
(VEGFR) inhibitors, mitogen-activated protein kinase (MEK) inhibitors, and signal transducer and activation of transcrip-
tion 3 (STAT3) inhibitors. This paper will review the mechanisms of PD-1/PD-L1 ICI resistance in pMMR/MSS CRC and
potential combination strategies to overcome this resistance, summarize the published clinical experience with different
combination therapies, and make recommendations for future avenues of research.
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OR Objective response
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PD-1 Programmed death 1

PD-L1 Programmed death-ligand 1
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atellite stable

PR Partial response

STAT3 Signal transducer and activator of tran-
scription 3

TAM Tumor-associated macrophage
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TIL Tumor-infiltrating lymphocyte

TMB Tumor mutational burden

TME Tumor microenvironment

TPI Tipiracil

Treg Regulatory T cells

VEGF Vascular endothelial growth factor

VEGFR Vascular endothelial growth factor
receptor

Introduction

The development of immunotherapeutic drugs has led to
significant improvements in overall and progression-free
survival for many patients with cancer [1-6]. For colorec-
tal cancer (CRC) in particular, immunotherapy has dem-
onstrated significant benefit in the metastatic setting for a
subset of patients [3, 4, 6, 7]. Programmed death 1 (PD-1)
is an immune checkpoint receptor mainly expressed in T
cells, B cells, natural killer cells (NKs), and myeloid-derived
suppressor cells (MDSCs) [8—12]. It binds to its ligands,
programmed death-ligand 1 and 2 (PD-L1/2), which are
expressed on antigen presenting cells and cancerous cells
[10-13]. The interaction between PD-1 and PD-L1/2 induces
T cell exhaustion, inhibits T cell activation and cytotoxic
activity, and transforms T effector cells to regulatory T cells
(Treg) [10-13]. As such, blockade of the PD-1/PD-L1/2
pathway can enhance T cell anti-tumor activity and thereby
immune control and killing abilities against cancerous
cells. The introduction of immunotherapy with immune
checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1 has
revolutionized management of certain cancers, transform-
ing short-term responses into durable clinical benefits [4,
5, 13, 14]. However, tumors that do not elicit an immune
response, so called ‘cold’ tumors, exhibit resistance to this
strategy [6, 7, 13, 15, 16]. Many CRCs have a cold phe-
notype [17]. In 2017, the US Food and Drug Administra-
tion (FDA) approved PD-1 immune checkpoint inhibitors
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pembrolizumab and nivolumab for patients with unresect-
able or metastatic, mismatch repair deficient (AMMR) and
microsatellite instability high (MSI-H) solid tumors who
have failed first-line therapy [18, 19]. However, patients with
dMMR and MSI-H metastatic CRC (mCRC) comprise only
15% of CRC cases, while the more common mismatch repair
proficient (p)MMR) and microsatellite stable (MSS) CRC do
not respond to ICIs [20]. New strategies are urgently needed
for cold mCRCs.

To overcome the hyporesponsiveness to PD-1/PD-L1
inhibitors, recent preclinical studies and clinical trials
have demonstrated combination strategies to potentiate the
effectiveness of anti-PD-1 and anti-PD-L1 immunotherapy
in patients with cold CRC. The FDA has approved com-
bination use of PD-1/PD-L1 inhibitors and other therapy/
inhibitors for treatment of patients with cold metastatic can-
cer. For example, combination of cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) inhibitor, tremelimumab,
and PD-1 inhibitor, durvalumab, was approved for treating
patients with unresectable hepatocellular carcinoma in 2022
[21, 22]. This review will discuss hyporesponse mechanisms
and challenges of PD-1/PD-L1 inhibitors in pMMR/MSS
cold cancer and explore potential combination strategies to
overcome hyporesponsiveness. Further, we discuss clinical
experience with combination therapy and recommendations
for future research using CRC as an example.

Basic mechanisms of hyporesponse
in pMMR/MSS cancer

Carcinogenesis of pMMR/ MSS cancer vs. dMMR/
MSI-H cancer

Genomic instability is a trademark of tumor cells. There
are two different types of genomic instability: (1) chromo-
somal instability, which is the consequence of the loss or
gain of chromosomes or large chromosomal fragments and
is associated with the majority of CRCs, and (2) microsatel-
lite instability (MSI) which is observed in a small fraction
of CRCs. [23] Microsatellites are repeated DNA sequences
widely dispersed throughout the genome. [24] These repeti-
tive regions are generally associated with higher mutation
rates, and replication errors are corrected by the mismatch
repair (MMR) system. [25] If there is a deficiency of the
MMR system, microsatellites are more prone to replication
errors, resulting in MSI. [26] Tumors with AMMR are more
likely to be MSI-high (AIMMR/MSI-H), while tumor with all
tested MMR proteins intact are expected to be MSS or MSI-
low (pMMR/MSS). Five microsatellite markers BAT-25,
BAT-26, D2S123, D5S346, and D17S250 have been identi-
fied; [27] the MSI status of a patient is categorized based
on the number of microsatellite markers that demonstrate
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instability: MSI-H if at least two microsatellite markers
show instability; MSI-L (low-frequency MSI) if only one
marker show instability; and microsatellite stable (MSS)
if there is no instability present among the markers [28].
dMMR/MSI-H CRC comprises 15% of all CRC cases [20].
Growing clinical studies have demonstrated that anti-PD-1
and anti-PD-L1 immunotherapy have positive responses in
dMMR/MSI-H cancers but no objective responses in cold
pPMMR/MSS CRC [6, 7, 15]. There remains a substantial
need for novel therapeutic approaches and treatment strate-
gies in metastatic pMMR/MSS CRC.

Immunogenic features of MSS vs. MSI-H CRC

dMMR/MSI-H CRCs generally have a higher tumor muta-
tional burden (TMB). TMB directly correlates to tumor’s
ability to harbor a plethora of neoantigens [29]. Immuno-
genic neoantigens, in turn, increase anti-tumor immunity
by presenting on major-histocompatibility-complex class I
molecules (MHC-1) for T cell recognition. The increased
neoantigen in AIMMR/MSI-H CRCs results in greater abun-
dance of tumor-infiltrating lymphocytes (TIL) and mem-
ory T cells; they are described as hot tumors [30, 31]. By
comparison, MSS tumors generally produce self-antigens
that fail to activate immune response against tumor cells,
and increased activation of oncogenic signaling pathways
upsurges immunosuppressive cells and cytokines [32]. The

Table 1 Anti-PD-1 and PD-L1 Abs

loss of peptides involved in antigen processing further damp-
ens the immunogenicity of MSS tumors [33]. As a result,
MSS cancer is associated with absent or inadequate T cell
infiltration and an immunosuppressive tumor microenviron-
ment (TME); they are described as cold tumors [34]. An
escape from immune surveillance and immune attack leads
to the absence of clinical response to PD-1/PD-L1 blockades
in pMMR/MSS tumors compared to IMMR/MSI-H tumors.

PD-1 Inhibitors and PD-L1 Inhibitors in clinical
application

To date, many anti-PD-1 antibodies (Abs) and anti-PD-L1
Abs have been developed to block PD-1/PD-L1 signaling.
Table 1 lists Abs against PD-1 and PD-L1. Anti-PD-1 Abs
(nivolumab, pembrolizumab, and cemiplimab) and anti-PD-
L1 Abs (atezolizumab, avelumab, and durvalumab) have
been approved by FDA for some solid tumor and hemato-
logic cancers. Nivolumab (Opdivo) is the first human IgG4
monoclonal antibody (mAb) against PD-1 approved by
the FDA based on the results from CheckMate-037 with
advance melanoma patients [35, 36]. Its indications were
expanded to squamous non-small-cell lung cancer (NSCLC)
and advanced renal cell carcinoma (RCC) in 2015, [36]
Hodgkin’s lymphoma [36] and relapsed/refractory meta-
static squamous cell cancer of head and neck (SCCHN) in
2016, [36] and small-cell lung cancer (SCLC) patients in

Name Targets Trade or brand name Antibody class Company Phase
Nivolumab PD-1  OPDIVO, BMS-936558, MDX1106  Humanized IgG4 Bristol-Meyers Squibb LI, I
Pembrolizumab PD-1 Keytruda, MK-3475, Lambrolizumab Humanized IgG4 Merck I, Ib, ITII
Cemiplimab PD-1 Libtayo, REGN2810 Humanized IgG4 Sanofi il
Camrelizumab  PD-1 (AiRuiKa)(SHR-1210) Humanized IgG4 Jiangsu HengRui Medicine Co., Ltd

Pidilizumab PD-1 CT-011 Humanized IgG1k Medivation II
AMP-224 PD-1 Recombinant fusion pro- AstraZeneca I

MEDIO680 PD-1
Spartalizumab  PD-1
Tislelizumab PD-1
Balstilimab PD-1

Atezolizumab  PD- L1
Avelumab PD-L1
Durvalumab PD-L1
BMS-936559  PD- L1
Envafolimab PD-L1
CK-301 PD- L1
CS-1001 PD- L1
SHR-1316 PD- L1
CBT-502 PD- L1
BGB-A333 PD- L1

AMP-514

PDRO01

BGB-A317

AGEN2034

Tecentriq, MPDL3280A
Bavencio, MSB0010718C
Imfinzi, MEDI4736
MDX-1105

KN 035 and ASC 22

Cosibelimab

HTI-1088
TQB-2450

tein with PD-L2 Fc

Humanized IgG4x Amplimmune; AstraZeneca; Medlmmune 1
Humanized IgG4 Novartis I
Humanized 1gG4 Novartis L II, 111
Humanized 1gG4 Agenus L 1T
Humanized IgG1 Roche la. I, IIT
Humanized IgG1 Merck, Pfizer Ib, II
Humanized IgG1 AstraZeneca 11, III
Humanized 1gG4 Bristol-Myers Squibb 1
Human IgGl1 Alphamab Oncology 11, I
Humanized IgG1 Checkpoint Therapeutics I
Humanized IgG CStone Pharmaceuticals L II, III
Humanized IgG4 Hengrui Therapeutics IB, III
Humanized IgG1 Chia Tai TianQing (CTTQ) I
Humanized IgG1-variant BeiGene L1II
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2018 [36]. The FDA approved the anti-PD-1 mAb pem-
brolizumab and nivolumab as the second-line treatment for
patients with AIMMR/MSI-H mCRC in 2017 and approved
pembrolizumab as the first-line treatment of patients with
dMMR/MSI-H mCRC in June 2020 [35, 36].

Most Abs are genetically engineered for high binding
specificity and low off-target adverse effects (AEs) [14, 37,
38]. In general, PD-1/PD-L1 blockades exhibit immune-
related AEs including colitis and hepatitis, as well as neu-
tropenia, diarrhea, fatigue, stomatitis, and nausea [6, 15,
38-41]. ICIs have fewer severe AEs than traditional chemo-
therapy [16, 39].

So far, anti-PD-1 and anti-PD-L1 mAbD therapies confer
significant clinic benefit only in specific patient populations.
Specifically, there are almost no objective responses to anti-
PD-1 and anti-PD-L1 therapies observed for patients with
‘cold’ tumors such as MSS mCRC. Combatting resistance
mechanisms or hyporesponse of the anti-PD-1/PD-L1 ther-
apy remains a challenge.

New strategies to overcome
hyporesponsiveness: combination
treatment

The low immunogenic properties of MSS cancer lead to
resistance to PD-L1/PD-1 blockade. To enhance clinical
response to the PD-1/PD-L1 inhibitors in pMMR/MSS can-
cer, one promising strategy is to combine with other anti-
tumor agents that target different pathways and increase the
immunogenicity of the TME, converting cold tumors to hot
tumors. It has been demonstrated that inhibition of CTLA-4,
vascular endothelial growth factor (VEGF)/VEGF receptor
(VEGFR), mitogen-activated protein kinase (MEK), and
signal transducer and activator of transcription 3 (STAT3),
or treatment with cytotoxic chemotherapy and radiotherapy
increases tumor neoantigens, upregulates MHC-1 expres-
sion, enhances dendritic cell (DC) antigen presentation and
the release of proinflammatory cytokines, increases the
activation, infiltration, and killing activities of T cells, and
decreases immunosuppressive cells and cytokines. [13, 16,
42-56] A cold p MMR/MSS tumor is subsequently converted
into a hot tumor, which can then be targeted by PD-1/PD-L1
blockades to confer anti-tumor immunity. This synergistic
anti-tumor effect is a promising avenue of study, and clini-
cal trials investigating these approaches are summarized in
Table 2.

Combination of CTLA-4 and PD-1/PD-L1 inhibitors
CTLA-4 is an immunoglobulin cell surface receptor consti-

tutively expressed on FoxP3 4 Treg as well as conventional T
cells following activation by T cell receptor (TCR) signaling

@ Springer

[43, 84, 85]. CTLA-4 is a negative T cell regulator struc-
turally similar to the second activation receptor CD28 and
exhibits shared binding to B7 ligands on antigen presenting
cells (APC) [51]. In the TME, the higher affinity of CTLA-4
for B7 ligands outcompetes the co-stimulatory CD28 recep-
tor and depletes CD28 present in the immune synapse [85,
86]. The loss of the second activation signal (B7-CD28)
leads to functionally inactivated and hyporesponsive T cells
[87]. Hence, CTLA-4 inhibitors directly reduce the com-
petition between CTLA-4 and CD28 for B7 ligands, pro-
moting naive T cell priming at the draining lymph nodes
[44]. The increased CD28-mediated co-stimulation leads
to increased effector T cell proliferation and function [43].
CTLA-4 inhibitors have also been shown to decrease Treg-
mediated immunosuppression by selectively depleting Treg
in the TME [42]. Ipilimumab and tremelimumab are anti-
CTLA-4 Abs approved by the FDA [36, 88].

PD-1 and CTLA-4 function on different subsets of T
cells, and on T cells at distinct locations and timing during
the cancer-immune response [89, 90]. PD-1 is involved in
exhaustion mechanisms in the TME and acts in later stages,
while CTLA-4 is primarily involved in the lymph nodes and
acts early [51, 91]. As such, the dual ICI treatment with anti-
PD-1/anti-PD-L1 and anti-CTLA-4 has shown to reverse the
upregulation of other immune checkpoints on T cells, which
are induced as a compensatory effect by either drug alone
[92]. Furthermore, recent studies have found additional anti-
tumor effects specific to the dual combination. The combi-
nation prevented CD8 + T cell exhaustion and maintained
CD8+T cells in a responsive state with robust killing abili-
ties against tumor cells [93]. This leads to the terminal dif-
ferentiation of activated effector CD8 + T cells. The dual
inhibition also led to a combination-specific increase in T
helper type 1 (Th1) cells [93]. Th1 cells mediated anti-tumor
activity through increasing CD8 + T cell infiltration, enhanc-
ing antibody responses, and exhibiting Th1 specific cytotox-
icity against tumor cells [93, 94]. Inhibitors of CTLA-4 such
as ipilimumab and tremelimumab are the first ICIs used for
treating cancer patients. Currently, the FDA approved the
combination treatment with nivolumab and ipilimumab for
dMMR/MSI-H mCRC patients who failed in chemotherapy
[95]. Clinical trials of the dual ICI in cold pMMR/MSS CRC
are ongoing.

A phase II randomized clinical trial (NCT02870920)
studying anti-PD-1 (durvalumab) and anti-CTLA-4 (treme-
limumab) combination in patients with pMMR/MSS
reported that the dual ICI achieves a prolonged median over-
all survival (mOS) of 6.6 months in pMMR/MSS mCRC
patients, but without objective response (OR) and significant
improvement in median progression-free survival (mPFS)
[57, 96]. Further subgroup analyses showed that the com-
bination increased overall survival (OS) in patients with
TMB higher than 28 months, and patients with consensus
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Table 2 (continued)

References

Median OS, mo Potential effi-

Intervention/time frame # of Pts (# of RR,n (%) DCR,n (%) Median PFS,
(95% CI)

Status

Study design

cacy biomarker

mo (95% CI)

pMMR /MSS

Pts)

[82]

2.8 (1.2-2.8) 6.0 (2.8-9.6)

0 3(20)

15(4)

Pembrolizumab + stereo-

Completed

Phase I single

NCT02298946

tactic body radiation/
cyclophosphamide

[83]

7(17.5)

3(7.5)

40 (40)

Nivolumab + ipili-

Recruiting

Phase II single

NCT03104439

mumab + radiation

#QOutcome for pMMR/MSS colorectal cancer patients analyzed

"Due to insufficient or unevaluable tumor samples

#_number; CMS2—consensus molecular subtype-2; CPS—combined positive score; CTLA-4—cytotoxic T Lymphocyte Antigen 4; DCR—disease control rate; IC—Immunoscore; MEK-mitogen-
activated protein kinase ; MSS—microsatellite stable; ORR-objective response rate; OS—overall survival; epsilon PD-1-programmed death 1; PD-L1-programmed-death-ligand 1; PFS—pro-

gression-free survival; PI3K- phosphatidylinositol 3-kinases; pMMR-mismatch repair proficient; POLE-DNA polymerase; Pts—Patients; STAT3—-signal transducer and activator of transcription

3; TAM-tumor-associated macrophages; TMB-H-tumor mutational burden high; TIL-tumor-infiltrating lymphocyte; VEGF-vascular endothelial growth factor; VEGFR-vascular endothelial

growth factor receptor

molecular subtypes (CMS) 2 had improved OS compared
to those with CMS 4 [57, 96-98]. The CMS classification
system stratifies colorectal cancer into four subtypes based
on gene expression profiles: 1) CMS1 is immunogenic, asso-
ciated with MSI-H; 2) CMS2 is epithelial and canonical; 3)
CMS3 is epithelial and metabolic; and 4) CMS4 is mesen-
chymal [99]. The available clinical study highlights a thera-
peutic potential for a subset of pMMR/MSS patients and
TMB and CMS might be useful stratification biomarkers.

Combination of VEGF/VEGFR and PD-1/PD-L1
inhibitors

Scientific Rationale of VEGF/FEGFR and PD-1/PD-L1
inhibitors

VEGF/VEGFR signaling plays a vital role in forming the
immune-suppressive TME in CRC through indirect and
direct pathways (Fig. 1). Overexpression of VEGF/VEGFR
signal promotes pathologic angiogenesis, forming highly
permeable neovasculature in tumors [100]. The resultant
abnormal tumor neovasculature increases fluid accumula-
tion and interstitial fluid pressure in the TME, which acts as
a direct barrier against cytotoxic T lymphocyte (CTL) infil-
tration into tumor tissue [101, 102]. New vessels also dif-
ferentially express important regulatory molecules involved
in anti-tumor immunity. Adhesion molecule downregulation
impairs the ability of T cells to move through the vessel
walls toward the TME [103, 104]. On the other hand, vas-
cular endothelial cells within the tumor vasculature over-
express PD-L1 and Fas ligand (FasL), which induce T cell
exhaustion/suppression and selectively kill CTLs, resulting
in the predominant infiltration of Treg [105-107]. Further-
more, angiogenesis-mediated hypoxia in the TME increases
the expression of chemokines which enhance Treg recruit-
ment and promotes the polarization of tumor-associated
macrophages (TAM) to M2-like immunosuppressive phe-
notype [108, 109]. Beyond angiogenesis, VEGF/VEGFR
signaling induces immune suppression by directly acting on
immune cells (Fig. 1). VEGF-VEGFR transduction inhib-
its differentiation, maturation, and antigen presentation of
DCs and increases PD-L1 expression on DCs [45, 46, 110,
111]. This leads to reduced naive CD8+T cell priming
and decreased maintenance of cytotoxic responses against
tumors [112]. VEGF also directly inhibits the differentia-
tion of progenitor cells into conventional T cells, decreas-
ing T cell proliferation and cytotoxicity and prompting PD-
L1-driven T cell exhaustion [47, 48]. Moreover, it increases
the abundance of suppressive or pro-tumor cells such as
Treg, myeloid-derived suppressor cell (MDSC), and M2-like
immunosuppressive TAM and drives T cell exhaustion [101,
113-115]. Therefore, the inhibition of VEGF/VEGFR sign-
aling could synergistically reduce immune escape to increase
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Fig. 1 Schematic overview of the role of VEGF in the immunosuppression of the tumor microenvironment (TME)

the effectiveness of anti-PD-L1/PD-1 inhibitors in patients
with cold CRC. Both anti-VEGF therapy and VEGFR tyros-
ine kinase inhibitors (TKIs) function to inhibit the VEGF
signaling pathway. Combination of VEGFR inhibitors (such
as regorafenib, lenvatinib, apatinib, and fruquintinib) and
PD-1/PD-L1 blockades significantly inhibited angiogenesis
and tumor growth in small animal models [116, 117]. The
combinations also decreased Treg, shifted macrophages
toward M1-like TAM polarization and increased secretion
of IFN-y (an important cytokine involved in tumor.

Tumor cells increase the release of VEGF, which binds
to its receptor (VEGFR) to induce angiogenesis. Angiogen-
esis in turn increases interstitial pressure and hypoxia at the
tumor site, which inhibits cytotoxic T cells (CTL) and pro-
motes regulatory T cell (Treg) infiltration. The neovascu-
lature formed via angiogenesis also has higher expression
of immunosuppressive molecules PD-L1 and FasL on the
vascular endothelial cells (VECs) and lower expression of
adhesion molecules. FasL selectively induces CTL apopto-
sis and PD-L1 inactivates T cells within the tumor vascu-
lature. VEGF/VEGEFR also directly modulates immune cell
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abundance and function. The binding of VEGF to VEGFR
inhibits the differentiation and maturation of DCs, which
results in reduced T cell activation in the priming phase. It
also promotes the proliferation and activation of Tregs and
myeloid-derived suppressor cells (MDSCs) and enhances the
polarization of tumor-associated macrophages (TAMs) to an
M2 phenotype. These immunoregulatory effects reduce CTL
function. VEGF also increases the expression TOX in CTL,
which in turn upregulates its PD-1 expression and promotes
immune exhaustion. Drugs that inhibit VEGF/VEGEFR sign-
aling inhibit VEGF/VEGFR-mediated immunosuppression
to increase the abundance and function of CTL at the tumor
site. Drugs that inhibit PD-L1/PD-1 signaling would block
the binding of PD-L1 on CTL to PD-1 on tumor cells and
decrease Treg proliferation and function. In combination,
anti-VEGF/VEGEFR and anti-PD-L1/PD-1 induces a syner-
gistic anti-tumor response immunosurveillance) and over-
came PD-L1-induced T cell suppression [118-122]. In fact,
positive therapeutic activity has been observed from dual
blocking the VEGF/ VEGFR and PD-1/PD-L1 signaling in
multiple tumor types [123—127].
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Combination treatment with PD-L1/PD-1 blockade
and anti-VEGF agents

The combination of atezolizumab (anti-PD-L1 Ab) and
bevacizumab (VEGF inhibitor) was studied in patients
with MSI-H mCRC pretreated with chemotherapy
(NCTO01633970) and resulted in an objective response rate
(ORR) of 30% and a disease control rate of 90%. [128] One
clinical study also investigated the efficacy of atezolizumab
in combination with bevacizumab and FOLFOX (chemo-
therapy) in patients with mCRC irrespective of microsatel-
lite status [59]. An ORR of 52% was observed in patients
receiving FOLFOX plus bevacizumab and atezolizumab
with an mPFS of 14.1 months without unexpected safety
signals [59]. The combination significantly elevated tumor-
infiltrating CD8 + T cells and PD-L1 expression. Unfortu-
nately, a phase 2 trial studying atezolizumab plus bevaci-
zumab in patients with chemotherapy-resistant, MSI-like
CRC (NCT02982694) was terminated because the efficacy
in the MSS subgroup (MSI like) did not meet the expecta-
tion [129]. Subsequently, clinical trials have been focused
on triple combination of PD-L1/PD-1 blockade, anti-VEGF
agents, and chemotherapy.

AtezoTRIBE (NCT03721653) is a multicenter phase II
randomized study for the combination of atezolizumab,
bevacizumab, and chemotherapy (FOLFOIXIR) as first-
line treatment in patients with unresectable mCRC with-
out prior treatment with chemotherapy [61]. Results show
that the combination treatment with atezolizumab did not
raise unexpected safety concerns, was well-tolerated and
improved PFS. High TMB and high Immunoscore-Immune-
Checkpoint (Immunoscore-IC) tumors had better PFS [61].

BACCI (NCT02873195) is a multicenter randomized
phase II placebo-controlled clinical trial comparing capecit-
abine (chemotherapy) and bevacizumab with or without
atezolizumab in patients with refractory MSS mCRC [123].
The triple combination resulted in significantly longer mPFS
compared to the controlled group in MSS only patients, but
did not improve OS (10.55 m v.s 10.61 m in placebo con-
trol). The patients without liver metastasis had a higher ORR
and greater OS compared with those with liver metastasis,
exhibiting synergistic clinical benefits with PD-L1 inhibitor
and VEGEF inhibition [123].

NCT03396926 is a recent phase II clinical trial evaluating
the safety and efficacy of combination capecitabine, bevaci-
zumab and pembrolizumab (anti-PD-1) in locally advanced
and metastatic unresectable MSS mCRC patients [60, 130].
To date, the treatment was well-tolerated, and no unexpected
safety concerns were reported. About one third of patients
had PFS > 6 m, but the ORR was only 5%, not meeting the
prespecified target of > = 15% [130]. However, this study did
not include a control group; therefore, it is difficult to draw
conclusion on the efficacy of the combination.

Overall, anti-PD-1, atezolizumab, or pembrolizumab,
in combination with bevacizumab and chemotherapy, has
demonstrated promising results across multiple clinical stud-
ies. Exploratory analysis within studies demonstrated that
besides MMR status, TMB, Immunoscore-IC, and the pres-
ence of liver metastasis are important predictors of treatment
outcome. AtezolRIBE demonstrated improved clinical ben-
efit in patients with high TMB and high Immunoscore-IC,
both of which are associated with MSI-H tumor [131, 132].
Cold tumors with low TMB and/or low immunoscore-1C
remain a challenge. Pre-screening with these biomarkers or
features is necessary to predict clinical outcome of the triple
combination treatment.

Combination with PD-L1/PD-1 blockade and VEGFR
inhibitors

VEGEFR inhibitors such as regorafenib, lenvatinib, apatinib,
and fruquintinib are studied in combination with PD-L1/
PD-1 blockade in patients with pMMR/MSS CRC. The effi-
cacy varied across clinical trials and retrospective studies.
Most clinical trials studied the combination of regorafenib
and anti-PD-1 mAbs (nivolumab, toripalimab, and pembroli-
zumab) since regorafenib could enhance T cell activation
and increase M1/M2 macrophage ratio compared to inhibi-
tors selective for VEGFR-2 [64, 133].

REGONIVO (NCT03406871, EPOC1603) is a phase
Ib/I1 trial to evaluate regorafenib in combination with anti-
PD-1 antibodies nivolumab and toripalimab, respectively,
for patients with advanced or metastatic pMMR CRC refrac-
tory or intolerant to standard chemotherapy [63]. The results
show that 80 mg of regorafenib is optimal in combination
with nivolumab, with higher tolerances and fewer toxicities.
The study also suggests additional clinical benefits with the
combination therapy compared to single agent anti-PD-1,
particularly in patients without liver metastasis, CPS < 1, and
low TMB [63]. Following the promising findings from the
REGONIVO study, the combination of regorafenib and PD-1
inhibitors has been considered as a treatment for refractory
pPMMR/MSS mCRC patients on a compassionate basis.
Two retrospective studies of combination of regorafenib and
PD-1 inhibitors (nivolumab or pembrolizumab conducted
in the USA, and pembrolizumab, camrelizumab, sintili-
mab, and toripalimab in China) were conducted in patients
with MSS mCRC. No objective responses were reported in
patients with the combination therapy, differing from the
result of the REGONIVO trial [69, 70]. Consistent with the
REGONIVO trial, both retrospective studies suggest that
patients with liver metastases do worse despite treatment
with regorafenib and anti-PD-1 in pMMR/MSS mCRC. [63,
69, 70] The results of clinical and retrospective studies of
regorafenib in combination with anti-PD-1Abs suggest that
future investigations of patients with pMMR/MSS mCRC
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might consider analyzing patients with liver metastases sep-
arately, and larger randomized control studies are warranted.

Recent clinical studies with similar combination strate-
gies continued to confer variable results. NCT03946917 is
a phase 1b/11 study that demonstrated promising results in
a subset of unselected pMMR/MSS mCRC patients treated
with regorafenib and toripalimab (anti-PD-1) who had pro-
gressed or were intolerant to at least 2 prior line of chem-
otherapy [134]. NCT03712943 is a single-arm phase I of
regorafenib plus nivolumab in patients with pMMR mCRC
[135]. Fatigue and palmar-plantar erythrodysesthesia, which
are frequently associated with the use of regorafenib, were
the most common adverse events. Dose limiting toxicity
(DLT) was observed. There was no correlation between
PD-L1 expression and PFS or OS, but low frequency of
Tregs resulted in prolonged PFS. In a multicenter phase 2
trial (NCT04126733) studying combination, regorafenib
and nivolumab in patients with pMMR/MSS mCRC dem-
onstrated an ORR of 7%. All patients without liver metasta-
sis responded. Better clinical outcomes may be linked with
high expression of pre-existing immune sensitivity biomark-
ers in tumor samples and lower expression of angiogenetic
biomarkers in peripheral blood samples [64]. While treat-
ment outcomes from the combination of regorafenib with
anti-PD-1 remain inconsistent, potential benefit may exist
in subsets of p MMR/MSS CRC patients.

REGOMUNE (NCT03475953) is the first phase II study
that evaluated the efficacy and safety of regorafenib in com-
bination with avelumab (anti-PD-L1) in patients with MSS
advanced or metastatic CRC refractory to at least one prior
standard therapy [65]. The combination treatment was well-
tolerated, and no unexpected adverse events were reported.
A significant increase in CD8+ T cell infiltration from base-
line was reported in the biomarker analysis comparing tumor
samples pre- and post-treatment. The patients with increased
CD8+ T cell infiltration had significantly better mPFS and
median OS [65]. In contrast to the preliminary biomarker
analysis reported in the REGONIVO study, no significant
differences in mPFS and median OS were observed in
patients with varying PD-L1 expression and TMB status.
However, regorafenib and avelumab combination has dem-
onstrated promising impacts on the TME of MSS mCRC
patients. The study also reported that high-levels of tumor-
infiltrating M2 macrophages prior to the treatment was sig-
nificantly associated with decreased PFS and OS, suggesting
the potential use of tumor-infiltrating M2 macrophage as a
predictor for the combination therapy [63, 65]. From the
results of the preliminary results, the ongoing REGOMUNE
study anticipates further investigation of regorafenib plus
anti-PD-1/anti-PD-L1 combination in pMMR/MSS mCRC
patients selecting for baseline TAM infiltration levels.

LEAP-005 (NCT03797326) is a recent phase II study
evaluating the effectiveness of pembrolizumab and
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lenvatinib (another oral multi-tyrosine kinase inhibitor of
VEGFR) in selected refractory solid tumors including the
pMMR/non-MSI-H metastatic and/or unresectable CRC
cohort [136]. Promising clinical benefits and a manageable
safety profile have been observed in patients with previously
treated advanced non-MSI-H/pMMR CRC. Currently, the
sample size has been expanded to 100 patients, and the
results are anticipated to provide a better understanding of
the combination’s effect on anti-tumor activity.

NCTO03912857 is a phase II trial of the anti-PD-1 mAb,
camrelizumab, in combination with apatinib (a selective
tyrosine kinase inhibitor for VEGFR-2) for the treatment
of advanced or metastatic MSS CRC refractory to two or
more prior lines of standard therapy. [68] Objective response
was not reported in the study and intolerable toxicity led to
treatment interruptions. In contrast, another study of cam-
relizumab in combination with apatinib in advanced CRC
patients unselected for microsatellite status shows that the
ORR in the CRC cohort was 30%. Disease was stable in
80%. Grade 3 and above treatment-related adverse events
were observed but manageable. [137] This contrast results
also highlighted the potential differences in immunogenicity
between MSS and MSI-H mCRC.

Despite the glimpse of a new treatment opportunity
for pMMR/MSS mCRC patients brought forward by the
REGONIVO study, the results were not replicated in other
clinical studies. Nonetheless, the studies suggest the poten-
tial use of CD8+ T cell infiltration and low-level TAM?2 as a
positive predictor for treatment efficacy of regorafenib plus
avelumab on the TME [65]. The use of regorafenib and anti-
PD-1 recently conferred promising effects as a third-line or
later treatment of advanced CRC, especially in patients with
resected primary lesions [71]. Thus, combination VEGFR
TKIs may open the use of PD-L1/PD-1 inhibitors beyond
patients with AIMMR/MSI-H mCRC.

Combination of MEK and PD-1/PD-L1 inhibitors

Mitogen-activated protein kinase (MAPK) cascades are uni-
versally conserved transduction pathways that permit extra-
cellular signals to regulate a range of complex physiological
cellular programs including cellular proliferation, develop-
ment, differentiation, migration, survival, and apoptosis
[138]. It is well-established that abnormalities in MAPK
signal transduction may dysregulate fundamental cellular
processes, resulting in cells that acquire the ability to grow
uncontrollably and evade apoptosis, leading to tumorigen-
esis and the progression of cancer [139]. MEK1/ 2 (MAPK
kinases) are the only established direct regulators of extra-
cellular signal-regulated kinase 1 (ERK1) and ERK2 and
the most well-characterized MAPKSs, therefore, play a cen-
tral role in the Ras-Raf-MEK-ERK cascade [138]. MEK1/2
inhibitors (MEKi) have received attention as a candidate
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for clinical use in tumors that depend on the ERK pathway
[140]. MEKi may also have effects on the immunogenicity
of the TME by acting on both tumor and immune cells [49,
50, 72, 141-143]. On tumor cells, MEK can downregulate
MHC-I expression [72]. MEKi decrease the secretion of
immunosuppressive factors such as VEGF, IL-1, and IL-8,
which decreases the recruitment of immunosuppressive cells
that inhibit anti-tumor immunity [49]. In addition to tumor
cells, MEKi decrease naive CD8 + T cell priming in the
lymph node by preventing MAPK regulation in TCR signal-
ing, while increasing CD8 + T cell infiltration into the TME
[50]. MEKi also reduce immunosuppressive cells MDSCs,
Tregs, M2-like TAMs, and B-regulatory cells (Breg), which
further enhances CD8 + T cell infiltration into the TME
[141-143]. Given the immunoinhibitory functions associ-
ated with MEK signaling, MEK inhibition could potentially
increase TME immunogenicity for the subsequent use of
anti-PD-1/anti-PD-L1.

NCTO01988896 is a phase Ib clinical study that evaluated
the efficacy of cobimetinib (a MEK inhibitor) and atezoli-
zumab in patients with solid tumors, 84 of whom have
mCRC [72]. The adverse events observed in the combination
treatment were consistent with clinical studies of atezoli-
zumab and cobimetinib monotherapies, but many patients
experienced intolerance, which resulted in dose reduction
or withdrawal. The objective response of the combination
failed to exceed the mPFS and mOS reported in anti-PD-1
monotherapy in MSS mCRC patients. The study suggests
that CD8 + T cell infiltration could play a role in tumor
response, but was insufficient to induce anti-tumor activity.

Similarly, another phase Ib clinical study (NCT02876224)
of atezolizumab and bevacizumab in combination with
cobimetinib (MEKi) was conducted in patients with mCRC
refractory to one or more lines of prior chemotherapy [144].
They found an ORR of 8%. In a multicenter phase III ran-
domized controlled trial (IMblaze370, NCT02788279)
evaluating atezolizumab with cobimetinib in patients with
(predominantly) MSS mCRC refractory to two or more lines
of chemotherapy, the results show similar OS between the
combination and atezolizumab monotherapy and similar
mPFS and ORR across all treatment cohorts [73]. No signifi-
cant differences were demonstrated in PFS and OS between
patients with MSS mCRC with different PD-L1 expression
and RAS mutation status. More grade 3—4 treatment-related
adverse events were reported compared to atezolizumab
monotherapy.

The addition of cobimetinib was insufficient to over-
come MSS mCRC resistance to atezolizumab. However,
potential synergistic activity between MEKi, anti-VEGF,
and anti-PD-L1 therapy was observed in the primary anal-
ysis of a clinical study described above. Although it is
difficult to draw conclusions as to whether the effects were
due to the addition of anti-VEGF and/or MEK{i, the lack

of therapeutic options available for patients with chemo-
refractory pMMR/MSS mCRC suggests that a three agent
combination strategy is worth exploring.

In addition to MAPK signaling, PI3K/AKT/mTOR
signaling is associated with cell survival, migration,
division, and other activities. A phase I/II clinical trial
(NCTO03711058) is currently studying the combination of
nivolumab with copanlisib (PI3K inhibitor) in relapsed/
refractory pMSS CRC [74].

Combination of STAT3 and PD-1/PD-L1 inhibitors

STAT3 is an intracellular signaling molecule and tran-
scription factor shown to regulate an array of specific tar-
get genes involved in key cellular processes [52]. Sustained
activation of STAT3 in tumor cells mediates carcinogen-
esis through tumor development and growth, angiogenesis,
and metastasis [52]. On the other hand, hyperactivation of
STAT3 in tumor and immune cells induces immunosup-
pression and immune evasion [52]. Activation of STAT3
in tumor cells stimulates the release of immunosuppres-
sive factors (e.g., IL-10, VEGF, PD-L1 and indoleamine
2,3-dioxygenase 1) while suppressing proinflammatory
cytokines and chemokines [53, 145—-147]. Released anti-
inflammatory factors in turn activate STAT3 in DCs to
prevent DC maturation [148]. With the decrease in anti-
gen presentation by DC, cytotoxic T cells and natural
killer cell activation is impeded, and tumor-specific T cell
responses are reduced. Therefore, STAT3 inhibition may
enhance the activity of anti-PD-L1/anti-PD-1 in patients
with MSS mCRC.

Napabucasin is a STAT3 inhibitor studied in combina-
tion with anti-PD-1 pembrolizumab in a multicenter phase
II clinical trial (NCT02851004) in patients with mCRC
refractory or intolerant to at least one regimen of standard
chemotherapy [75]. Adverse events associated with the com-
bination of napabucasin and pembrolizumab exhibited safety
profiles similar to those observed for either drug alone. The
greatest objective response was observed in patients with a
higher CPS, and objective response was correlated with an
increased TMB. Furthermore, the study found that consen-
sus molecular subtype-2 (CMS2) MSS tumors were more
likely to be unresponsive to the combination treatment,
while right-sided primary colon cancer was associated with
greater clinical benefit [75].

Although primary end point was not met in this clini-
cal trial, napabucasin with pembrolizumab showed greater
anti-tumor activity compared to both agents alone. Future
studies in a targeted population based on related biomark-
ers should be further investigated to identify the subset of
MSS CRC patients that may receive clinical benefits from
the combination therapy.
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Combination cytotoxic chemotherapy and PD-1/
PD-L1 inhibitors

Cytotoxic chemotherapy is a fundamental part of treatment
for patients with mCRC [149]. Currently, fluorouracil (5-FU)
and folinic acid (FA) in combination with oxaliplatin (FOL-
FOX) or irinotecan (FOLFIRI) is the standard chemotherapy
regimen for patients with mCRC [150]. Trifluridine/tipiracil
(FTD/TPI) is another chemotherapy combination of triflu-
ridine (a thymidine analog) and tipiracil which inhibits the
enzyme involved in trifluridine degradation to maintain bio-
availability of trifluridine [151]. Cytotoxic chemotherapy not
only kills cancer cells or arrests cancer proliferation, but
can also enhance immunogenic effects [54]. Chemotherapies
induce more cell death, which triggers the release of tumor-
associated antigens (TAA) that are then presented by APC to
induce tumor-specific cytotoxic response [152]. On the other
hand, chemotherapies could increase ICI expression, intro-
ducing rationale for combination with inhibitor of PD-L1/
PD-1 signaling [153]. Table S3 lists the immunogenic effects
of relevant cytotoxic chemotherapy agents.

A multicenter phase II study (NCT02860546) was
conducted in combination of FTD/TPI and nivolumab in
patients with chemotherapy-refractory MSS mCRC [76].
The addition of FTD/TPI failed to demonstrate signifi-
cant potentiation of nivolumab activity, and no objective
response was reported. In contrast, another phase II clini-
cal study (NCT02375672) of pembrolizumab and FOLFOX
for patients with advanced CRC unselected for MMR status
shows that the combination had a promising ORR (53%)
in naive MSS CRC patients with acceptable toxicity [77].
This study suggested that there may be opportunities for
chemotherapy-ICI combinations within the context of treat-
ing naive MSS CRC.

As discussed in Sect. 4.2, clinical trials are investigat-
ing the potentiation of anti-PD-L1/anti-PD-1 by combining
chemotherapy (e.g., FOLFOX, FOLFIRI, FOLFOXFIRI,
capecitabine) and anti-VEGF inhibitor (bevacizumab).
Promising results from the triple agent regimen have sug-
gested that chemotherapy and anti-VEGF can synergistically
modulate the TME to make PD-L1/PD-1 ICI more effective
against cold pMMR/MSS CRC [59, 61, 123]. Therefore,
both chemotherapy-ICI and chemotherapy/anti-VEGF/ICI
are worth exploring for patients with cold mCRC.

Combination radiotherapy and PD-L1/PD-1
inhibitors

Radiation therapy has been shown to exhibit immune stimu-
latory effects on the TME via three distinct and overlapping
mechanisms: (1) induction of immunogenic cell death (ICD)
of tumor cells; (2) upregulation of neoantigen presentation
on MHC-1; and (3) direct alteration of the TME at the site
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of radiation [161]. The ICD induced at the radiation site
releases cytokines as well as death-associated molecular pat-
terns (DAMP), which increase the recruitment of DCs and
enhance DCs’ ability to phagocytose apoptotic cells and to
process and present antigens [55, 161]. This increases T cell
priming and infiltration of tumor-specific T cells. Cytokine
(Type-I interferons) release further enhances DC stimu-
lation and T cell activation [162]. Radiation also directly
upregulates molecules on the surface of tumor cells, which
increases the recognition and killing by T cells and NK cells
[56]. Beyond the immediate irradiated field, radiotherapy
has been shown to induce systemic immunity via abscopal
effects [163]. The distinctive immunostimulatory properties
of radiotherapy provides a clear rationale for the combina-
tion of radiotherapy-anti- PD-1/PD-L1 in patients with MSS
mCRC unresponsive to PD-L1/PD-1 blockade alone. Pre-
clinical studies in tumor-bearing mice found that the com-
bination of tumor radiation and anti-PD-L1 synergistically
reduced abundance of MDSC within the TME [164].

To date, no significant clinical responses have been
observed across four clinical studies in combination with
PD-1 inhibitors [79, 80, 82]. There is a phase II study
(NCT02437071) evaluating the anti-tumor response at a dis-
tant site outside of the irradiated field patients with pMMR
mCRC refractory to at least 2 lines of standard therapy
treated with pembrolizumab following radiotherapy [165].
Preliminary results reported objective response in 9% of the
patients without grade 3 or higher adverse events; therefore,
the study continues, and results are anticipated.

One potential approach to improve the efficacy of anti-
PD-1 plus radiotherapy in patients with MSS mCRC relies
on the use of multiple nonredundant ICIs. In a phase II clini-
cal trial (NCT03104439), MSS mCRC patients refractory to
two or more lines of prior therapy received a combination
treatment with ipilimumab (anti-CTLA-4) and nivolumab in
conjunction with 8 Gy of radiotherapy [83]. The combina-
tion of dual ICIs with radiotherapy was feasible and demon-
strated durable activity in patients with MSS mCRC. Cor-
relative serial tumor biopsies and updated efficacy results are
anticipated. As follow-up, a phase 2 trial of the same regi-
men is currently enrolling subjects (NCT04575922) [166].

Future directions

Despite the theoretical framework obtained from preclini-
cal studies of p MMR/MSS cold CRC, limited success was
observed across clinical studies for the different combina-
tion strategies. Small sample sizes and heterogeneity of
tumors or TME in each trial could explain this finding.
Comparisons between molecular and cellular phenotypes
of common mouse syngeneic models and human tumors
may increase our understanding of the mismatched results
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drawn from preclinical and clinical experiences. Better
biomarker detection and patient classification prior to
treatment is critical to improve outcomes of combina-
tion therapies. Furthermore, it is important to note that
oncological signaling pathways (VEGF/VEGF, STATS3,
MEK1/2, etc.) have broad biological functions that could
be difficult to target specifically or selectively in MSS CRC
cells. There are other immune-suppressive molecules or
pathways in TME; multiple signaling pathways participate
in tumor development and progression. New combinations
with other signaling inhibitors or reagents such as temozo-
lomide, which can induce mutation in tumor cells, need to
be investigated. We recognize the complexity of the TME;
therefore, we suggest future studies to focus on identify-
ing better preclinical models that closely mimic the TME
of MSS CRC and efficacy biomarkers in the pMMR/MSS
CRC population.

Oncologic outcomes are improving with acceptably safe
use of aggressive surgical and local therapy for colorectal
liver metastases in carefully selected patients. Evaluating
the benefit of systemic immunotherapy either in conjunc-
tion with those therapies or following them will be an
important avenue for future study. An active multicenter
early phase II study is currently investigating the effec-
tiveness of local tumor ablation (radiofrequency ablation
or stereotactic body radiation therapy) in combination
with durvalumab (Anti-PD-1) and tremelimumab (anti-
CTLA-4) in ICI naive patients with unresectable colorectal
liver metastases (NCT03101475). '8

Conclusions

Combination strategies with other anti-tumor agents
to potentiate the efficacy of anti-PD-L1/anti-PD-1 in
patients with pMMR/MSS advanced or metastatic CRC
has become a major research interest as it provides new
therapeutic opportunities. In general, combination treat-
ment is safe without significant AEs compared with mono-
therapy. Preliminary analyses of combination anti-PD-1/
PD-L1 inhibitors and other anti-cancer therapies revealed
potential clinical benefits in certain subgroups of patients
with pMMR/MSS mCRC. Focused approaches to study-
ing these combination regimens will improve outcome of
PD-1/PD-L1 combination treatment. We believe that com-
bination strategies involving PD-L1/PD-1 blockade remain
a priority for future research as it has the potential to elicit
benefits that will revolutionize the clinical landscape for
patients with pMMR/MSS cold CRC.
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