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Abstract

A novel penalty for the proportional hazards model under the interval-censored failure time

data structure is discussed, with which the subject of variable selection is rarely studied. The

penalty comes from an idea to approximate some information criterion, e.g., the BIC or AIC,

and the core process is to smooth the ℓ0 norm. Compared with usual regularization methods,

the proposed approach is free of heavily time-consuming hyperparameter tuning. The effi-

ciency is further improved by fitting the model and selecting variables in one step. To

achieve this, sieve likelihood is introduced, which simultaneously estimates the coefficients

and baseline cumulative hazards function. Furthermore, it is shown that the three desired

properties for penalties, i.e., continuity, sparsity, and unbiasedness, are all guaranteed.

Numerical results show that the proposed sparse estimation method is of great accuracy

and efficiency. Finally, the method is used on data of Nigerian children and the key factors

that have effects on child mortality are found.

Introduction

Interval-censored failure time data, which means the failure time of interest is only known to

belong to a period instead of observed directly, is commonly seen in many fields, such as

demography, medicine, and ecology. The statistical analysis of this special data structure has

attracted much attention since first being addressed by Finkelstein (1986 [1]), and many

researchers have developed significant works related to model estimations (Huang 1996 [2];

Zhang et al. 2005 [3], Zeng, Cai, and Shen 2006 [4], Lin and Wang 2010 [5]). Sun (2006 [6])

made a thorough review of research on interval-censored failure time data. Compared with

right-censored data, interval-censored data can be more challenging when modeled in two

ways. First, interval-censored data can be more complicated, such that sometimes it is a mix-

ture of interval censoring and right censoring. Right censoring can be considered a special

form of interval censoring with the right bound extending to infinity. Second, when imple-

menting the proportional hazards model (Cox 1972 [7]) on right-censored data, one can use
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partial likelihood and does not have to estimate the baseline hazards function simultaneously

with the parameters of interest.

Several methods exist that deal with interval-censored failure time data. Tong, Chen, and

Sun (2008 [8]) and Goggins and Finkelstein (2000 [9]) developed approaches for interval cen-

soring, but under strict independent assumptions. These approaches are restricted to several

models; for example, the former is only applicable to the additive hazards model (Lin and Ying

1994 [10]). In this paper, a sieve maximum likelihood method with Bernstein polynomials is

proposed as a general way that can be applied to many semi-parametric survival models. More

information is presented below.

Although basic theories on interval-censored data are well established, studies on variable

selection under this data structure are very limited. To the best of our knowledge, penalized

partial likelihood has been effectively used since it is intuitive to add a penalization term to the

likelihood function. Tibshirani (1997 [11]) and Fan and Li(2002 [12]) successfully applied

LASSO and SCAD penalties to the proportional hazards model right after they proposed them.

Zou (2006 [13]) developed adaptive LASSO (ALASSO) and Zhang and Lu (2007 [14]) used it

with partial likelihood. However, penalized partial likelihood is bounded to the analysis of

right-censored data. For variable selection on interval-censored failure time data, piecewise

constant functions are occasionally used (Wu and Cook 2015 [15]) to represent the baseline

hazards model, incorporated with several penalties and the EM algorithm is applied to opti-

mize the likelihood function. Wang et al. (2019 [16]) introduced a Bayesian adaptive lasso pen-

alty for the additive hazards model with Case I interval-censored data, also known as current

status data, in which the subjects are only visited once and one only knows whether it has failed

at the exact observation time. Zhao (2020 [17]) developed a broken adaptive ridge (BAR)

penalized procedure and, with iterations, some parameters finally shrank to zero. The simula-

tion studies show satisfying results, whereas it is still found to be computationally costly due to

the heavy optimization procedures and that there are two parameters to tune.

The object of interest in the present paper is another type of covariate selection technique,

i.e., best subset selection (BSS). A typical BSS method is to list all the variable subsets, model

with each one of them, and use some information criterion, such as AIC (Akaike 1974 [18])

and BIC (Schwarz 1978 [19]) to judge every subset. For a dataset with n0 uncensored samples

and p dimensions of parameters, a criterion has the form as:

min
β

φ
0
k � 2lðβÞ

, where k(k� p) represents the number of selected parameters and l(�) represents the log-likeli-

hood function. φ0 is fixed as 2 or log(n0) when a AIC or BIC is applied and it makes the crite-

rion free of tuning, which can be a heavily time-consuming process when a common penalty

such as LASSO, SCAD, or MCP (Zhang 2010 [20]) is used. The most significant problem of

this method is that in the criterion a ℓ0 norm is involved, the discrete nature of which makes

the method a NP-hard problem. Although stepwise regressions are available to help with the

optimization, BSS is still infeasible when it comes to a moderately large p. Su et al. successfully

developed an approximated form of information criterion as a penalty term [minimum infor-

mation criterion (MIC)] for general linear models (GLM, 2018 [21]) and the Cox model with

right-censored data (2016 [22]), which extends the BSS method to a large variable dimension.

In this study, a form of approximated information criterion is proposed under the interval-

censored data structure. The result provides several major contributions to the current litera-

ture. First, an approximated BSS method is introduced into the analysis of interval-censored

data, with which the variable selection approaches are rarely studied. Second, great efficiency
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is achieved by conducting the estimation of both the coefficients and baseline hazards function

with free-tuning covariate selection simultaneously.

The rest of this paper is organized as follows. In the first section, the notation and detailed

estimation procedure of interval-censored data are given. In the next section, the approxima-

tion of BSS is presented. In the third section, the simulation results of the proposed method

are shown along with several other commonly seen penalties. The application section contains

a survey example and the last section concludes this research and addresses a short discussion.

Notation, assumptions, and models

Interval censoring

Consider a failure time study that involves n independent subjects and for an ith subject there

is a p-dimensional vector Zi(1� i� n) that may affect its failure time Ti. According to the pro-

portional hazards model, the cumulative hazard function Λ(t) is given by

LðtjZiÞ ¼ L0ðtÞ exp ðZ
0

iβÞ

, where Λ0(t) denotes the baseline cumulative hazard function and β = (β1, β2, . . ., βp)0 the

regression coefficients. The corresponding survival function is

SðtjZiÞ ¼ PðTi � tjZiÞ ¼ exp ð� LðtjZiÞÞ ¼ exp ðL0ðtÞ exp ðZ
0

iβÞÞ. Under the interval-cen-

sored data structure, observations will be recorded as O = {Oi = {Li, Ri, Zi}, i = 1, . . ., n}, with

(Li, Ri] denoting the interval in which the failure of the ith subject belongs. Then, the likelihood

function can be given as

Lnðβ;L0Þ ¼
Yn

i¼1

fSðLijZiÞ � SðRijZiÞg

¼
Yn

i¼1

f exp ½� L0ðLiÞ exp ðZ
0

iβÞ� � exp ½� L0ðRiÞ exp ðZ
0

iβÞ�g:

In practice, if one does not observe the failure of some samples during the entire experi-

ment, these samples will be considered right-censored. For right-censored subject, Ri =1 and

thus S(Ri|Zi) = 0.

To estimate ξ = (β, Λ0), the traditional approach is to maximize the log-likelihood function

ln(β, Λ0), usually by finding the zeros of the derivatives. The main difficulty is to estimate

finite- and infinite-dimensional parameters at the same time. This problem is discussed in the

next section.

Regularized sieve maximum likelihood estimation

To deal with the infinite-parameter estimation problem mentioned above, a sieve method

(Huang and Rossini 1997 [23] and Zhou, Hu, and Sun [24]) is developed for our study. Now,

consider a parameter space

X ¼ fx ¼ ðβ;L0Þ 2 B � Fg

, where B ¼ fb 2 Rp
; jbj � Mg with M a positive constant and F representing the function

set that contains all bounded, continuous, non-negative, and non-decreasing functions. One

common way to model λ0(�) is using splines (Wood, Pya, and Säfken 2017 [25] and Wang

et al. 2019 [26]), but here, with the given restricted shape of the baseline cumulative hazards

function, use of the Bernstein basis polynomials (Wang and Ghosh 2012 [27]) is preferred.
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Hence, a sieve parameter space

Xn ¼ fxn ¼ ðβ;L0nÞ 2 B � F ng

is defined, where

F n ¼ fBnðxÞ ¼
Xm

j¼0

~o j � bjðx;m; u; vÞ : ~o0 � ~o1 � . . . � ~om;
Xm

j¼0

j~ojj � Mng

on the domain of observed data, recorded as [u, v]. Here, Mn is a positive constant and bj(x, u,

v, m) is defined as

bj x;m; u; vð Þ ¼ Cj
m �

x � u
v � u

� �j
� 1 �

x � u
v � u

� �m� j
; j ¼ 0; . . . ;m;

where m decides the number of terms in the Bernstein basis polynomials and

~ω ¼ ð~o0; ~o1; . . . ; ~omÞ denotes the coefficient vector of the terms. Note that for the non-

decreasing and non-negative requirements of Λ0n, one needs ~ω following the inequality

0 � ~o0 � ~o1 � . . . � ~om. This constraint can be ensured by reparameterization, introducing

a novel vector ω = (ω0, ω1, . . ., ωm) and let ~o l ¼
Pl

k¼0
exp ðokÞ.

By focusing on sieve space Xn, the complex estimations of both infinite- and finite-dimen-

sional parameters are converted into a much simpler estimation problem that contains only

finite-dimensional parameters (β, ω). Thus, given the argument matrix Z = (Z1, Z2, . . ., Zn),

our likelihood function has the form

Lnðβ;ωjZÞ ¼
Yn

i¼1

f exp ½� L0nðLiÞ exp ðZ
0

iβÞ� � exp ½� L0nðRiÞ exp ðZ
0

iβÞ�g: ð1Þ

To estimate parameters and select covariates simultaneously, minimizing the sieve log-like-

lihood function with a penalty term is considered:

ln;peðβ;ωÞ ¼ � 2logfLnðβ;ωjZÞg þ φ � penðβÞ: ð2Þ

It is intuitive to replace pen(β) with various developed penalties. For LASSO, let

penðβÞ ¼
Pp

i¼1
jbij; for SCAD, let penðβÞ ¼

R jbjj

0
minf1; ðal � xÞ

þ
=ðal � lÞgdx with a usu-

ally fixed at 3.7; for MCP, let pen βð Þ ¼
R bj

0
1 � x

gl

� �

þ
dx on [0, +1]. However, the aforemen-

tioned penalties all need a time-consuming tuning process for hyperparameter φ. The

approximate information criterion is introduced as a penalty term in the following section,

which frees us from tuning the parameter φ and greatly reduces computing time.

Approximated information criterion

Approximation of information criterion

A novel sparse estimation method for interval-censored data is sought from the idea of

approximation. The BSS method with certain information criteria does not need the param-

eter-tuning process, but it is infeasible for a large p. In this part, a smooth approximation

of information criteria is developed that can be further used in the way of regularization

methods.
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The core task is to approximate the ℓ0 norm in the information criteria. The ℓ0 norm can be

defined by indicator functions

f ðβÞ ¼
Xp

i¼1

Iðbi 6¼ 0Þ:

The essential job is to approximate the indicator functions, for which one introduces a

function η(x) that satisfies (1) η(0) = 0, (2) η(x) = η(−x), (3) lim|x|!1 η(x) = 1, and (4) η(�); the

latter is a smooth function and non-decreasing on Rþ. Clearly, η(�) has captured the key fea-

tures of the indicator I(x 6¼ 0).

One natural thought is to adopt sigmoid functions, which are commonly used as a smooth

output unit in binary classification. The classic choice is the logistic activation sigmoid

sðxÞ ¼ 1

1þe� x, and by making some minor changes on the independent variable and the inter-

cept one can successfully develop our solution as follows:

ZðxÞ ¼ 2sðyjxjgÞ � 1 ¼
1 � exp ð� yjxjgÞ
1þ exp ð� yjxjgÞ

, where θ> 0 and γ control the shape of the function. Fig 1a and 1b plot η(�) with γ = 1 and γ =

2, respectively. θ varies from 1 to 100. It can be seen from Fig 1b that, in general, the functions

η(�) with both choices on γ are good approximations of I(β 6¼ 0), and it seems that, with a

larger θ, η(�) will be more like the target indicator function. Nevertheless, comparing Fig 1a

and 1b, we avoid directly setting γ = 1 because there is a cusp at x = 0, although it appears to

give a better performance on sparsity. This concern restricts one to set γ = 2. To achieve bal-

ance smoothness and sparsity together on one penalty, our motivation is to use the reparame-

terization procedure.

Reparameterization

By introducing η(�), the smoothness problem of the ℓ0 norm is preliminarily solved by setting

γ = 2. Fan and Li (2001 [28]) proposed three properties that a good penalty should possess:

unbiasedness, sparsity, and continuity. Unbiasedness and continuity are apparently ensured

Fig 1. η(�) with various values of θ. Clearly shown is that η(�) makes a promising approximation of ℓ0 norm. Note that in both plots the parameter θ
varies from 1 to 100 and the curves become sharper with larger θ. (a)γ = 1. (b)γ = 2.

https://doi.org/10.1371/journal.pone.0249359.g001
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by the definition. The sparsity needs to be enforced since we have chose γ = 2. For this purpose,

the following reparameterization procedures are considered.

Set a vector � ¼ ð�1; �2; . . . ; �pÞ
0
2 Rp and relate ϕ to β by βi = ϕi η(ϕi). Define a matrix

H ¼

Zð�1Þ 0 . . . 0

0 Zð�2Þ . . . 0

..

. ..
. . .

. ..
.

0 0 . . . Zð�pÞ

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

;

and then the reparameterization can be written as β = H ϕ. In this way, (3) is rewritten as fol-

lows:

ln;peð�;ωÞ ¼ � 2logfLnðH�;ωjZÞg þ φ
0
trðHÞ; ð3Þ

where tr(H) denotes the trace of H. By reparameterizing β with ϕ, two goals can be achieved

simultaneously: one is to keep the smoothness of the regularization problem, and the other is

to obtain good performance on sparsity. These two aspects will be explained in the next section

with figures.

1. Smoothness. In (4), the second term of the right-hand side ϕ0 tr(H) is smoothed by the def-

inition of η(�) when γ = 2, so the problem remaining here is to check the smoothness of the

first term, which is essentially decided by H ϕ. β = H ϕ is composed of formula βi = ϕi�η(ϕi),

i = 1, . . ., p, and it is commonly known that the product of two smooth functions is also

smooth. The relationship of β = H ϕ and ϕ is illustrated in Fig 2, in which a desired one-to-

one mapping can be seen.

2. Sparsity. In the preceding section, the reason for choosing γ = 2 was explained, although γ
= 1 is favorable in sparsity, which is shown in Fig 1a and 1b. Here, after reparameterization,

the relationship between H, which determines the penalty, and β, the true coefficients, is

explored. η(ϕ) and β are plotted in Fig 3, which demonstrates that the scale of penalty really

assembles the situation when one sets γ = 1, in which the regularization will penalize the

likelihood function with a considerably small coefficient allocated to wrong covariates.

One returns to the three properties that Fan and Li recommended, i.e., continuity, sparsity,

and unbiasedness, after reparameterizing β with ϕ. Unbiasedness is ensured by the definition

of η(�). Continuity lies naturally in maintaining smoothness. The goal of sparsity is attained by

reparameterization, as explained in this section. Accordingly, the penalty developed herein ful-

fills all requirements.

Noted that after reparameterization, the penalty term becomes non-convex on β. This

implies the penalized log-likelihood function (4) can have multiple local optima and the initial

value of optimization process will effect the result. Thus, we use simulated annealing (Belisle

1992 [29]) and BFGS quasi-Newton algorithm (see, e.g., Jorge Nocedal 1980 [30]) to obtain the

final result. The simulated annealing is robust and seeks the global optimum, and BFGS algo-

rithm is very fast and assures the result converges to a critical point. Both methods are built-in

in Matlab with function simulannealbnd and fminunc. To further scrutinize our method, the

numerical results are presented in the next section.
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Fig 3. Plot of βi and η(ϕi). This plot displays relationship between true coefficients and penalty term.

https://doi.org/10.1371/journal.pone.0249359.g003

Fig 2. Plot of βi and ϕi. This plot shows desired mutually one-to-one mapping, which is strong evidence supporting

reparameterizations. With γ varying from 1 to 100, the function becomes closer to f(ϕ) = ϕ.

https://doi.org/10.1371/journal.pone.0249359.g002
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Simulation study

An extensive simulation study is conducted in this section to assess the performance of the

proposed sparse estimation method with the approximated information criterion (appIC) on

finite interval-censored samples. In this study, a p-dimensional covariate set Zp × n = (Zi, Z2,

. . ., Zp) is considered, and Zi is generated from multivariate normal distribution, with mean

zero and covariance matrix S. S is defined by

S ¼ ðSijÞ;Sij ¼ 0:5ji� jj; i; j ¼ 1; . . . ; p

Here we set three scenarios: n = 100, p = 10, n = 300, p = 10 and n = 300, p = 30. For the true

coefficient vector, we set the first and last two components at b0 (b0 = 0.5 or 1), with other

components zero. The baseline cumulative hazards function takes the forms Λ0(t) = t and

Λ0(t) = log(t + 1), respectively.

When constructing interval-censored data structure, M visiting points are set in the interval

[u, v] with a uniform gap (v − u)/M. To simulate the real situation in which some samples will

be difficult to reach, every point is allocated a 50% chance to actually observe a certain sample.

In this simulation, u is fixed at 0 and v is set as 3, thus when b0 = 0.5, there are approximately

25% and 35% right-censored portions for Λ0(t) = t and Λ0(t) = log(t + 1), and when b0 = 1, the

portions are approximately 30% and 40%. Meanwhile, the number pf observation points M are

set at 10 and 20, and the latter is supposed to bring more information.

The hyperparameters of the proposed method are assigned as follows: (1) we set Bernstein

polynomials parameter m = 3 because we find it sufficient to characterize the baseline cumula-

tive hazards function; (2) we set γ = 2 for smoothness as described in the previous sections; (3)

we fix φ at log(n0) (n0 denotes the number of samples that are not right-censored) as BIC; (4)

we assign θ with n0 and the robustness of the estimate with different value of θ is shown in S1

File. The results are presented in Tables 1–5. In Tables 1–4, the performance is measured in

three ways: mean, bias and standard deviation (SD), which indicate the accuracy and stability

of our estimates. In Table 5, the performance under all scenarios are assessed with four mea-

surements: average selected size (Size), the average true positive size (TP), the average false

Table 1. Simulation result of appIC sparse estimation with b0 = 0.5 and baseline cumulative hazards function Λ0(t) = t.

Mean Bias SD Mean Bias SD

M = 10 M = 20

n = 100, p = 10

β1 = 0.5 0.537 0.037 0.243 0.537 0.037 0.233

β2 = 0.5 0.494 -0.006 0.270 0.486 -0.014 0.249

β9 = 0.5 0.519 0.019 0.267 0.509 0.009 0.250

β10 = 0.5 0.501 0.001 0.251 0.509 0.009 0.215

n = 300, p = 10

β1 = 0.5 0.510 0.010 0.092 0.513 0.013 0.084

β2 = 0.5 0.509 0.009 0.098 0.509 0.009 0.095

β9 = 0.5 0.499 -0.001 0.120 0.500 0.000 0.100

β10 = 0.5 0.510 0.010 0.100 0.507 0.007 0.088

n = 300, p = 30

β1 = 0.5 0.524 0.024 0.101 0.518 0.018 0.093

β2 = 0.5 0.509 0.009 0.112 0.502 0.002 0.115

β9 = 0.5 0.506 0.006 0.121 0.506 0.006 0.100

β10 = 0.5 0.512 0.012 0.105 0.507 0.007 0.096

https://doi.org/10.1371/journal.pone.0249359.t001
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positive size (TP) and the median and standard deviation of ðβ̂ � βÞ0EðZZ0Þðβ̂ � βÞ. It can be

seen that the bias and standard deviation both greatly reduce when the sample size increases

from 100 to 300. When p jumps to 30, appIC method remains feasible and generate good

results. And the estimating accuracy and stability generally improve with a more frequent visit-

ing pattern, which is indicated by a large M. Besides, it is shown that the selection correctness

of the appIC method increases significantly with greater signals (b0 = 1), compared to b0 = 0.5.

Meanwhile, the baseline cumulative hazards function is well modeled by Bernstein polynomi-

als and some of the results are displayed in Fig 4. It is obvious that when n increases, the poly-

nomials fit the hazards function better.

Table 2. Simulation result of appIC sparse estimation with b0 = 0.5 and baseline cumulative hazards function Λ0(t) = log(t + 1).

Mean Bias SD Mean Bias SD

M = 10 M = 20

n = 100, p = 10

β1 = 0.5 0.544 0.044 0.268 0.559 0.059 0.227

β2 = 0.5 0.577 0.077 0.258 0.480 -0.020 0.265

β9 = 0.5 0.583 0.083 0.244 0.509 0.009 0.258

β10 = 0.5 0.559 0.059 0.230 0.526 0.026 0.221

n = 300, p = 10

β1 = 0.5 0.518 0.018 0.093 0.519 0.019 0.091

β2 = 0.5 0.513 0.013 0.111 0.515 0.015 0.108

β9 = 0.5 0.504 0.004 0.119 0.506 0.006 0.109

β10 = 0.5 0.520 0.020 0.102 0.514 0.014 0.095

n = 300, p = 30

β1 = 0.5 0.528 0.028 0.104 0.530 0.030 0.094

β2 = 0.5 0.514 0.014 0.108 0.510 0.010 0.108

β9 = 0.5 0.518 0.018 0.115 0.518 0.018 0.108

β10 = 0.5 0.517 0.017 0.110 0.515 0.015 0.104

https://doi.org/10.1371/journal.pone.0249359.t002

Table 3. Simulation result of appIC sparse estimation with b0 = 1 and baseline cumulative hazards function Λ0(t) = t.

Mean Bias SD Mean Bias SD

M = 10 M = 20

n = 100, p = 10

β1 = 1 1.152 0.152 0.276 1.132 0.132 0.251

β2 = 1 1.084 0.084 0.349 1.086 0.086 0.307

β9 = 1 1.107 0.107 0.343 1.110 0.110 0.276

β10 = 1 1.118 0.118 0.282 1.105 0.105 0.253

n = 300, p = 10

β1 = 1 1.039 0.039 0.129 1.036 0.036 0.119

β2 = 1 1.027 0.027 0.140 1.021 0.021 0.124

β9 = 1 1.021 0.021 0.134 1.020 0.020 0.115

β10 = 1 1.035 0.035 0.136 1.028 0.028 0.122

n = 300, p = 30

β1 = 1 1.065 0.065 0.138 1.048 0.048 0.119

β2 = 1 1.046 0.046 0.143 1.045 0.045 0.125

β9 = 1 1.046 0.046 0.133 1.041 0.041 0.121

β10 = 1 1.050 0.050 0.145 1.037 0.037 0.127

https://doi.org/10.1371/journal.pone.0249359.t003
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To comprehensively assess the performance of appIC, its estimation results were compared

with other commonly used approaches to variable selection: LASSO, SCAD, MCP, and BAR

under the most serious conditions above, that is M = 10 and b0 = 0.5. The parameters of these

penalties are tuned with 5-fold cross validation with the largest log-likelihood value on the vali-

dation sets. The estimations with true covariates (oracle) and full models (without selecting the

covariates) are presented alongside in Tables 6 and 7. The measurements are described in the

previous paragraph. It is obvious that the appIC sparse estimation performs well in both

Table 5. Comparison of different scenarios with the appIC model.

Size TP FP MMSE(SD) Size TP FP MMSE(SD)

Λ0(t) = t Λ0(t) = ln(t + 1)

b0 = 0.5

M = 10

n = 100, p = 10 3.843 3.480 0.363 0.240(0.188) 3.933 3.537 0.397 0.256(0.186)

n = 300, p = 10 4.177 3.967 0.210 0.040(0.043) 4.263 3.980 0.283 0.047(0.047)

n = 300, p = 30 4.617 3.957 0.660 0.061(0.061) 4.833 3.977 0.857 0.071(0.061)

M = 20

n = 100, p = 10 3.867 3.567 0.300 0.198(0.162) 3.950 3.570 0.380 0.218(0.184)

n = 300, p = 10 4.233 3.983 0.250 0.035(0.034) 4.210 3.983 0.227 0.042(0.042)

n = 300, p = 30 4.460 3.957 0.503 0.047(0.047) 4.717 3.977 0.740 0.062(0.064)

b0 = 1

M = 10

n = 100, p = 10 4.357 3.940 0.417 0.449(0.492) 4.373 3.960 0.413 0.535(0.764)

n = 300, p = 10 4.267 4.000 0.267 0.077(0.063) 4.353 4.000 0.353 0.087(0.068)

n = 300, p = 30 4.943 4.000 0.943 0.089(0.081) 5.103 4.000 1.103 0.184(0.203)

M = 20

n = 100, p = 10 4.283 3.967 0.317 0.441(0.586) 4.343 3.977 0.367 0.540(0.915)

n = 300, p = 10 4.210 4.000 0.210 0.071(0.073) 4.307 4.000 0.307 0.090(0.080)

n = 300, p = 30 4.653 4.000 0.653 0.100(0.095) 4.933 4.000 0.933 0.145(0.134)

https://doi.org/10.1371/journal.pone.0249359.t005

Table 4. Simulation result of appIC sparse estimation with b0 = 1 and baseline cumulative hazards function Λ0(t) = log(t + 1).

Mean Bias SD Mean Bias SD

M = 10 M = 20

n = 100, p = 10

β1 = 1 1.165 0.165 0.315 1.138 0.138 0.277

β2 = 1 1.115 0.115 0.360 1.112 0.112 0.303

β9 = 1 1.155 0.155 0.355 1.143 0.143 0.314

β10 = 1 1.115 0.115 0.322 1.106 0.106 0.289

n = 300, p = 10

β1 = 1 1.051 0.051 0.133 1.048 0.048 0.121

β2 = 1 1.043 0.043 0.148 1.036 0.036 0.128

β9 = 1 1.033 0.033 0.138 1.038 0.038 0.132

β10 = 1 1.048 0.048 0.146 1.040 0.040 0.131

n = 300, p = 30

β1 = 1 1.068 0.068 0.141 1.071 0.071 0.132

β2 = 1 1.056 0.056 0.158 1.060 0.060 0.139

β9 = 1 1.060 0.060 0.158 1.057 0.057 0.135

β10 = 1 1.059 0.059 0.160 1.058 0.058 0.141

https://doi.org/10.1371/journal.pone.0249359.t004

PLOS ONE Efficient sparse estimation on interval-censored data with approximated L0 norm

PLOS ONE | https://doi.org/10.1371/journal.pone.0249359 April 9, 2021 10 / 16

https://doi.org/10.1371/journal.pone.0249359.t005
https://doi.org/10.1371/journal.pone.0249359.t004
https://doi.org/10.1371/journal.pone.0249359


selection correctness and estimation accuracy. The variable size that it has chosen is especially

close to the true size, 4, with relatively low FP. That is to say, the proposed method is very

unlikely to include an irrelevant variable. Meanwhile, the TP of the appIC method rises to a

satisfactory level when n increases from 100 to 300, performing close to SCAD and MCP.

Besides, the square error of the proposed method is low with both n = 100 and n = 300. Fur-

thermore, it is worth mentioning that our method is far faster than common penalties owing

to the free-tuning on the hyperparameter. The CPU time of different methods under various

conditions can be found in S1 File.

Application

In this section, the focus is on Nigerian child mortality data from the Demographic and

Health Surveys (DHS) Program (https://www.dhsprogram.com). The dataset records

women’s information from various aspects, including their children. The survey was very

detailed; nevertheless, due to some practical restrictions the survival time of the children

are only recorded in months or years, which makes it an interval-censored data structure.

Meanwhile, it is found that the sample child mortality rate is over 20%, significantly higher

than the global average, and our goal is to identify the key factors that affects children’s sur-

vival status.

A total of 24 potential factors are listed in Table 8. After excluding the samples that hold

null value in either one of the variables, 8, 671 valid child samples are found, out of which 6,

Fig 4. The estimated baseline cumulative functions. True and simulated baseline cumulative hazards functions

shown in black and yellow, respectively. Simulated cumulative hazards function are generated with b0 = 0.5, M = 10

and p = 10. Note here (a)n = 100,Λ0(t) = t. (b)n = 100,Λ0(t) = log(t + 1). (c)n = 300,Λ0(t) = t. (d)n = 300,Λ0(t) = log(t
+ 1).

https://doi.org/10.1371/journal.pone.0249359.g004
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830 are right censored. Note that variables 1-14 in Table 8 are dummy variables and are

assigned 1 when the corresponding statements are true. Variables 15-24 are standardized so

that the significance of all the factors can be compared. Most variables are concerned with the

mother, and four variables marked with asterisks in Table 8 are child specific.

To apply the appIC regression procedure here, m = 3, γ = 2, θ = n0 = 1841, and φ = log(n0)

(BIC) are set. Meanwhile, the observation interval on the children is set as [0, 144]; that is to

say, if the child lives to 144 months, or 12 years old, he or she is recorded as right censored.

The results are shown in Table 8. According to the present research, eight variables have

effects on child mortality. Having telephone, longer preceding birth interval of the mother,

the usage of modern contraceptive methods, having electricity and more household mem-

bers can reduce child mortality hazards, in the order of effectiveness. Meanwhile, the hazards

increase with the mother having had more children and the child being twin. If the family

can not decide whether to get medical aid when the child is seriously ill, the mortality haz-

ards also increase. The baseline cumulative hazards function and baseline survival function

are presented in Fig 5.

Table 6. Estimation results with different methods.

Size TP FP MMSE(SD)

Λ0(t) = t
n = 100, p = 10

Full 10.000 4.000 6.000 0.694(0.814)

Oracle 4.000 4.000 0.000 0.092(0.112)

BAR 4.183 3.813 0.370 0.140(0.152)

Lasso 5.346 3.963 1.383 0.199(0.116)

Alasso 4.384 3.707 0.677 0.211(0.172)

SCAD 4.370 3.780 0.590 0.354(0.168)

MCP 4.200 3.613 0.587 0.208(0.196)

appIC 3.843 3.480 0.363 0.240(0.188)

n = 300, p = 10

Full 10.000 4.000 6.000 0.095(0.096)

Oracle 4.000 4.000 0.000 0.028(0.030)

BAR 4.176 4.000 0.176 0.035(0.029)

Lasso 5.330 4.000 1.330 0.081(0.043)

Alasso 4.406 3.993 0.413 0.061(0.062)

SCAD 4.460 3.983 0.477 0.063(0.051)

MCP 4.393 3.993 0.400 0.031(0.041)

appIC 4.177 3.967 0.210 0.040(0.043)

n = 300, p = 30

Full 10.000 4.000 6.000 0.256(0.211)

Oracle 4.000 4.000 0.000 0.029(0.031)

BAR 4.317 4.000 0.317 0.041(0.032)

Lasso 5.783 4.000 1.783 0.187(0.071)

Alasso 4.756 3.943 0.813 0.141(0.125)

SCAD 4.526 3.983 0.543 0.191(0.081)

MCP 4.540 3.963 0.577 0.033(0.056)

appIC 4.617 3.957 0.660 0.061(0.061)

Note that Λ0(t) = t.

https://doi.org/10.1371/journal.pone.0249359.t006
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Conclusion

In this paper, an approximated information criterion for the proportional hazards model

under the interval-censored failure time data structure is discussed. The common penalties

usually need a time-consuming hyperparameter tuning process, which is not necessary if one

uses BSS with some well-known information criteria, such as BIC or AIC. The modified logis-

tic sigmoid function is used herein to emulate the ℓ0 norm and accordingly convert the BIC as

a penalized likelihood function that can be implemented in the way of regularizations. This

method literally builds a bridge between BSS and the regularizations, with a special and novel

strength in efficiency since it simulates the baseline hazards function, estimates coefficients of

covariates, and chooses variables simultaneously, without tuning hyperparameters for the pen-

alty term. The numerical results, including an application to child mortality, show that this

method possesses great potential to facilitate mainstream sparse estimation for interval-cen-

sored data, with which the subject of variable selection is rarely studied.

There exist some interesting directions of planned future work. First, in this paper only the

situation that the censoring time is independent of the failure time is considered, which

Table 7. Estimation results with different methods.

Size TP FP MMSE(SD)

Λ0(t) = log(t + 1)

n = 100, p = 10

Full 10.000 6.000 4.000 0.854(1.140)

Oracle 4.000 4.000 0.000 0.090(0.149)

BAR 4.236 3.753 0.483 0.181(0.192)

Lasso 5.476 3.943 1.533 0.204(0.115)

Alasso 4.750 3.727 1.023 0.218(0.151)

SCAD 4.416 3.666 0.750 0.366(0.168)

MCP 4.146 3.523 0.623 0.252(0.290)

appIC 3.933 3.537 0.397 0.256(0.186)

n = 300, p = 10

Full 10.000 6.000 4.000 0.104(0.083)

Oracle 4.000 4.000 0.000 0.033(0.037)

BAR 4.203 4.000 0.203 0.033(0.036)

Lasso 5.253 4.000 1.253 0.070(0.045)

Alasso 4.464 3.997 0.467 0.062(0.063)

SCAD 4.400 3.997 0.403 0.081(0.056)

MCP 4.280 3.993 0.287 0.038(0.285)

appIC 4.263 3.980 0.283 0.047(0.047)

n = 300, p = 30

Full 10.000 6.000 4.000 0.304(0.322)

Oracle 4.000 4.000 0.000 0.028(0.038)

BAR 4.191 3.994 0.197 0.038(0.039)

Lasso 6.333 4.000 2.333 0.131(0.056)

Alasso 4.633 3.920 0.713 0.172(0.162)

SCAD 4.550 3.987 0.563 0.166(0.085)

MCP 4.610 3.993 0.617 0.040(0.057)

appIC 4.833 3.977 0.857 0.071(0.061)

Note that Λ0(t) = log(t + 1).

https://doi.org/10.1371/journal.pone.0249359.t007
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Table 8. Variables that possibly affect child mortality with six chosen by proposed sparse estimation method.

Variable number Factor Coefficient

V1 De facto place of residence-city -

V2 De facto place of residence-countryside -

V3 Has electricity -0.110

V4 Has telephone -1.011

V5 Presence of soap/ash/other cleansing agent in household -

V6 Knowledge of ovulatory cycle -

V7 Ever use of any modern contraception methods -0.394

V8 Visited health facilities last 12m -

V9 Smokes nothing -

V10 Sex of household head -

V11 When child is seriously ill, probably can not decide whether to get medical aid 0.201

V12 Child is twin� 1.185

V13 Sex of child� -

V14 Proper body mass index -

V15 Education in single years -

V16 Number of household members -0.107

V17 Number of children 5 and under -

V18 Number of eligible women in HH -

V19 Total children ever born 0.241

V20 Age of respondent at 1st birth -

V21 Age at first marriage -

V22 Ideal number of children (grp) -

V23 Preceding birth interval� -0.440

V24 Mother age of birth� -

Note that four variables marked with asterisks are child specific and variables 1-14 are dummy variables, assigned as

1 when corresponding statements are true.

https://doi.org/10.1371/journal.pone.0249359.t008

Fig 5. Estimated baseline cumulative hazards function and baseline survival function of children in survey. Note that t is measured in months. We

see that the hazards function curve and survival function curve become flat as children grow up, which is consistent with reality.

https://doi.org/10.1371/journal.pone.0249359.g005
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sometimes may not conform with practice. Many studies discussing informative censoring

exist and one can explore the proposed methods under that circumstance. The second direc-

tion is to change the survival model. Herein, only the proportional hazards model is applied,

but several other superb semi-parameter survival models exist, e.g., the additive hazards

model. One can compare the estimation accuracy or efficiency and show the reason. Third, in

practice, some datasets with a very large covariate dimension are seen, a typical one of which

is genetic data. Study on this problem is absolutely meaningful and clearly more research is

needed in this direction.
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