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Abstract

Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obli-

gate complexes (e.g. the ribosome) should have copy numbers expressed to match their

stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for

inferring subunit function and assembly bottlenecks. We show here that these correlations

in protein copy numbers can extend beyond complex subunits to larger protein-protein inter-

actions networks (PPIN) involving a range of reversible binding interactions. We develop a

simple method for quantifying balance in any interface-resolved PPINs based on network

structure and experimentally observed protein copy numbers. By analyzing such a network

for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein

copy numbers were significantly more balanced in relation to their binding partners com-

pared to randomly sampled sets of yeast copy numbers. The observed balance is not per-

fect, highlighting both under and overexpressed proteins. We evaluate the potential cost

and benefits of imbalance using two criteria. First, a potential cost to imbalance is that ‘left-

over’ proteins without remaining functional partners are free to misinteract. We systemati-

cally quantify how this misinteraction cost is most dangerous for strong-binding protein

interactions and for network topologies observed in biological PPINs. Second, a more direct

consequence of imbalance is that the formation of specific functional complexes depends

on relative copy numbers. We therefore construct simple kinetic models of two sub-net-

works in the CME network to assess multi-protein assembly of the ARP2/3 complex and a

minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed,

imperfectly balanced copy numbers are less effective than balanced copy numbers in pro-

ducing fast and complete multi-protein assemblies. However, we speculate that strategic

imbalance in the vesicle forming module allows cells to tune where endocytosis occurs, pro-

viding sensitive control over cargo uptake via clathrin-coated vesicles.
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Author summary

Protein copy numbers are often found to be stoichiometrically balanced for subunits of

multi-protein complexes. Imbalance is believed to be deleterious because it lowers com-

plex yield (the dosage balance hypothesis) and increases the risk of misinteractions, but

imbalance may also provide unexplored functional benefits. We show here that the bene-

fits of stoichiometric balance can extend to larger networks of interacting proteins. We

develop a method to quantify to what degree protein networks are balanced, and apply it

to two networks. We find that the clathrin-mediated endocytosis system in yeast is statisti-

cally balanced, but not perfectly so, and explore the consequences of imbalance in the

form of misinteractions and endocytic function. We also show that biological networks

are more robust to misinteractions than random networks when balanced, but are more

sensitive to misinteractions under imbalance. This suggests evolutionary pressure for pro-

teins to be balanced and that any conserved imbalance should occur for functional rea-

sons. We explore one such reason in the form of bottlenecking the endocytosis process.

Our method can be generalized to other networks and used to identify out-of-balance

proteins. Our results provide insight into how network design, expression level regulation,

and cell fitness are intertwined.

Introduction

Protein copy numbers in yeast vary from a few to well over a million[1, 2]. Expression levels,

along with a protein’s binding partners and corresponding affinities, are critical determinants

of a protein’s function within the cell. In the context of multiprotein complexes–especially

obligate complexes such as the ribosome–it is thought that protein concentrations are balanced

according to the stoichiometry of the complex. This is referred to as the dosage balance

hypothesis (DBH)[3–5]. Here, we expand this hypothesis to a network wide level, where pro-

teins participate in multiple distinct complexes as well as transient interactions. In these more

complex networks (Fig 1A), balance can be defined as having just enough copies of each pro-

tein to construct a target vector of complex abundances, with no proteins (or protein binding

sites) in significant deficiency or excess. This generalized definition of balance reproduces the

expected result for obligate complexes, where, for example, the ARP2/3 obligate complex (Fig

1B) would be balanced if all subunits had equal copy numbers.

For obligate complexes, dosage balance means that there are no leftover subunits, as these

would be a waste of cell resources. However, even for proteins in non-obligate complexes a

number of deleterious effects could be caused by imbalance. An overexpressed core or “bridge”

subunit may sequester periphery subunits, paradoxically lowering the final number of com-

plete complexes[5, 6]. Excess proteins may be prone to misinteractions, also called interaction

promiscuity, with nonfunctional partners. Numerous studies have identified proteins with

high intrinsic disorder as sensitive to overexpression[7–9], and these proteins have low, tightly

regulated native expression levels[10, 11] indicating that misinteraction propensity and abun-

dance are related. Underexpression carries its own dangers: a single underexpressed subunit

will become a bottleneck for the whole complex. In addition, weakly expressed proteins are

noisier[12] and thus less reliable for the cell. Male (XY) animal cells are known to employ “dos-

age compensation” mechanisms to increase the expression of X-chromosomal genes to be on

par with female cells[13, 14], though for other genes it is the female cell that cuts expression

levels in half[15], indicating that the cell preserves an optimized set of expression levels.
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But optimized does not necessarily mean balanced. Imbalance may be necessary for func-

tional reasons: signaling networks utilize underexpressed hubs to regulate which pathways are

active as a given time[16]. Recent models show imbalance can be beneficial to complex assem-

bly when affinity and kinetics are taken into account[17, 18]. A study of over 5,400 human pro-

teins by Hein et al. found that strong interactions forming stable complexes are correlated with

balance, but weak interactions are not, which may mean that the network as a whole is not bal-

anced [19]. Finally, the concept of dosage balance being an optimal set of protein copy num-

bers generally relies on the assumption that proteins reach an equilibrium state of complex

yield. Most processes in the cell do not occur at equilibrium and therefore deviations from bal-

ance could be beneficial in non-equilibrium models.

Here, we test the hypothesis that protein expression levels are significantly biased towards

balance, even for complex PPINs that include weak and transient interactions. This first

required us to develop a method to quantify stoichiometric balance in any arbitrary PPIN,

given known binding interfaces and some observed copy numbers, which we call Stoichiomet-

ric Balance Optimization of Protein Networks (SBOPN). Copy number correlations thus are

evaluated beyond direct binding partners to the more global network of interactors. We then

can quantify the consequences of imbalance relative to perfect balance according to two crite-

ria: 1) the deleterious consequences and cost of forming misinteractions, and 2) the potentially

beneficial control of specific functional outcomes by modulating which complexes, given

known binding affinities, actually assemble. Applied to the 56-protein, manually curated,

interface-resolved CME PPIN [20], two of its sub-networks, as well as the ErbB PPIN[16], we

find that stoichiometric balance in observed copy numbers is often significant, and observed

imbalances, particularly of underexpressed proteins, could provide tuning knobs for func-

tional outcomes.

Fig 1. Clathrin-mediated endocytosis network in yeast. (Left) Site graph for the protein-protein interaction network (N = 56, E = 186), displaying interfaces

used for binding interactions. Interfaces are color-coded according to domain type, the most common being SH3 domains (orange), Proline-rich regions

(pink), phosphosites (yellow), acidic domains (red), and multi-protein complex subunit interfaces (light green). (Right) The ARP2/3 complex, a subset of the

larger CME network.

https://doi.org/10.1371/journal.pcbi.1006022.g001
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The first consequence of imbalance we evaluate, misinteractions cost, has an indirect effect

on function by allowing unbound proteins to bind to non-functional partners, sequestering

components and thus affecting formation of specific complexes. They are believed to play a

role in dosage sensitivity[7, 8, 21], and avoiding them has been shown to be an evolutionary

force limiting protein diversity[22, 23], expression levels[24, 25], binding strengths[26], and

protein network structure[23, 27]. Misinteractions, not being selected for by evolution, are

weak and generally unstable, but there are far more ways for N proteins to misinteract (order

N2) than bind to their few functional partners (order N) [22, 23]. Cells have evolved a variety

of mechanisms to increase specificity, such as allostery[28, 29], negative design[30, 31],

compartmentalization[22], and temporal regulation of expression[32]. Copy number balance

would be another such mechanism, as protein binding sites would saturate their stronger-

binding functional partners.

The second and ultimately more direct consequence of imbalance we evaluate is that

changes to copy numbers control which specific and functionally necessary complexes can

form. When the central clathrin protein is knocked out in cells, for example, clathrin-mediated

endocytosis (CME) is terminated, as clathrin is functionally irreplaceable[33]. The plasma

membrane lipid PI(4,5)P2 is also essential for CME, as it is required for recruiting the diverse

cytosolic clathrin-coat proteins to the membrane to assemble vesicles[34]. Many clathrin-coat

proteins, however, can be knocked out without fully terminating CME[35]. As the CME net-

work illustrates (Fig 1), most of these proteins have multiple domains mediating interactions

involving both competitive and non-competitive interactions. Adaptor proteins (proteins that

bind to the membrane, to transmembrane cargo, and often to clathrin as well) exhibit redun-

dancy in their binding partners that can partially explain how knock-outs to one protein can

be rescued by the activity of related proteins. With simulation of simple kinetic models, we can

then test these hypotheses, including for the non-equilibrium production of vesicles at the

membrane. Although these models are far too simple to recapitulate the complexities of CME

in vivo, they are nonetheless useful in highlighting potential bottlenecks in assembly due to

copy numbers or binding affinities.

Quantifying balance in protein networks can thus lead to new insights, as unbalanced pro-

teins may serve as assembly bottlenecks, or maintain alternate cellular functions outside of the

network module being analyzed[18]. Dosage balance is also important for understanding dos-

age sensitivity[4, 21], a phenomenon where overexpression of a gene is detrimental or even

lethal to cell growth. Studies estimate ~15% of genes in S. cerevisiae to be dosage sensitive[9,

36], but the negative effects of gene overexpression have been observed in several eukaryotic

species including maize[4], flies[37], and humans[38–40]. Studying balance at a network-wide

level is challenging because it requires resolved information about the interfaces proteins use

to bind. A protein that binds noncompetitively with two partners requires equal abundance to

its partners. But if the binding is competitive–i.e. the same interface is used to bind two differ-

ent partners–the protein’s abundance must equal the sum of that of its partners to have no left-

overs (Fig 2). Classic protein-protein interactions networks (PPINs) lack this resolution, but

recent studies have begun to add this information, creating what we refer to as interface-inter-

action networks (IINs)[16, 20, 41]. An IIN tracks not just protein partners but also the binding

sites that proteins use to bind.

Our study of stoichiometric balance in larger, interface resolved PPINs is organized in the

Results section in three parts. In the first part, we define a metric for quantifying stoichiomet-

ric balance and how noise in protein expression levels can be approximately accounted for.

We apply our algorithm SBOPN to the CME PPIN [20, 41] and the ErbB PPIN [16], highlight-

ing which proteins are over- and underexpressed relative to perfect balance. Although this

analysis excludes temporal expression and binding affinity, it provides a starting point for the
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analysis of these features in the subsequent parts. In the second part, we switch to generalized

interface-interaction network (IIN) topologies and network motifs to focus exclusively on how

our first evaluation criteria, the cost of misinteractions under imbalance, is worse for strong

binding proteins and for network topologies that resemble biological networks. In the third

part, we return to the interface-resolved CME PPIN to evaluate the observed degree of stoi-

chiometric balance in two smaller sub-networks of the CME network: the 7-subunit ARP2/3

complex and a simplified, nine protein, clathrin-coat forming module. In these sub-modules,

we now can also evaluate our second criteria and assess how observed copy numbers influence

proper multi-protein assembly given known binding affinities of interactions. Our simulations

of (non-spatial) kinetic models demonstrate that stoichiometric balance does, in fact, improve

multi-protein assembly relative to observed copy numbers, even for the nonequilibrium cla-

thrin-coat assembly module. We speculate that the observed imbalances in clathrin adaptor

proteins could offer a mechanism for making the vesicle formation process more tunable,

since adaptor proteins are responsible for selecting cargo for endocytic uptake, which is the

ultimate purpose of CME.

Results

Stoichiometric balance is measureable in large PPINs when interfaces are

resolved

For a multi-subunit complex such as the ribosome or ARP2/3 complex (Fig 1B), all subunits

bind together non-competitively to assemble a functional complex. Stoichiometric balance is

simply having enough of each subunit to form complete complexes, with no subunit in excess.

But quantifying balance in a general protein-protein interaction network is more challenging

because some proteins will bind competitively, using the same interface for multiple interac-

tions. Such proteins will need a higher concentration in order to saturate their functional part-

ners (Fig 2). Thus, to establish stoichiometric balance in a PPIN the binding interfaces must be

known. In previous work we analyzed several interface-resolved PPINs, including the

Fig 2. Examples of balanced vs unbalanced copy numbers, and optimal solutions found by our algorithm. A) A

network with balanced copy numbers has just enough proteins (blue numbers) to form the desired number of

complexes (black numbers). B) The copy numbers are unbalanced because an excess of “B” proteins is leftover after all

possible complexes form. C) Starting from the network of (B) and using its copy numbers as C0, our algorithm

‘Stoichiometric Balance Optimization of Protein Networks’ (SBOPN) solves for a balanced set of interface copy

numbers (green text) that both 1) optimizes distance of the balanced interface copy numbers to C0 and 2) constrains all

interfaces on the same protein to the same copy number. The parameter α controls which of the two constraints is

weighted more strongly. A low α (lower solution) forces all interfaces to the same copies on a protein. Higher α (upper

solution) allows interfaces to vary to solve for copy numbers closer to C0, as seen for protein “C”. The protein copy

number for “C” is calculated as the average over all its interface copy numbers.

https://doi.org/10.1371/journal.pcbi.1006022.g002
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56-protein clathrin-mediated endocytosis (CME) network in yeast [20, 41] (Fig 1A), and the

127-protein ErbB signaling network in human cells[16].

To balance a network, a number of desired complexes may be assigned to each edge and

then the number of required interface copies directly solved for. This is constrained with a

starting set of copy numbers, C0, otherwise the solution would be arbitrary. However, the

inclusion of multiple interfaces per protein introduces a new constraint: interfaces on the same

protein should have the same copy number. This constraint often makes nontrivial solutions

(i.e. when none of the proteins are set to zero) impossible (see Methods). Therefore, we treat it

as a soft constraint, using a parameter “α” to balance its influence. A high α allows more varia-

tion of interface copy numbers on the same protein (Fig 2C). We constructed and minimized

an objective function using quadratic programming (Methods), which produces a new, opti-

mally balanced set of copy numbers, Cbalanced. For any given interface-resolved PPIN, there

can be multiple locally optimized solutions of balanced copy numbers. In Fig 2C we illustrate

solutions found by our algorithm SBOPN using the copy numbers of Fig 2B as C0. If we apply

our algorithm to Fig 2A, which is an already balanced network, it simply recovers the input

copy numbers, such that Cbalanced = C0, regardless of α. Because our algorithm minimizes dis-

tance from C0 to Cbalanced, the optimal solutions produce both under and overexpressed

proteins.

The benefit of this method is that the distance between C0 and Cbalanced gives you a relative

estimate of how “balanced” C0 already is, and thus a metric from which to evaluate the signifi-

cance of balance in the observed copy numbers. Using real copy numbers taken from Kulak

et al.[2], Creal, as C0, we calculated both chi-square distance (CSD) and Jensen-Shannon dis-

tance (JSD) between Creal and Cbalanced (Methods). The former metric looks at differences

between absolute values and penalizes high deviations more strongly than low deviations,

whereas the latter converts both vectors to distributions and measures the similarity between

them. We do not expect any networks to have Creal that is already perfectly optimized, such

that Creal = Cbalanced. To establish the significance of both distance metrics, we generated 5,000

sets of random C0 vectors, sampled from a yeast concentration distribution. We then mea-

sured the CSD and JSD from C0 to Cbalanced for each of these random copy number vectors. If

Creal is balanced, its distance metrics should have a significant p-value relative to yeast copy

numbers selected randomly from the yeast distribution. The C++ code for our SBOPN algo-

rithm and example input and output files may be downloaded at https://github.com/

mjohn218/StoichiometricBalance.

Accounting for noise in observed copy number measurements. Even constitutively

expressed genes do not have a constant abundance; they vary due to both extrinsic and intrin-

sic noise [42]. Taniguchi et al. found that the abundance of a single protein in E. coli follows a

gamma distribution [12]. Therefore, one reason copy number balance should not be expected

to be perfectly matched is due to inherent fluctuations in protein copy numbers. Our algo-

rithm, however, ultimately assigns a single copy number to each interface in the network to

optimize perfect balance, when realistically a range of values would be more appropriate.

Our method does provide one mechanism to allow a range of copy number values for a sin-

gle protein, and that is through allowing each interface on a single protein to have distinct val-

ues. This range can be tuned through our parameter α, which biases solutions towards

equivalent interface copies per protein when set to zero. As the α parameter increases, more

variation is observed (Fig 2C). For example, one interface may be assigned 200 copies and

another on the same protein 300 copies. If the protein is usually expressed within the 150–350

copy range, this solution is more realistic than enforcing both copy numbers to be exactly 250.

We therefore systematically characterized how variations in α changed the “noise”, or vari-

ability in interface copy numbers on each protein. Taniguchi et al. found that yeast proteins
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with high abundance (~1,000 or more copies) had a noise (σ2/μ2) upper limit of about 0.5 with

ungated data and 0.1 with gated data[12]. For α�0.03, we found that proteins with mean inter-

face copy numbers above 1,000 had less than 0.1 noise, indicating that such a solution is possi-

ble. (S1 Fig). Low abundance proteins exhibit higher noise in terms of expression level[12, 43],

and this feature is also observed in our model. We therefore used values of α in the 0.01 to 2

range based on this analysis (S1 Fig).

Protein copy numbers in yeast clathrin-mediated endocytosis are balanced. As Fig 3A

and 3B shows, at α = 1 the p-value for JSD was found to be statistically significant (p = 0.0054)

but the p-value for chi-square distance was not (p = 0.157). We analyzed the real copy numbers

(S2 Table) before and after balancing and found that the protein cofilin was highly overex-

pressed (Fig 3C) meaning that it had to be greatly lowered to achieve balance. This resulted in

a skewed CSD for Creal, which the change in cofilin dominated. We therefore re-tested the

degree of balance when cofilin was removed from the network. At α = 1, both JSD (p = 0.0012)

and CSD (p = 0.022) were statistically significant (Fig 3D), indicating that these 55 proteins are

balanced compared to random copy numbers. These results were robust to changes in α, but

the p-values tended to be lowest when α was in the 0.01 to 2 range. The absolute distance from

Creal to Cbalanced lowered as α was raised, plateauing when α�10.

Because protein complexes that strongly bind are thought to be more balanced than weak

interactions, we repeated the analysis on the full 56-protein network after removing one of two

modules from the network: the four protein subunits of the AP complex, and the seven pro-

teins in the ARP2/3 complex. Without the former, the p-value increased to 0.0088 for JSD and

0.197 for CSD, indicating less overall balance. Removing only the ARP2/3 complex similarly

raised the p-values to 0.023 and 0.24. This trend held when cofilin was also removed.

The four AP subunits that form the obligate AP-2 complex are fairly close in abundance, as

are the clathrin heavy chain and clathrin light chain proteins, which is consistent with the pres-

sure for strong binding proteins to be more tightly balanced.

Stoichiometric balance is not measured without proper interface binding interac-

tions. To test whether balance depended mostly on protein network structure rather than the

child interface interaction network (IIN) structure, we ran this analysis again using random

IINs for the same parent protein network, again excluding cofilin. In other words, we random-

ized whether proteins bind competitively or noncompetitively, using a rewiring method from

Holland et al.[41]. For 20 random IINs, we found that the real copy numbers were significantly

less balanced. For α = 1, the same analysis obtained p-values of 0.44 ± 0.12 for CSD and

0.24 ± 0.13 for JSD. Thus, the protein copy numbers are balanced according to the underlying

interface network.

Observed protein imbalances can highlight functional relationships. Finally, by looking

at the relative change between Creal and Cbalanced, we could examine which proteins are under-

expressed in the network. We note that because our method minimizes the distance from Creal

to Cbalanced, the optimal solution has comparable number of over and underexpressed proteins.

As Fig 3E shows, the five most underexpressed proteins are PRK1 (by a factor of nearly 40),

ARK1, AIP1, APP1, and YSC84. PRK1 and ARK1 are both kinases; they form transient inter-

actions with their partners for the purpose of phosphorylation. Since a single kinase can phos-

phorylate many proteins relatively quickly, rather than form stable complexes with each target,

there is a sensible functional explanation for why these proteins can be underexpressed relative

to their partners by such a large margin. Similarly, APP1 is a phosphatase. The protein AIP1 is

an actin binding protein that targets a binding surface of actin without any competition from

other actin binders, and also binds the highly expressed cofilin. Its low abundance relative to

actin and cofilin could indicate it acts as a bottleneck in regulating cofilin-actin interactions,

or perhaps more simply, that functionally it is not needed at a 1:1 stoichiometry with the
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ubiquitous actin protein. YSC84 has 13 binding partners, and 10 of these partners all bind the

YSC84 SH3 domain, including the relatively highly expressed ABP1. Although many of these

binding partners (all proline rich domains-PRDs) also have additional partners of their own,

ABP1’s PRD is specific to YSC84’s SH3 domain[41]. As we return to in the discussion, under-

expression could indicate a functional regulatory role for this protein, or indicate transient

interactions with partners. Identifying underexpressed proteins and which of their interface

binding partners apply pressure to increase copy numbers is a useful first step in hypothesizing

about the temporal dynamics of such proteins within the cell.

Actin is overexpressed compared to its partners, excluding cofilin, which can be likely

attributed to its primary role as a central component of the cell cytoskeleton. Clathrin, another

protein that polymerizes, is also overexpressed, the reasons for which are investigated in part

3, “Beyond misinteractions: Multi-protein functional assemblies are sensitive to stoichiometric

Fig 3. Clathrin-mediated endocytosis proteins are balanced. (A,B) Histograms for chi-square distance and Jensen-Shannon distance between the real protein

copy numbers and their copy numbers after balancing. Compared to 5,000 sets of random sampled copy numbers, the real copy numbers had a statistically

significant Jensen-Shannon distance, but not chi-square distance. (C) Graph of CME network, showing which proteins were overexpressed (red) or underexpressed

(blue) compared to the balanced copy numbers. Cofilin was highly overexpressed, which led to a high chi-square distance. (D) Histogram for chi-square distance

when cofilin was removed from the network. It is now statistically significant, indicating that the other 55 proteins are balanced compared to random copy

numbers. (E) The five most underexpressed proteins were two kinases (PRK1 and ARK1), one phosphatase (APP1), and two partners of Actin (AIP1 and YSC84).

The former three bind transiently to their partners, so there is no functional need for them to be balanced. The latter two are discussed in the text.

https://doi.org/10.1371/journal.pcbi.1006022.g003
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balance“. Cofilin’s high expression is the most imbalanced, and Kulak et al. also found it highly

expressed in HeLa cells and S. pombe [2]. The protein acts to sever actin filaments, without

which the cytoskeleton cannot reorganize[44] and cells cannot migrate[45]. Highly expressed

proteins will enable faster complex formation, so one possible advantage of its high abundance

is making rapid reorganization of the cytoskeleton possible.

Ras and MAP3K proteins in the ErbB signaling network are underexpressed. We

applied our algorithm SBOPN to another IIN from the literature: that of the 127 protein

human ErbB signaling network, characterized by Kiel et al.[16]. Our algorithm optimizes copy

numbers to the full network structure even if not all individual target copy numbers are avail-

able. Thus, we measured the distance between the real (Creal) and optimized (Cbalanced) copy

numbers for the 115 of the 127 proteins for which we could assign expression levels from

HeLa cells (Methods, S2 Table). We compared results to copy numbers randomly sampled

from a HeLa protein concentration distribution.

Because this is a signaling network where the majority of interactions are phosphorylation,

we expected these transient interactions to bias the copy numbers against significant balance.

However, while JSD was not found to be significant (p = 0.274), CSD was (p = 0.022). This

result held when copy numbers were shuffled rather than randomly sampled (JSD: p = 0.120,

CSD: p = 0.019). As stated above, CSD is dominated by large deviations. Thus, while the net-

work as a whole is not balanced, there appears to be no dramatic overexpression.

The three Ras proteins (HRAS, NRAS, and KRAS) were found to be underexpressed (S2

Fig), confirming the findings of Kiel et al. using simpler comparisons of Ras copy numbers to

all binding partners [16]. Also found to be underexpressed were all five MAP3K proteins

(RAF1, MAP3K1, MAP3K11, MAP3K2, and MAP3K4) in the network. MAP3K proteins are

the top layer in MAPK cascades, a signaling motif consisting of three proteins (a MAP3K,

MAP2K, and MAPK) occasionally bound together via a scaffold protein[46]. The membrane

bound receptors ErbB2 and ErbB3 were similarly underexpressed. These results suggest strate-

gic underexpression of certain upstream proteins, potentially to control specific outputs from

diverse inputs[16], and to amplify a signal as it travels “downstream” in a signaling network.

Underexpression of upstream proteins is not a universal rule, however, and may depend on

the type of interaction and the dynamics of the signaling network.

Imbalance increases misinteractions dependent on the network topology

and binding affinities of proteins

In this second part, we investigate how the cost of imbalance, measured solely in terms of mis-

interactions, depends on general properties of proteins, including binding affinity and number

of binary partners. In a stoichiometrically balanced network, proteins will be driven to saturate

their stronger-binding functional partners. Any “leftover” proteins, however, may misinteract,

or form non-functional complexes that, while weak, are combinatorically numerous.

Misinteractions are minimized under balanced copy numbers and are largely indepen-

dent of network motif structure. Complex formation and misinteractions must be evaluated

at the level of individual protein binding interfaces, and we thus study small network motifs

that have been previously characterized in real biological interface interaction networks (IINs)

to control binding specificity [41]. Of these five motifs (Fig 4A), the hub and square motif are

the most common in biological IINs relative to random networks [41]. The chain, triangle,

and flag motif are selected against due to the challenges in optimizing such binding interfaces

for strong selective binding and against misinteractions.[23, 27, 41] The motif defines the func-

tional or “specific” interactions, which we allow at equal binding strengths. However, all other

possible protein-protein interactions were allowed as misinteractions, which occur at weaker
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strength than the specific interactions. Because each node represents an interface (each on its

own protein in this case), all binding was competitive.

Balanced copy numbers are relatively easy to design for these simple network motifs, and

the optimization of the first part,”Stoichiometric balance is measureable in large PPINs when

interfaces are resolved”, is not necessary. We study imbalanced copy numbers by simply vary-

ing the copy numbers of two proteins in each network over a wide range while keeping the

remaining proteins constant. For each set of copy numbers, we ran the system to equilibrium

using the Gillespie algorithm[47]. We could then measure the total number of specific and

non-specific complexes formed (Nspecific, Nnonspecific), as well as unbound proteins (Nfree), and

use this to evaluate the cost of being out-of-balance in terms of misinteraction frequency:

Cost C0ð Þ ¼
NnonspecificðC0Þ

NspecificðC0Þ þ NfreeðC0Þ
ð1Þ

averaged across 1,000 runs, where C0 is the vector of initial copy numbers.

The frequency of misinteractions is lowest when the protein copy numbers are balanced.

Fig 4B shows the results for the triangle network. For example, when all three proteins have

equal abundance of 50 copies, about 25 of each specific complex are formed, and minimal pro-

teins are leftover. Cost also remains low when two proteins are equally overexpressed, as these

excess proteins can bind to each other. The instances where misinteractions are the most fre-

quent are when one protein is overexpressed, as this protein has no specific partners left and

thus will self-bind: a misinteraction for this motif. Similar surface plots were obtained for all

five network motifs (S3 Fig).

Notably, with balanced copy numbers, the frequency of misinteractions is almost entirely

dependent on the relative strength, or energy gap, between specific and nonspecific binding

(Fig 5A) and there was little difference among the five networks. The slope varies slightly from

one motif to another, and we confirmed that this can be calculated relatively accurately based

on the ratio of specific versus non-specific interactions possible for that motif. Furthermore,

Fig 4. Misinteractions in network motifs from biological IINs. (A) Five network motifs that have been shown to impact specificity of binding in biological IINs

were tested for the effects of imbalance on misinteractions. (B) Surface plot obtained for the triangle network. The z-axis is the frequency of misinteractions at

steady-state (Eq 1) averaged across 1000 runs. The x and y axes are the number of B and C proteins; the number of A proteins is fixed at 50. As one protein becomes

overexpressed, misinteractions increase exponentially.

https://doi.org/10.1371/journal.pcbi.1006022.g004
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the results were similar when we varied the absolute strength of specific binding from 1nM;

under balanced conditions it affects the number of free proteins (Nfree) relative to total com-

plexes formed. Thus, under balanced copy numbers, the cost of misinteractions is not strongly

dependent on specific binding affinities.

Misinteractions for imbalanced copy-numbers are worse for biologically common

motifs and strong binding proteins. Unlike the similar cost of misinteractions under bal-

anced copy numbers, the five networks noticeably differ in sensitivity to imbalanced copy

numbers. In general, as copy numbers become more imbalanced, the misinteraction cost

grows. To quantify this rate for each network motif, we measured the percent change in cost as

one travels along the principal components away from the balanced copy numbers (Fig 5C; S3

Fig 5. Misinteractions are motif dependent only when concentrations are imbalanced. (A) At balanced concentrations, misinteraction frequency increased

linearly with the ratio of KD,specific to KD, nonspecific. It was also roughly equal for all five network motifs. (B) At unbalanced concentrations, misinteractions can

occur even at a large energy gap (low K_D ratio), unless the overall binding is weak (i.e. red curve). (C) Surface plot for the square network, measuring the ratio

of (#nonspecific complexes: #specific complexes + free proteins) when A1 and A2 are fixed while B1 and B2 are varied. The principal component (black line) is

shown across the region of lowest misinteraction frequency. (D) Cost sensitivity to concentration imbalance varies significantly between motifs. The “distance”

is measured along the principal component of the surface plots as you move away from the optimal region. Two different pairs of fixed proteins were analyzed

for the chain and flag networks. The hub and square networks were the most sensitive to imbalance, while the flag and triangle were the least.

https://doi.org/10.1371/journal.pcbi.1006022.g005
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Fig). The hub and square motifs were found to be the most sensitive, showing a rapid increase

in cost of misinteractions as imbalance grows, whereas the flag and triangle motifs were found

to be the least. (Fig 5D). The triangle motif has the least sensitivity and it also has the fewest

misinteractions possible; it can form 3 specific complexes and only 3 misinteracting com-

plexes. The robustness of this module also then extends to the flag motif, which contains a

triangle.

The motifs most sensitive to imbalance, the hub and square motif, are also the motifs most

common in biological networks [27, 41]. In previous work, we demonstrated that these motifs

are evolutionarily selected for in biological networks because binding interfaces that interact

through these specific motifs are much easier to simultaneously design for high specificity

(strong KD,specific) and for weak nonfunctional interactions (weak KD,nonspecific) [27, 41].

Although these motifs thus produce more selective binding interfaces, our results show that

there is more pressure to maintain copy number balance in these biologically common motifs

to prevent misinteractions.

Importantly, unlike the results for balanced copy numbers, strong binding proteins are

highly prone to misinteractions under imbalanced conditions (Fig 5B). Weak-binding proteins

form minimal complexes overall, and thus imbalances in copy numbers do not strongly influ-

ence their binding patterns. Strong binding proteins, on the other hand, are driven to bind to

any unbound interface, even when the gap separating specific and non-specific binding is

large. This is because although the nonspecific binding affinities are orders of magnitude

weaker than the specific binding affinity, for a strong binder (KD = 1nM), the nonspecific

interactions will be strong enough (KD~10μM) to form stable complexes (Fig 5). The number

of possible misinteracting partners is also approximately given by the total number of inter-

faces in the cell. Thus, leftover copies of these proteins frequently misinteract. This supports

the observations that strong binding proteins should be tightly regulated to maintain stoichio-

metric balance[19], and therefore avoid misinteractions. For weak binding proteins, on the

other hand, misinteraction cost is not a significant pressure favoring copy number balance.

Larger networks with biological topologies produce more misinteractions under copy

number imbalance. Our analysis of network motifs above demonstrated that topologies

common in biological IINs are actually more prone to misinteractions when copy numbers

are imbalanced. We find here that the same trend applies to much larger networks that again

exhibit biological topologies (Fig 6). To show this, we analyzed 500 IINs that differed in three

properties: motif frequencies; degree distribution; and density, which was determined by the

size of the network (90–200 proteins for 150 edges). The biological-like IINs have motif fre-

quencies biased to hub and square motifs, they have a degree distribution that is power-law

like or “scale-free”, meaning, broadly speaking, that a few “hub” proteins have many connec-

tions while the majority are specialized for a few interactions, and they tend to be sparse; inter-

faces in the CME IIN have an average degree of only 2.06[41]. For simplicity, here we will

assume each interface is on its own protein, such that the PPIN is the same as the IIN. Balanced

copy numbers are assigned to each network using our optimization method described above

based on network structure (also see Methods), and imbalanced copy numbers are defined by

randomly sampling copy numbers from the yeast distribution. Specific and non-specific Kd

values for each possible binding interaction were initially taken from a previous study[27],

where the gap between specific and non-specific binding was optimized based on selecting

amino-acid sequences for each interface [27].

As expected, when copy numbers are balanced rather than imbalanced via random assign-

ments, all networks produced fewer misinteractions. The networks that, under balanced copy

numbers, produced the fewest misinteractions were the networks most like biological IINs:

they were sparse networks and they had optimized topologies favoring square and hub motifs
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(Fig 6). Because these IINs also had larger energy gaps separating KD,Specific and KD,Nonspecific

[27], we verified that when all networks were assigned the same KD,Specific and KD,Nonspecific

(1000-fold different), the biological IINs indeed produced fewer misinteractions under bal-

anced copy numbers (S4 Fig), although the difference was relatively small. Hence, overall, the

results are similar to the findings with motifs, that for balanced copy numbers, misinteractions

are not strongly influenced by network structure.

Once copy numbers were imbalanced, however, the biological-like IINs produced a sharper

increase in misinteractions (higher sensitivity-Fig 6). This is consistent with the trends from

the previous subsection, where the biological motifs of hub and square motifs were also more

sensitive to imbalance. Sparse networks are more sensitive to imbalance because they have

more interfaces (N) that can possibly misinteract (order N2). The only network feature that

did not have a significant trend in controlling misinteractions either for balanced or unbal-

anced copy numbers was the degree-distribution. For power-law network topologies com-

pared to Poisson networks, misinteractions could be higher or lower depending on the local

motifs or the network sparseness (Fig 6; S4 Fig). Thus, local topology and density was more

important than the overall degree distribution.

Fig 6. Biological IIN topologies have more misinteractions under imbalance. Shown are trends in misinteraction

frequency under balanced concentrations (blue arrows) and sensitivity to imbalance (red arrows). Several features that

make networks perform better under balanced concentrations make them perform worse under unbalanced

concentrations: sparseness, a topology that matches with real interface networks, and a power-law degree distribution.

Strong average binding caused both increased misinteractions and increased sensitivity.

https://doi.org/10.1371/journal.pcbi.1006022.g006
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Finally, because highly abundant proteins are thought to have low average affinity to avoid

misinteractions, we increased the absolute strength of KD,Specific, while keeping the gap

between KD,Specific and KD,Nonspecific the same. Stronger affinity did indeed lead to both more

nonspecific complexes and higher sensitivity to copy number imbalance. This result is consis-

tent with the previous subsection and confirms that strong binding affinities can be paradoxi-

cally deleterious to specific complex formation.

Beyond misinteractions: Multi-protein functional assemblies are sensitive

to stoichiometric balance

In the second part, “Imbalance increases misinteractions dependent on the network topology

and binding affinities of proteins”, we only studied binary, competitive interactions. But pro-

teins often bind noncompetitively into higher complexes, and they may interact weakly and

thus form few complexes, in which case imbalance may have functional benefits [17, 18]. Fur-

thermore, the above models looked at equilibrium results, whereas many biological systems

exhibit non-equilibrium dynamics. We created kinetic models of two modules from the CME

network with observed imbalances: the ARP2/3 complex and a simplified vesicle forming pro-

tein subset. Simulating higher complex formation is challenging because of the exponentially

large number of possible species, so we used NFSim[48], a stochastic solver of chemical kinet-

ics that is rule-based, enabling an efficient tracking of higher-order complexes as they appear

in time.

The ARP2/3 complex has higher yield under stoichiometric balance. One unexpected

imbalance we found was that of the isolated, 7-component ARP2/3 complex. The complex

has one highly underexpressed subunit, ARC19. ARC19 is a core subunit, binding to five

other subunits (Fig 1B). Because of this, it is more likely to form misinteractions (due to its

five interfaces) and be a part of incorrect complexes (e.g. complexes of the form ARC19 –

ARC40 –ARP2 –ARC19 are incorrect because they contain two ARP19 proteins). Therefore,

we tested whether the observed copy numbers might improve formation of complete ARP2/

3 complexes.

Ultimately, we found that balanced copy numbers always improved formation of complete

ARP2/3 complexes relative to the observed copy numbers, whether or not misinteractions

were modeled (S5 Fig). We simulated simplified complex assembly using arbitrary rate con-

stants and two sets of copy numbers: those observed from Kulak et al. and stoichiometrically

balanced (in this case equal) copy numbers for each subunit. We measured “yield” as the num-

ber of proteins in full complexes divided by the number of proteins in all complexes, including

misassembled or incomplete. Some cooperatively was allowed in that if three proteins in a tri-

mer were held together by two binding events, the third binding event could occur at a faster

rate (due to all three subunits being localized together). Binding to the core subunit ARC19

was also set to be 10-fold stronger than peripheral bindings, as this increased yield. But no mat-

ter what parameter ranges we used, we could not increase the yield of the Kulak copy numbers

(max ~13%) versus the balanced copy numbers (max ~50%). Because ARC19 has ~5-fold

underexpression compared to the other 6 subunits, incomplete complexes dominate. The

results held when we also allowed ARC19 to form misinteractions.

Imbalances in copy numbers have been shown to actually improve the yield for self-assem-

bly, but the optimal copy numbers must take on specific ratios of components to optimize

yield [17]. Here, we see that the ARP2/3 subunits do not exhibit optimal expression for yield in

our model. One possible explanation is that the ARC19 subunit has distinct thermodynamics

or kinetics that are critical for controlling assembly. This would suggest that this subunit has

conserved expression across all organisms. However, this is not the case. We compared the
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expression levels of the seven subunits with data from three other studies. Two also found

ARC19 to be underexpressed[49, 50], whereas one[1] found it to be overexpressed. However,

Chong et al. also found ARP2 to be underexpressed, whereas Kulak et al. found it to be overex-

pressed. We also compared the abundance of human homologs from five studies[2, 19, 51–53]

and found similar issues with noise, though only one found ARC19’s homolog to be underex-

pressed. (S5 Fig) Thus, no conservation of subunit expression levels is observed. Without a

more structurally and biochemically accurate model for the ARP2/3 components, it is difficult

to assess whether the low expression of ARC19 does provide some benefit in assembly yield.

As we return to in the discussion, several other factors may explain the imbalance, such as

noise in expression levels or in measurements of expression levels, or additional roles in the

cell for some ARP2/3 subunits.

A simplified clathrin-coated vesicle forming module enables a kinetic study of imbal-

ance effects on non-equilibrium assembly. For our final analysis, we test the effects of copy

number balance on a more complex, non-equilibrium model of clathrin-coat assembly for ves-

icle formation. Our minimal model for vesicle formation includes nine cytoplasmic proteins

plus the plasma membrane lipid recruiter PI(4,5)P2, with the biochemical parameters taken

from the literature for all known binding interface interactions (Fig 7; Table 1). In clathrin-

mediated endocytosis, clathrin triskelia consisting of three heavy chains (CHC1) and three

lights chains (CLC1) are recruited to the membrane via adaptor proteins that bind lipids

(ENT1 & 2, SYP1, SLA2, YAP1801) and in some cases also transmembrane cargo (ENT1 & 2,

YAP1801). Clathrin polymerize to form a hexagonal clathrin cage of ~100 triskelia [54] that

helps deform the plasma membrane into spherical membrane vesicles of ~100 nm in diameter.

Additional non-membrane-binding scaffold proteins help stabilize the assembly (EDE1,

YAP1802). Importantly, the assemblies do not have to exhibit a perfect stoichiometry of com-

ponents, unlike the ARP2/3 complex, in order to function, with variable compositions shown

to produce clathrin-coated structures in vitro[35, 55, 56]. To measure vesicle formation in our

model, we therefore make the assumption that completed vesicles contain 100 triskelia [54] in

a complex on the membrane. Once a completed model vesicle is formed, all components that

are a part of this complex are recycled, unbound, back to the cytoplasm, keeping total protein

concentrations fixed.

We emphasize that this minimal model is based on the known concentrations and binding

properties of the component proteins, and thus we are not attempting to optimize the model

to best describe in vivo observations. Furthermore, this kinetic model does not account for bio-

mechanics of the membrane budding or coupling to the cytoskeleton, or molecular structure,

which are important features of CME. As we see in our simulations, our vesicles form ~10

times faster than vesicle formation in vivo. However, clathrin-coated vesicles (pre-scission) are

observed to assemble in vitro with minimal components, without the cytoskeleton or any

energy sources[35, 56]. We thus included in our model all proteins from the larger CME net-

work (Fig 1) that directly connect clathrin coat assembly to the membrane surface, linking the

assembly process with the ultimate endocytic goal of transmembrane receptor and cargo

uptake. Our model thus represents a useful qualitative framework to assess how stoichiometric

balance in clathrin-coat components can impact vesicle formation and thus cargo uptake.

An important feature that our model does capture is the reduction in dimensionality (3D to

2D) which accompanies binding to the membrane surface [59]. Once localized to the mem-

brane via either lipid binding or recruitment by other proteins, proteins are concentrated in

units of Area-1, with binding constants of Kd
2D = Kd

3D/(2σ), where σ is a lengthscale in the

nanometer range[73], as discussed in Ref. [59]. Transitioning to the membrane can drive dra-

matic increases in complex formation due to higher effective concentrations of components

[59]. In our simulations here, we find that this is a critical factor controlling vesicle formation.

Protein copy number balance in large protein binding networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006022 March 8, 2018 15 / 34

https://doi.org/10.1371/journal.pcbi.1006022


Besides this division between the cytoplasm and the membrane surface, there is no other spa-

tial resolution. A full list of model assumptions can be found in the S1 Text.

Adaptor proteins are underexpressed and can tune vesicle formation. We first evalu-

ated whether this nine-protein module (Fig 7) was significantly balanced using SBOPN. The

clathrin heavy chains and light chains are close in expression, as expected since these two have

a strong binding affinity (~ 1nM)[66]. But clathrin was overexpressed compared to its adaptor

proteins by over 3-fold. Functionally, a full triskelia has up to six binding sites for adaptor pro-

teins, but only one needs to be bound to localize it to the membrane. Hence, it is not strictly

necessary for the adaptor proteins to be balanced. However, we found that when balanced

copy numbers were used instead of observed copy numbers, vesicles formed faster and with

fewer components (Fig 8A) Thus the biological copy numbers do not appear optimized for

maximum vesicle formation, though they are sufficient to drive vesicle formation.

Our model assumes these proteins are well-mixed throughout the cytosol, but cells can spa-

tially regulate proteins, altering the local concentration. We simulate this by altering the

expression of the adaptor proteins in our model. Knocking out either SLA2 or ENT1/2 pushes

the copy numbers even further out-of-balance, and nearly halts vesicle formation (Fig 8C and

8D). Increasing their expression increases vesicle formation because they are below saturation.

Decreasing the other adaptor or scaffold proteins also increases imbalance and has a negative

effect on the speed of vesicles, although it is less severe. Clathrin-coat assembly is quite sensi-

tive to these membrane-binding protein concentrations because they not only recruit clathrin

to the membrane, but they stabilize the triskelion in 2D, where they can then exploit reduced

dimensionality to drive binding [59]. If clathrin polymerized effectively in solution, far fewer

adaptor proteins would be needed to link large clathrin-cages to the membrane surface. We

speculate that this sensitivity to the membrane-binding adaptor proteins and their observed

underexpression could allow the cell to better tune productive vesicle formation to occur only

when enough cargo is localized [74]. The adaptor proteins ultimately localize the cargo bound

Fig 7. Clathrin membrane recruitment model. (A) In clathrin-mediated endocytosis, adaptor proteins bind to the lipid membrane and recruit clathrin triskelia to

the surface. These triskelia assemble a hexagonal cage around the plasma membrane vesicle. (B) Binding model of the clathrin module. Included are seven adaptor or

accessory proteins (SYP1, EDE1, YAP1801/2, ENT1/2, and SLA2), clathrin heavy chains already assumed to be in trimer form, and clathrin light chains. Five of the

adaptor/accessory proteins can bind directly to the lipid membrane. Picture generated with Rulebender.

https://doi.org/10.1371/journal.pcbi.1006022.g007
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membrane receptors to clathrin-coated sites, a process called cargo loading[75, 76]. By increas-

ing or decreasing the local concentration of adaptors, clathrin recruitment can be halted or

sped up. With balanced copy numbers, the process is more stable to perturbations in copy

numbers, and therefore less efficiently tuned.

Despite the underexpression of adaptor proteins, we observed a very high adaptor to triske-

lia ratio in completed vesicles (~19). A single triskelion can bind three SLA2 and three ENT1/2

proteins, which can bind three EDE1 and SYP1 proteins, leading to a seeming saturation of 12

adaptors per triskelion. However, most of these proteins can also dimerize with a strong affin-

ity, allowing them to bind to other complexes of adaptor proteins. Our model lacks steric hin-

drance that would otherwise prevent this high level of aggregation, but nonetheless there is a

clear gap in strength between adaptor protein interactions and clathrin interactions (Table 1).

These weak clathrin interactions, particularly polymerization (~100 μM)[60], prevent sponta-

neous cage formation in the cytosol. It is the aggregation of adaptor proteins and localization

Table 1. Parameters for clathrin membrane recruitment model. See S1 Text for further notes.

Parameter Description Value Source(s)

Vol_CP Cytosol volume 37.2 μm3 Jorgensen Science 2002[57];

Alberts Molecular Biology of the Cell 6th Ed. 2015[58]

SA_PM Plasma membrane surface area 75.7 μm2 Jorgensen Science 2002[57]

σ KD,3D to KD,2D conversion 1 nm Yogurtcu PLoS Comp Biol 2018 [59]

Kd_CHC_CHC Clathrin heavy chain polymerization 100 μM Wakeham EMBO J 2003[60]

Kd_CHC_ENT Clathrin heavy chain binding to ENT1/2 22 μM Miele Nat Struc Mol Biol 2004[61]

Kd_CHC_YAP Clathrin heavy chain binding to YAP1801/2 160 μM Zhuo J Mol Biol 2010[62]

Kd_EDE_ENT EDE1 to ENT1/2 binding 12 μM de Beer Nat Struc Biol 2000[63]

Kd_EDE_YAP EDE1 to YAP1802 binding 0.6 μM Morgan J Biol Chem 2003[64]

Kd_EDE_EDE EDE1 dimerization 0.127 μM Boeke Mol Syst Biol 2014[65]

Kd_CHC_CLC Clathrin heavy chain to light chain binding 0.1 nM Winkler & Stanley EMBO J 1983[66]

Kd_CLC_SLA Clathrin light chain to SLA2 binding 22 μM Engqvist-Goldstein JCB 2001[67];

Miele Nat Struc Mol Biol 2004[61]

Kd_SLA_SLA SLA2 dimerization 1 nM Wilbur J Biol Chem 2008[68]

Kd_SYP_SYP SYP1 dimerization 2.5 μM Henne Structure 2007[69]

Kd_SYP_EDE SYP1 to EDE1 binding 0.227 μM Boeke Mol Sys Biol 2014[65]

Kd_L_ENT ENT1/2 binding to lipid 0.02 μM Stahelin J Biol Chem 2003[70]

Kd_L_YAP YAP1801 binding to lipid 0.3 μM Stahelin J Biol Chem 2003[70]

Kd_L_SLA SLA2 binding to lipid 0.2 μM Stahelin J Biol Chem 2003[70]

Kd_L_SYP SYP1 binding to lipid 53 μM Moravcevic Structure 2015[71]

k_off 1 s-1

L_0 Density of PtdIns(3,4)P2 lipids 25,292 lipids/μm2 Yoon Nat Chem 2011[72]

CHC1_0 Total clathrin heavy chain trimers 6426 Kulak Nat Methods 2014[2]

CLC1_0 Total clathrin light chains 14538 Kulak Nat Methods 2014[2]

EDE1_0 EDE1 total proteins 5964 Kulak Nat Methods 2014[2]

ENT_0 ENT1/2 total proteins 3075 Kulak Nat Methods 2014[2]

YAP1801_0 YAP1801 total proteins 357 Kulak Nat Methods 2014[2]

YAP1802_0 YAP1802 total proteins 264 Kulak Nat Methods 2014[2]

SLA2_0 SLA2 total proteins 3904 Kulak Nat Methods 2014[2]

SYP1_0 SYP1 total proteins 2467 Kulak Nat Methods 2014[2]

T_vesicle Triskelia in a vesicle 100 McMahon & Boucrot Nat Rev Mol Cell Biol 2011[54]

k_dump Rate of deletion for a complex of > = 100 triskelia 1000 s-1 Arbitrarily high rate

k_recyc Rate of protein recycling to the cytoplasm 1000 s-1 Arbitrarily high rate

https://doi.org/10.1371/journal.pcbi.1006022.t001
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to the 2D cell membrane that allows cage formation to occur; at least 81% of triskelia were

brought to the membrane by adaptor proteins. This suggests another possible reason for over-

expression of clathrin: to compensate for lower binding affinity by saturating adaptor proteins.

Misinteractions have a significant impact for the strong-binding interactions. To

determine the overall influence of misinteractions on vesicle formation, and its dependence on

protein binding affinity, we added misinteractions at two different strengths (Methods), with

an average ratio of KD,nonspecific to KD,specific of 10,000 and 1,000. Despite the weakness of the

misinteractions, they decreased the frequency of vesicle formation (Fig 9A and 9B), though

this effect was overall less significant than that of copy number alteration (Fig 8).

Fig 8. Vesicle formation is tunable with adaptor proteins. (A) Vesicles were formed faster with balanced copy numbers, indicating that the biological copy

numbers are not optimized for maximum vesicle formation. (B) Adaptor proteins in the network were underexpressed. Vesicle frequency could be increased by

doubling their concentrations. (C,D) The system is sensitive to adaptor protein knockouts. Knocking out either SYP1 or ENT1/2 nearly halts vesicle formation.

SYP1 and EDE1 appear to have an aggregating effect, allowing vesicles to form with less triskelia on the membrane.

https://doi.org/10.1371/journal.pcbi.1006022.g008
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In part 2, “Imbalance increases misinteractions dependent on the network topology and

binding affinities of proteins”, we found that strong-binding proteins are more sensitive to

stoichiometric balance because they are prone to misinteractions. The strongest binders in the

network are the Clathrin heavy-chain to light chain interaction (Table 1), and they are both

more highly expressed relative to the adaptor partners. Misinteractions dramatically increased

the number of both heavy and light chains that were not properly assembled into triskelion

(~10 fold), because they became trapped in misinteractions (Fig 9C). For the weaker binding

adaptor proteins, the misinteractions increased non-functional aggregation but to a much

lower extent, resulting in about 2-fold increase of adaptor proteins in vesicle complexes.

Although this 2-fold increase may seem high given the weakness of the misinteractions, it is

driven by the localization of these adaptor proteins on the membrane, which concentrates the

proteins and promotes binding between any pair of available binding interfaces [59].

Fig 9. Misinteractions interfere with clathrin recruitment. (A) Adding misinteractions to the network decreased vesicle formation and (B) interferes with

recruitment of triskelia to the membrane. This was caused by aggregates containing too many adaptor proteins, draining them from the cytoplasmic pool. (C)

Average adaptor proteins in each vesicle. With strong misinteractions, vesicle aggregates contained many adaptors and incomplete triskelia.

https://doi.org/10.1371/journal.pcbi.1006022.g009
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Ultimately, misinteractions reduced the frequency of vesicle formation because each vesicle

contained a very large aggregate of proteins that drained the cytoplasmic pool of adaptors

needed to form new vesicles. The adaptor protein composition is shown in Fig 9C. Without

misinteractions, vesicles had an average of 18.7 adaptor proteins per full triskelia, whereas

strong misintearctions increased the ratio to 33.2. An interesting consequence of misinterac-

tions is that it initially sped up the formation of the first vesicle, due to the large aggregates

assembling on the membrane. However, subsequent vesicles were slower to accumulate than

without misinteractions. In contrast, without misinteractions, the speed of initial vesicle for-

mation always correlates with the speed of subsequent vesicles formed.

Discussion

Measuring stoichiometric balance in protein-protein networks determines

unexpected correlations in protein expression levels

The metrics and SBOPN algorithm we have developed objectively determine whether a protein

is under or overexpressed relative to not only its direct binding partners, but to a larger net-

work including partners of partners. This global evaluation is thus sensitive to the size of the

network, but directly captures how the multiple binding interfaces of a protein can control its

competition for binding partners. In the interface-resolved CME network, we have shown evi-

dence of imperfect, but statistically significant stoichiometric balance. However, the original

56-protein network was overall unbalanced due to the high overexpression of the actin binding

protein cofilin. The size of the network clearly matters, in the small modules, we are statisti-

cally out-of-balance, but on a larger scale, still in balance. Outliers are emphasized in smaller

networks. At the same time, leaving out additional partners can provide some explanation for

the observed imbalance. Imbalance may also indicate possible missing interactions in the net-

work. Despite the simplicity of our metric, our method was still able to highlight both corre-

lated concentrations and proteins that violate balance for functional reasons, such as the

kinase PRK1. Furthermore, the observed balances can suggest possible mechanisms of assem-

bly, for example, that can then be studied using kinetic modeling, as we did here. What our

results emphasize is that correlations are highly important: functionality can be obliterated

with significant imbalance, and misinteractions can also be overwhelming with significant

imbalance.

Although we only applied our stoichiometric balance analysis to the 56 protein CME net-

work, two smaller modules of this network, and the 127-protein ErbB network, these networks

are significantly larger than the obligate complexes previous studied for copy number balance

[5, 6]. Our networks also contain a much larger variety of binding interaction strengths and

competitive and non-competitive interactions. As we showed above, balance depended on the

protein network’s underlying IIN. While it would be beneficial to repeat this analysis on a

larger network, there is a paucity of manually curated IINs in the literature. There are various

larger automatically constructed IINs, constructed with homology modeling[77, 78], but our

previous work found these automatic IINs suffer from various inaccuracies and differ signifi-

cantly from manually curated IINs in topology[41].

Limitations of measuring stoichiometric balance for larger PPINs

The SBOPN method only accounts for the binding interface network structure and observed

copy numbers. A missing feature of our stoichiometric balance metric is that proteins within a

network can be expressed with both spatial and temporal variation. For a small binding net-

work this is not a major concern, since proteins in the same complex tend to be co-expressed
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[79] and co-localized so they may bind. But as network size is scaled up, the probability of all

proteins being equally present reduces. Such temporal and spatial variations could be taken

into account in the construction of the network, leaving out proteins that are not functional at

the same time.

A natural extension to our measure of stoichiometric balance would be to also account for

binding affinities of interactions in addition to the binding interface network structure and

observed copy numbers. Our results here and previous studies[19] indicate that balance should

be more tightly constrained for strong binding proteins. However, one benefit to leaving affini-

ties out of the measurement is that biochemical data is in even more limited availability than

binding interface data. Our existing metric can thus be much more easily applied to a variety

of networks. Furthermore, by picking out highly correlated expression levels, our method can

then indicate which interactions might be quite strong, or vice-versa, which may be transient

or weak.

Noise and variability in experimental copy number measurements can limit

observed balance

In this study we used yeast copy numbers from Kulak et al. because it was the most compre-

hensive. The other three studies we used for comparison did not cover all 56 proteins in our

network. However, for the proteins we could compare, we found significant discrepancies

between relative abundances. Light chains are weakly expressed in other studies, for exam-

ple[1, 49, 50]. A few possible reasons for this exist. The first is that fluorescence data is

inherently noisy. Experimentalists must deal with background noise, interference with pro-

tein localization due to the large fluorescent tags, and cross interactions with other proteins

[80]. The second is that cell lines can accrue mutations over time that decrease or increase

gene expression, a phenomenon observed with HeLa cells[81]. Finally, cells may alter gene

expression for regulatory reasons, so the environment in which cells are grown may alter

gene expression.

Perfect balance is not observed, even if it would improve both

misinteractions or equilibrium complex yield

We do not expect the cell to perfectly optimize the yield of all of its many assemblies. Each net-

work we have evaluated here is ultimately part of a larger, global cellular network. Perfectly

optimizing isolated, local modules does not appear to be a significant pressure for the cell, par-

ticularly when a sufficient balance, such as we observe for the vesicle-forming module, main-

tains functionality. Additionally, these processes, such as in the vesicle forming model

discussed below, typically do not occur at equilibrium. Therefore, the concept of minimizing

‘leftover’ proteins based on expected equilibrium complexes formed is a simplification. Corre-

lations in copy numbers are nonetheless often significant relative to randomly assigned copy

numbers.

We found that copy number imbalance can lead to misinteractions and the features of bio-

logical IINs (power-law-like degree distribution, square and hub motifs, sparseness) typically

have less misinteractions under balance copy numbers but more misinteractions under imbal-

ance. These networks thus should require more tightly controlled balance to avoid misinterac-

tions. But misinteractions are of course not the only pressure on copy numbers. For multi-

protein assembly in an obligate complex (ARP2/3) and in a minimal model of vesicle forma-

tion for CME, we found that the functional cost of imbalance was dominated more by its

impact on determining specific functional complexes than avoiding misinteractions. Nonethe-

less, the fact that misinteractions can decrease vesicle formation, by sequestering away adaptor
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proteins into large aggregates, shows that misinteractions are worse than simply having an

excess of free proteins. If this result can be generalized, it may have important implications for

mechanistic modeling of biological systems, as misinteractions or system error is rarely taken

into account.

Observed imbalances in the non-equilibrium vesicle forming module could

provide benefits to assembling cargo-selective vesicles

Although the functional effects of copy number balance are usually discussed in the context

of number of complete complexes at equilibrium, we have shown that non-equilibrium

dynamics can be affected as well. While the clathrin heavy chains and light chains were bal-

anced with each other, they were overexpressed compared to their adaptor proteins, and

this limited the frequency of vesicle formation. Although we found that perfectly balanced

copy numbers therefore improved vesicle formation frequency compared to observed copy

numbers, we speculate that specific imbalances could still be selected for evolutionarily.

There are various possible reasons for this imbalance: the function of endocytosis is cargo

uptake, and there is a cargo loading process before endocytosis occurs.[75, 76] Hence to

maximize function, controlled endocytosis around high-cargo areas of the membrane may

be preferably to frequent, spontaneous endocytosis, and the adaptor proteins can serve as

an intentional bottleneck in the process. Clathrin, which cannot directly bind to the mem-

brane, may be kept at a high expression in the cytosol so that there are enough triskelia to

quickly form a vesicle no matter where the endocytic site occurs. However, the observed

underexpression could also be because there are other adaptor proteins not included in our

model, or because clathrin interactions have weaker affinities than interactions between

adaptor proteins and must saturate them.

Finally, the predictions of our minimal vesicle-forming model are ultimately limited by

the approximations we made to simulate the clathrin coat assembly and vesicle formation.

Our model vesicles formed about 10 times faster than is observed in vivo. To fully capture

the dynamics of this complex process, an ideal model would include all the proteins in our

CME network (Fig 1), and include both the known biochemistry of binding interactions

and the physics and biomechanics of membrane bending and scission. In yeast, the cyto-

skeleton is needed to help induce membrane budding, after which energy-consuming pro-

teins such as dynamin scission off the vesicle from the plasma membrane for transport into

the cell [76, 82]. However, such a modeling approach does not exist, due to the computa-

tional limitations of simulating such large complexes and membrane remodeling, and the

lack of biochemical data.

Based on the model we did construct, however, there are some more specific limitations.

The first is that while rule-based modeling is a convenient way to model complex formation,

some theoretical aggregates may be impossible due to steric hindrance. Our model predicted

that a vesicle of 100 triskelia could contain ~1900 additional proteins. Assuming each vesicle is

a sphere with 100nm diameter, the allowable surface area per adaptor/scaffold protein would

only be ~17nm2, which is too small to accommodate the excluded volume of the large, disor-

dered regions of proteins such as ENT1 and 2[83]. Second, we did not include cooperatively in

our model. Molecules localized in the same aggregate do not interact at a faster rate in conven-

tional rule-based modeling. Clathrin triskelia weakly polymerize, as noted above, but the

aggregation effect of the adaptor proteins–especially the SYP1/EDE1 complex–localizes triske-

lia close together, allowing them to bind strongly. In future work we will consider effects of

cooperativity on assembly, as well as construct more detailed spatial and structural models of

the vesicle forming process.
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Methods

Stoichiometric Balance Optimization for Protein Networks (SBOPN)

algorithm

A stoichiometrically balanced network has the copy numbers of each interface matched to the

copy numbers of all pairwise complexes it participates in (Fig 2). Balanced copy numbers are

obtained by assigning a number of desired complexes to each edge in the interface binding

network. The balanced copy numbers of each interface can then be calculated from the equa-

tion:

Ax ¼ C ð2Þ

Where “A” is a binary matrix with Nint rows (one for each interface) and Medge columns (one

for each pairwise interaction). Ai,j = 1 if the interface i is used in the interaction j, or 2 if a self-

interaction, and 0 otherwise. “x” is the vector of desired pairwise complexes (Medge x 1), and

“C” is the number of interface copy numbers (Nint x 1). In Fig 10 we illustrate this procedure

for a small toy network.

If desired pairwise complexes, x, is specified, interface copy numbers, C, can directly be

solved for using Eq 1, but if interface copy numbers, C, are specified, x will not, in general,

have an exact or nontrivial solution unless C is balanced. This is because all entries of x must

be>0 or some other minimum value, as negative copies cannot exist. This produces a hard

constraint on x. Given a vector C, an optimal solution to x must be solved for using quadratic

programming rather than linear least-squares.

Our goal is to select for an optimal x given an input set of copy numbers “C0”. This is a soft

constraint on the optimal x, because the input C0 may not be balanced. Once an optimal x is

found, forward solving Eq 1 will in general not perfectly recover C0. C0 can constrain all inter-

faces or a subset of them. To constrain a protein is to constrain all interfaces on it. We intro-

duce a third constraint on the optimal x: the copy numbers of interfaces on the same protein

should be equal. This often makes nontrivial solutions impossible (Fig 10), so it is also a soft

constraint. Combining all of these constraints, the optimal desired number of complexes “x”

Fig 10. Example network for constructing inputs to the SBOPN algorithm. (A) This example PPIN with interfaces resolved has

no nontrivial balanced solution when all constraints are applied. (B) The “A” and “H” matrices that are used as inputs for the

SPOBN method are shown for the left network.

https://doi.org/10.1371/journal.pcbi.1006022.g010
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can be found by minimizing the equation:

minx½aðAx � C0Þ
TZðAx � C0Þ þ ðAxÞTHðAxÞ�; x � 0 ð3Þ

Where each variable is defined as follows:

A: Nint x Medge matrix defining which interfaces are used in which interaction, i.e. pairwise

complex.

x: Medge x 1 vector of desired pairwise complex copy numbers

C0: Nint x 1 vector of constrained copy numbers.

Z: Nint x Nint diagonal matrix that selects which interfaces are constrained. Entries = 1 if the

interface is constrained and = 0 otherwise. If all interfaces are constrained, Z equals the iden-

tity matrix.

H: Nint x Nint permutated block diagonal matrix with positive and negative entries such that

H�C = 0 if interfaces on the same protein have equal copy numbers. Each block corresponds

to a protein (Fig 10).

α: 1x1 scaling parameter which determines the relative weight of the C0 soft constraint vs

the equal interfaces soft constraint.

For any vector x, Eq 2 produces a positive scalar value. The equation was minimized using

the OOQP (object-oriented quadratic programming) 0.99.26 package for C++[84]. Quadratic

programming is necessary due to the constraint of x�0. Eq 2 can be converted into a quadratic

equation of the form

1

2
xTQx þ dTx þ r ð4Þ

Using

Q = 2αATZA + 2ATHA

dT = -2αC0
TZTA

r = αC0
TZC0

“r” can be ignored by the solver when minimizing the equation since it is a constant term.

Once xmin is found via Eq 3, the optimized interface copy numbers can obtained by forward

solving A�xmin = Cbalanced,int. Interfaces on the same protein will not necessarily have equal

copy numbers due to the competing constraints of Eq 2 (Fig 2C). We can assign a single copy

number to each protein by averaging over all interface copy numbers on that protein to give

Cbalanced, a vector of protein copy numbers. These values were used when calculating which

proteins were over or underexpressed in the networks. Distance from C0 to Cbalanced was used

as a metric to determine relative balance (see below).

Biological protein copy numbers

For the yeast CME network, C0 was used to constrain all 56 proteins (Z = Identity matrix)

because copy numbers from Kulak et al. were available[2]. For the ErbB signaling network,

only 115 out of 127 proteins with available expression level data were constrained. 100 of these

proteins were constrained with HeLa copy number estimations from Kulak et al. [2], while

estimated copy numbers for 15 additional proteins were added from four additional studies

[19, 51–53], leaving 12 proteins with unknown expression data. See S2 Table for all values.

Measuring the degree of stoichiometric balance in observed concentrations

Using the optimized copy numbers, Cbalanced, we can then ask, how close are the original, bio-

logically observed copy numbers to these optimally balanced values? If the original copy num-

bers are already perfectly balanced, then they will match the optimal copy numbers. If they are
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imperfect, then the two distributions will differ. We use two metrics to quantify the distance

between the observed and optimized concentrations: chi-square distance (CSD)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

i

ðXi � YiÞ
2

ðXi þ YiÞ

s

ð5Þ

and Jensen-Shannon Distance (JSD) after converting both vectors (X and Y) to distributions

(x and y)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðDKLðxkzÞ þ DKLðykzÞÞ

r

ð6Þ

Where z = (x+y)/2 and DKL is the Kullback-Leibler divergence

DKL xkyð Þ ¼
P

ixilog
xi
yi

ð7Þ

For cases where Z6¼I (i.e. not all interfaces were constrained) only distance between con-

strained interfaces was measured.

Small network motifs

Binding for the five 3- or 4-node network motifs; triangle, chain, square, 4-node hub, and flag;

was simulated using the Gillespie algorithm[47]. Besides the specific binary interactions, non-

specific interactions were allowed at a strength determined by an “energy gap” between bind-

ing energies, though in practice we defined the ratio nonspecific KD to specific KD by factors

of 10. This corresponded to a linear difference in free energies via the equations:

KD;specific ¼ c0 e
� DE1=KB

T

KD;nonspecific ¼ c0 e
� DE2=KB

T

KD;specific

KD;nonspecific
¼ e

� ðDE1 � DE2Þ= KBT

The networks were simulated under various initial concentrations. The steady-state ratio of Eq

1 was recorded, where Nnonspecific is the number of nonspecific binary complexes, Nspecific is

the number of specific binary complexes, and Nfree is the number of free proteins. Ratios were

averaged across 5,000 runs.

To generate surface plots, two proteins were chosen to be variable while the remaining pro-

teins were given fixed copy numbers. Because the flag motif produced asymmetric plots, two

different choices of variable proteins were used. (S3 Fig) Surface plots were generated using

Matlab.

We calculated sensitivity by determining the principal component of the surface plot data

(i.e. the vector of greatest variance) and measuring the percent change in ratio from the opti-

mum along this vector. For better comparison, we normalized distance along the surface plots

via dividing the abundance of the variable proteins by the abundance of the fixed proteins.

Motifs with purely noncompetitive interactions were not considered, because the interface

network would then consist entirely of pairs, such as the IIN for Fig 1B. The balance is simple

for pairs: all interfaces have the same copy numbers. We limited our analysis of Results part 2,

“Imbalance increases misinteractions dependent on the network topology and binding
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affinities of proteins”, to small competitive motifs where we could enumerate all possible com-

plexes and study effects of concentration variation systematically.

Analysis of complex IIN topologies

For the large network analysis we used the 500 networks from Johnson et al, J Phys Chem B
2013[27]. 25 sets of 10 networks each were randomly generated using two parameters: number

of nodes (90, 110, 125, 150, 200), keeping the number of edges fixed at 150; and the preferential

attachment exponent “γ” from Goh, 2001[85]. γ = 0 corresponds to a binomial, Erdos-Renyi

network, whereas γ = 1 corresponds to a power-law or “scale-free” network. Values of 0, 0.2,

0.4, 0.6, and 0.8 were used. Finally, a local topology optimization algorithm that decreased the

frequency of chain and triangle motifs and increased hub motifs was applied to each network,

for 500 networks in total. All networks assume competitive (binary) binding.

Rather than assign an arbitrary specific and nonspecific KD for the networks, we used the

relative binding energies determined for each network in the source paper. This was deter-

mined by a physics-based Monte Carlo optimization scheme of amino acid residues, as

described in Johnson, 2011[23]. The minimum energy gap between specific and nonspecific

interactions could be measured as a relative metric of the network’s propensity for misinterac-

tions. Because the binding strengths were relative, we could alter the average binding strength

to determine the effects on misinteractions. This was varied between 7 values of 1 nM to 1

mM, using factors of 10. Finally, to obtain results more comparable to the simple networks, we

also ran simulations where each specific interaction had KD = 100 nM and each nonspecific

interaction had KD = 100 μM.

Networks were simulated to steady state using the Gillespie algorithm[47] under five differ-

ing sets of copy numbers (CNs) for free proteins: equal CNs for each protein, random CNs

sampled from a yeast protein concentration distribution (performed 20 times) and three forms

of balanced CNs using the network architecture. Any set of CNs without leftovers–i.e. having

exactly enough proteins to create a certain number of specific complexes–is considered “bal-

anced”, and thus there are infinite solutions. The first balanced set assumed an equal number

of each type of specific complex, which results in protein CNs proportional to the protein’s

number of partners. The remaining balanced CNs were determined by finding “x” to minimize

a simplified form of Eq 2:

minxðA
�x � C0Þ

T
ðA�x � C0Þ ð8Þ

Here there is only one interface on each protein, and all the proteins are constrained, so

there is no need for a Z matrix, the α scaling parameter, or the second term. C0 is either equal

copy numbers or randomly sampled copy numbers. After xmin is found via quadratic program-

ming (see above), the balanced CNs are obtained by forward solving Cbalanced = A�xmin.

To measure nonspecific complex formation, a modified ratio was used:

Cost C0ð Þ ¼
2NnonspecificðC0Þ

2NspecificðC0Þ þ NfreeðC0Þ
ð9Þ

to compare total individual proteins in each bound or unbound state, rather than number of

unbound or bound states. To measure sensitivity, the ratio under unbalanced CNs (C0)

divided by the ratio under balanced CNs (Cbalanced) was calculated. A higher ratio indicates

higher sensitivity to CN balancing.
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ARP2/3 complex

The kinetic model was simulated using the stochastic simulation method (the Gillespie algorithm).

Binding interactions were encoded via the rule-based language BioNetGen and simulated via the

Network Free Simulation (NFSim) software [48]. Trimer cooperativity was modeled by increasing

the rate of the third reaction if three members of a correct trimer were held together by two reac-

tions. For example, if A is bound to B is bound to C, and a binding between A and C is possible,

that reaction rate was set to be arbitrarily high. Reaction rates were arbitrary, but interactions with

the core subunit ARC19 were set to be ~10 fold stronger than interactions between periphery sub-

units, as this increased yield. Yield was measured via the equation

Yield ¼
Ndesired

Ndesired þ Nundesired
ð10Þ

Where Ndesired is the number of proteins in complete complexes (equal to seven times the number

of complex complexes) and Nundesired is the number of proteins in incomplete or misbound com-

plexes. Completely free proteins were ignored.

Simulating clathrin recruitment to the membrane

A subnetwork of nine proteins–clathrin heavy chain (CHC1), clathrin light chain (CLC1),

SLA2, ENT1/2, EDE1, SYP1, and YAP1801/2 –was defined based on known binding interac-

tions (Table 1). Because the existence of multiple interfaces, allowing noncompetitive binding,

results in a large number of possible species we simulated our model using the Network Free

Simulator (NFSim)[48]. Binding dissociation constants were obtained from the literature,

including for protein-lipid binding. For simplicity, the heavy chains were already assumed to

be in trimer form, and ENT1/2 was combined into a single protein as the binding partners

were the same. Binding constants were pulled from the literature. (Table 1)

The cell membrane and the cell cytoplasm function as different compartments with differ-

ent volumes, but NFSim is not integrated with BioNetGen’s compartment language. We

bypassed this problem by doubling the number of rules: besides the main rule for each reac-

tion, an additional rule stated that if both proteins are on the cell membrane then the kon rate

should be increased according to the membrane volume. Cell membrane ‘volume’ was deter-

mined by multiplying the membrane surface area by a factor 2σ = 2 nm to capture the change

in binding affinities between 3D and 2D (see S1 Text).

Since our primary goal was to measure clathrin recruitment to the membrane, any complex

on the membrane with at least 100 triskelia (a complex of three CHC1 and three CLC1) was

considered a “vesicle” and deleted at a high rate kdump. Proteins in the vesicle were then added

back to the cytoplasmic pool at a rate krecyc, which was set to be equal to kdump to indicate fast

recycling. However, we clarify that even fast recycling is not instantaneous, and that proteins

are added back one at a time rather than all at once. Fast vesicle formation thus could still

drain the pool of adaptor proteins.

Misinteraction strengths were determined by calculating the geometric mean of the dissoci-

ation constants of each interface, as this provided a KD based on the arithmetic mean of the

binding energies.

KD;mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KD;1KD;2 . . .KD;n

n
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e� DE1=KBT � e� DE1=KBT � . . . e� DE1=KBTn
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e� ðDE1þDE2þ...DEnÞ=KBTn
p

¼ e� ðDE1þDE2þ...DEnÞ=nKBT
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The KD of a misinteraction between two interfaces was set to be:

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KD;mean;1KD;mean;2

p
ð11Þ

where f = 10,000 (weak misinteractions, corresponding to an energy gap of ~9.21) or 1,000

(stronger misinteractions, energy gap of ~6.91)

Network maps were generated using Cytoscape[86] and RuleBender[87]. Plots were gener-

ated in MATLAB. C++ code for the network balancing algorithm SBOPN is available at

https://github.com/mjohn218/StoichiometricBalance, and may be applied to any interface-

resolved network. The CME and ErbB networks are provided as example inputs.

Supporting information

S1 Text. Notes on the vesicle forming module.

(PDF)

S1 Table. Model parameters with notes.

(PDF)

S2 Table. Protein Copy Numbers for the CME and ErbB networks.

(XLSX)

S1 Fig. Effects of the α parameter on interface copy number noise. (A) Noise is calculated as

the variance of the copy numbers assigned to interfaces on the same protein divided by the

square of their average copy number. It does not refer to expression level noise. A high “α”

parameter allowed greater variance, but even a low α could not remove noise entirely because

there are no balanced solutions where all proteins can have interfaces of equal copy number.

Noise had a sigmoidal relationship with log(α). (B) Example of interface noise on a protein.

(C,D) Scatter plot of protein interface copy number noise vs a protein’s balanced “abundance”,

the average of their interface copy numbers. The black line is where noise is inverse of abun-

dance. The red line is noise = 0.1, which is expected to be the upper limit of noise when abun-

dance exceeds ~1000 copy numbers [12]. For a low α, proteins varied widely in the amount of

noise they have, though high-abundance proteins tended to have less noise, and were below

the 0.1 threshold. As α was raised, proteins approached the same level of noise.

(TIFF)

S2 Fig. Ras and MAP3K proteins in the ErbB network are underexpressed. The ErbB net-

work, which consists mainly of phosphorylation interactions, was not found to be statistically

balanced based on the Jensen-Shannon divergence. However, certain proteins of note were

found to be underexpressed, such as the three Ras proteins (HRAS, KRAS, and NRAS), and

the MAP3K layer (RAF1, BRAF, ARAF, MAP3K1, MAP3K2, MAP3K4, and MAP3K11). Also

underexpressed were the ErbB receptors and the hub SRC. These suggest a strategic imbalance

of upstream proteins (in the case of MAPK cascades) or network bottlenecks (Ras proteins or

SRC). Highlighted are the Ras proteins (blue), MAP3Ks (orange), MAP2Ks (green), and

MAPKs (red).

(TIFF)

S3 Fig. Misinteraction frequency in the small network motifs. (A) Small networks used to

construct the surface plots. For all simulations, two proteins had variable concentrations (blue)

while the others had fixed concentrations (pink). (B) Surface plots of misinteraction frequency

(color bar-Eq 1 main text). Misinteraction frequency is measured as Nnonspecific / (Nspecific

+ Nfree); that is, number of nonspecific complexes divided by all other species; at steady-state

as described in the main text. Each plot corresponds to each respective network in A. The X
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and Y-axes are the concentrations of the variable proteins divided by the total concentrations

of the fixed proteins. The black line is the principal component, which was used as an axis to

measure the sensitivity of misinteractions as one moved away from a local minimum. For the

chain we used two arbitrary local minima because the absolute minimum was when B2 = 0, a

trivial solution. For the flag network we used two different sets of fixed and variable proteins

because the surface plots were asymmetric. (C) The sensitivity of each network to misinterac-

tion frequency as the protein concentrations moved away from an optimum (local minimum).

Sensitivity is measured as percent change from the optimal (lowest) misinteraction frequency.

(TIFF)

S4 Fig. Effects of optimized local topology on misinteractions. (A) Misinteraction frequency

of networks under randomly sampled (left) and balanced copy numbers (right) when fixed

energy gaps were used (KD, specific = 100nM, KD,nonspecific = 100μM). Networks with opti-

mized topology and a power-law-like distribution (γ = 0.8) performed best under balanced

copy numbers but worse under imbalance. (B) Heat map of misinteraction frequency under

balanced copy numbers vs degree distribution and network density. Denser networks always

had more misinteractions, but the effects of degree distribution depended on whether the local

topology was optimized or not.

(TIFF)

S5 Fig. ARP2/3 complex has higher yield under balanced copy numbers. (A) Contact map

of the seven subunits of the complex, generated with RuleBender{Smith, 2012 #488}(B) Under

varying misinteraction strengths, the yield for the balanced copy numbers was always higher

than for the observed copy numbers from Kulak et al.{Kulak, 2014 #276} Yield was measured

as Ndesired / (Ndesired + Nundesired), which refer to the number of proteins in either desired

(complete) complexes or undesired (incomplete or misassembled) complexes. (C) The

observed copy number distribution was not found to be conserved between studies in either

yeast or humans. Bar plots are from five studies of the ARP2/3 subunits in human cells. The

red bar is for the addition of the “subunit 5-like” protein. Only one study (Hein et al.) found

ARC19’s equivalent, subunit 4, to be underexpressed{Hein, 2015 #277}.

(TIFF)
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