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We proposed a higher-order coupling neural network model including the inhibitory neurons and examined the dynamical
evolution of average number density and phase-neural coding under the spontaneous activity and external stimulating condition.
The results indicated that increase of inhibitory coupling strength will cause decrease of average number density, whereas increase
of excitatory coupling strength will cause increase of stable amplitude of average number density. Whether the neural oscillator
population is able to enter the new synchronous oscillation or not is determined by excitatory and inhibitory coupling strength. In
the presence of external stimulation, the evolution of the average number density is dependent upon the external stimulation and
the coupling term in which the dominator will determine the final evolution.

1. Introduction

The quantitative analysis of the dynamics of neural oscillator
population has become a highly publicized study [1, 2]. Gray
and Singer found synchronous oscillations caused by external
stimulus in cat primary visual cortex in 1989 [3]. Massive
animal experiments suggested that the dynamics of syn-
chronous oscillation is closely related to the message transi-
tion in the certain cortex [4].

The cerebral cortex is the unstable complicated nonlinear
dynamical system. Furthermore, the nonlinear dynamics
analysis method has succeeded applies in the neurodynam-
ics research. The theory of phase transition dynamics was
applied to the studies of physiological rhythms by Winfree
[5] and had obtained lots of improvements by Kuramoto
who described the dynamic evolution of neural oscillator
population oscillation by the number density. P. A. Tass
proposed theory of stochastic phase transition dynamics and
further applied the theory triumphantly used to neurodegen-
erative disease [6–8].Wang et al. applied stochastic dynamics
of phase transformation to the research on cognitive neu-
rodynamics and received many conclusions with actual

physiological significance bymeans of numerical analysis and
simulation [9–13]. The inhibitory neurons play an extremely
important role in synchronous motion of neural oscillator
populations and the evolution of neural coding [13]. Liu et al.
proposed a stochastic nonlinear phase dynamic model under
the coupling action of inhibitory neurons and analyzed the
spontaneous behavior and the dynamic evolution of average
number density under the condition of simulation. Trappen-
berg studied neural encoding and decoding of neural oscil-
lator population under the strong inhibitory condition [14].
Weigenand et al. examined the phase response of cortical slow
oscillation during deep sleep [15]. However, for easy analysis
and processing, they studied the coupling between the neu-
ronal oscillators mainly under the condition of lower-order
coupling in most stochastic evolution models. Moreover, the
actual synaptic connections between neurons are following
nonlinear relationship and variable higher-order coupling.
Zhang et al. studied the dynamical evolution of the phase-
neural coding in the neural network under the condition of
higher-order coupling. However, the function of inhibitory
neurons in the neural coding evolution of neural oscillator
populations is still unknown. In this paper, taking into
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account distribution of inhibitory neurons in the higher-
order coupling condition, we proposed a new stochastic
phase transition dynamics model and examined dynamical
evolution of neural oscillator population under the effect of
inhibitory neuron.

2. Dynamic Model

We assume that there are 𝑁 neural oscillators in a neural
network (𝑁 = 𝑁
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2
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where 𝜓
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is the phase of the oscillator number 𝑗; Ω
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According to phase dynamic equation (1), we can get the
Fokker-Planck equation of probability density 𝑓({𝜓
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Figure 1: The evolution of the average number density of neural oscillator population with respect to variable inhibitory coupling strength.
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Considering the influence of stochastic noise, average num-
ber density of excitatory and inhibitory neural oscillator
population is introduced as
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Figure 2:The evolution of firing density with respect to variable inhibitory coupling strength with increasing time. 𝑝(𝑡) = 𝑛
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Decomposition of (11), equation expressing number density
evolution obtains
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Figure 3: The evolution of the average number density of neural oscillator population with respect to variable excitatory coupling strength.
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3. Numerical Analysis

3.1. The Effect of the Higher-Order Coupling Term in Inducing
the Synchronization of the Inhibitory Neuronal Oscillator
Population under Spontaneous Activity. In the case of sponta-
neous activity, in order to study the effects of different order
of higher-order coupling on neural oscillator population, we
set coupling terms as 𝐶
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3.1.1. The Impact of Inhibitory Coupling on Synchronous
Activity of Neural Oscillator Population. In order to study
the impact of inhibitory coupling on synchronous activity of
neural oscillator population, we assumed that there is a third-
order coupling between excitatory neural oscillators, and the
coupling strength is described as𝐾

3
= 𝐾
13
= 8.The detention

of synchronous activity of neural oscillator population was
induced by inhibitory coupling (Figure 1(b)). And the syn-
chronization state of neural oscillator population decreased
along with increase in inhibitory coupling strength (Fig-
ure 1(c)). The neural oscillator population rapidly under-
went a process from initial synchronization state entering
into desynchronization state when the coupling intensity
increases to certain degree (Figure 1(d)).

We assumed that the neurons reach action potentials
immediately when the phase 𝜓 = 0. According to this
assumption, we can describe firing density of neural oscillator
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Figure 4:The evolution of firing density with respect to variable excitatory coupling strength with increasing time. 𝑝(𝑡) = 𝑛
1
(0, 𝑡),𝑁

1
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3
= 𝐾
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population as 𝑝(𝑡) = 𝑛
1
(0, 𝑡) and estimate the cluster number

of neural oscillator population in which fire action potential
simultaneously by using of 𝑝(𝑡).

Figure 2 illustrated the firing density evolution of neural
oscillator population with increasing time. In the absence
of inhibitory coupling, the firing density reaches the peak,
which means the most neural oscillator population firing
action potential (Figure 2(a)). The inhibitory coupling delays
the synchronous activity of neural oscillator population and
synchronous activity gradually decays as the inhibitory cou-
pling strength increases (Figures 2(b) and 2(c)). This result
indicated that decrease of cluster number with synchronous
activity is induced by increase of inhibitory coupling strength.
The neuronal oscillator population will enter a desynchro-
nization state when the inhibitory coupling reaches the
certain strength (Figure 2(d)).

3.1.2. The Impact of Excitatory Coupling on Synchronous
Activity of Neural Oscillator Population. In order to study
the impact of inhibitory coupling on synchronous activity of
neural oscillator population, we assumed that the inhibitory
coupling strength remains unchanged and is described as
𝐿
3
= 𝐿
13
= −4 in third-order coupling condition.The average

number density gradually decays until evenly distributed as
the excitatory coupling strength is described as 𝐾

3
= 𝐾
13
=

−4, which indicates a desynchronization state of neural oscil-
lator population. The neural oscillator population rapidly
undergoes a process from initial desynchronization state
entering into synchronization state when the excitatory
coupling strength is described as𝐾

3
= 𝐾
13
= 7 (Figure 3(b)).

And the neural oscillator population rapidly entered a syn-
chronization state along with increase in excitatory coupling
strength (Figures 3(b), 3(c), and 3(d)).
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Figure 5: Continued.
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Figure 5: (a) Firing density evolution diagram of neural oscillators population with first-order coupling term.𝑁
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Figure 4 illustrated the firing density evolution of neural
oscillator population with increasing time. The firing density
gradually decays to an even distribution with increasing time
(Figure 4(a)). These results confirm that the stronger the
coupling strength is, the higher the firing density of neural
oscillator population is, and the more cluster firing action
potential is (Figures 4(b), 4(c), and 4(d)).This result indicated
that increase of cluster number with synchronous activity
is induced by increase of excitatory coupling strength. And
the shorter time required for the neural oscillator population
entering a new synchronous oscillation when the excitatory
coupling strength increases (Figures 4(b), 4(c), and 4(d)).

3.2. The Impact of Coupling Order on Firing Density of Action
Potential 𝑝(𝑡). Firing density evolution diagram of neural
oscillator population is determined by the coupling term as
shown in Figures 5(a), 5(b), and 5(c). The evolution of firing
action potential density 𝑝(𝑡) has only one peak with time
under first-order coupling condition, which suggests one
cluster of neuronal oscillators firing action potential at certain
phase space. The evolution of firing density with increasing
time in the second-order coupling term has been turned
into the distribution of two peaks from that of one peak in
the initial condition, which means two clusters of neuronal
oscillators firing action potential. Three peaks for the firing
density that appeared in the third-order coupling term
showed the phase transition process of the neural oscillator

population from one-cluster synchronization state in the
initial condition to three-cluster synchronization state. Taken
together, the synchronized firing density of neural oscillator
population is determined by the order of neural coupling.

3.3. The Impact of External Stimulation on the Phase Coding
of Inhibitory Higher-Order Coupling Neural Oscillator Pop-
ulation. In order to study the dynamical evolution of the
average number density of neuronal oscillator with inhibitory
coupling in presence of external stimulation, we selected the
initial condition as

𝑛
1
(𝜓, 0) =

𝑁
1

𝑁
(
1

2𝜋
+ 0.5 sin (𝜓)) ,

𝑛
2
(𝜓, 0) =

𝑁 − 𝑁
1

𝑁
(
1

2𝜋
+ 0.5 sin (𝜓)) .

(15)

Taking into account third-order coupling term

𝑀
1
(𝜓
𝑗
− 𝜓
𝑘
) = −𝐾

3
sin ⌊3 (𝜓

𝑗
− 𝜓
𝑘
)⌋ ,

𝑀
12
(𝜓
𝑗
− 𝜓
𝑘
) = −𝐾

13
sin [3 (𝜓

𝑗
− 𝜓
𝑘
)] ,

𝑀
2
(𝜓
𝑗
− 𝜓
𝑘
) = −𝐿

3
sin [3 (𝜓

𝑗
− 𝜓
𝑘
)] ,

𝑀
21
(𝜓
𝑗
− 𝜓
𝑘
) = −𝐿

13
sin [3 (𝜓

𝑗
− 𝜓
𝑘
)] .

(16)
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Figure 6: The impact of second-order stimulation on synchronous activity of neural oscillator population of inhibitory coupling. (a) 𝐼
11
=
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= 0; (b) 𝐼
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= 𝐼
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= 𝐼
22
= 0.2; (c) 𝐼
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= 𝐼
12
= 𝐼
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= 1; (d) noncoupling state 𝐼

11
= 1, 𝐼

21
= 1.

And constant-coefficient coupling term is 𝐾
3
= 𝐾
13
= 𝐿
3
=

𝐿
13
= −4.
Taking into account second-order term

𝑆
𝑘
(𝜓
𝑗
) = 𝐼
𝑘1
cos (𝜓

𝑗
+ 𝛾
𝑘1
) + 𝐼
𝑘2
cos (2𝜓

𝑗
+ 𝛾
𝑘2
) , 𝑘 = 1, 2.

(17)

In case of no stimulation, the average number density of neu-
ral oscillator population gradually decays to totally scattered,
which means that neural oscillator population enters into a
desynchronization state (Figure 6(a)). The neural oscillator
population will gradually turn into a full synchronization
state alongwith increasing stimulation intensity (Figures 6(b)
and 6(c)).

Figure 6(d) showed the evolution of neural oscillator
population in the presence of external stimulation if the cou-
pling strength is zero. We found that the evolution of neural
oscillator population is very similar between Figures 6(c) and
6(d).The dynamical evolution of neural oscillator population
is almost the same between coupling and noncoupling state,
which suggested that the intensity of the external stimulation
is the dominated factor for the dynamical evolution.

4. Conclusion

(1) In case of spontaneous activity of neurons, the ampli-
tude of the average number density evolution tends to
decrease if the inhibitory coupling strength increases.
In contrast, the amplitude of the average number
density evolution tends to increase if the excitatory
coupling strength increases.

(2) In the case of stable excitatory coupling strength, syn-
chronous activity of neuronal oscillator population
gradually decays until it loses synchronous oscillation
as the inhibitory coupling strength increases. On the
other hand, in the case of stable inhibitory coupling
strength, increase of excitatory coupling strength will
result in enhancement of synchronous activity of
neuronal oscillator population and then in it entering
a new synchronization state.

(3) Diagram of the firing density of action potential 𝑝(𝑡)
is determined by the order of coupling, when the
neuronal oscillator population enters a new synchro-
nization state at certain coupling strength. 𝑁 peaks
for the firing density appeared in the 𝑛-order coupling
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termwhich suggests neuronal oscillators firing action
potential at 𝑛-certain phase space.

(4) In the presence of external stimulation, the evolution
of the average number density is dependent upon the
stimulation and the neural structure of the coupling
inwhich the dominatorwill decide the final evolution.
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