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Abstract

Monocytes are a core component of the immune system that arise from bone marrow and

differentiate into cells responsible for phagocytosis and antigen presentation. Their deriva-

tives are often responsible for the initiation of the adaptive immune response. Monocytes

and macrophages are central in both controlling and propagating infectious diseases such

as infection by Coxiella burnetii and small ruminant lentivirus in sheep. Genotypes from 513

Rambouillet, Polypay, and Columbia sheep (Ovis aries) were generated using the Ovine

SNP50 BeadChip. Of these sheep, 222 animals were subsequently genotyped with the

Ovine Infinium® HD SNP BeadChip to increase SNP coverage. Data from the 222 HD geno-

typed sheep were combined with the data from an additional 258 unique sheep to form a

480-sheep reference panel; this panel was used to impute the low-density genotypes to the

HD genotyping density. Then, a genome-wide association analysis was conducted to iden-

tify loci associated with absolute monocyte counts from blood. The analysis used a single-

locus mixed linear model implementing EMMAX with age and ten principal components as

fixed effects. Two genome-wide significant peaks (p < 5x10-7) were identified on chromo-

somes 9 and 1, and ten genome-wide suggestive peaks (p < 1x10-5) were identified on chro-

mosomes 1, 2, 3, 4, 9, 10, 15, and 16. The identified loci were within or near genes including

KCNK9, involved into cytokine production, LY6D, a member of a superfamily of genes,

some of which subset monocyte lineages, and HMGN1, which encodes a chromatin regula-

tor associated with myeloid cell differentiation. Further investigation of these loci is being

conducted to understand their contributions to monocyte counts. Investigating the genetic

basis of monocyte lineages and numbers may in turn provide information about pathogens

of veterinary importance and elucidate fundamental immunology.
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Introduction

Monocytes are bone marrow-derived immune cells that circulate in the blood with a short life-

span, typically days [1]. They have traditionally been grouped in the mononuclear phagocyte

system that includes macrophages and dendritic cells, though this grouping is based on histori-

cal studies of function and likely bridges several independent lineages [2]. Monocytes are an

essential component in the immune response to a variety of pathogens [3], and they can be a

source of some tissue resident macrophages and dendritic cells [4]. They also support differen-

tiation of various T cell lineages in lymph nodes [5, 6], emphasizing their importance in both

innate and adaptive immunity.

Monocytes can differentiate along multiple lineages to produce several categories of cells

which are still being characterized [7, 8]. In brief, studies in mice imply that monocytes initially

derive from a common myeloid progenitor, which becomes either a granulocyte-monocyte

progenitor or monocyte-dendritic cell progenitor, and each lineage gives rise to separate

monocyte subsets as distinguished with RNA profiles [7, 9]. Studies in human-derived cells

suggest a similar multilineage differentiation of monocytes [10, 11].

After leaving the marrow, monocytes enter the circulation and can migrate to lymphoid

and non-lymphoid tissues. Canonically, they are characterized as classical, nonclassical, and

intermediate subsets in humans based on CD14 and CD16 expression profiles [12], while in

mice they are similarly divided based on Ly6C expression [13]. Generally, classical monocytes

enter tissues to aid in inflammation, while nonclassical monocytes are thought to patrol the

vascular surfaces [14, 15]. Classical monocytes may terminally differentiate into macrophages

or dendritic cells [16].

The concentration of monocytes in circulation, under normal conditions, stays within a

consistent reference interval that is often measured in complete blood counts in the clinical

setting [17]. In most studied species, monocyte elevations occur under conditions of inflam-

mation. In humans, chronic elevations may be a biomarker of cardiovascular disease [18]. In

otherwise healthy middle-aged and elderly adults, higher levels of circulating monocytes are

associated with increased risk of cancer and mortality [19].

In sheep, monocytes are important in both the propagation and control of several infectious

diseases. For example, small ruminant lentivirus, which causes a multisystemic inflammatory

disease in sheep and goats [20], has been known for decades to use the monocyte system to dis-

seminate through the bloodstream [21]. Viral replication in monocytes is tied to their matura-

tion into phagocytes [22], and dendritic cells are an important site of infection as well [23, 24].

Similarly, Coxiella burnetii, an ubiquitous bacterial infection of sheep and goats that also

causes the human disease Q fever [25], subverts classical phagocytosis to infect and replicate in

the mononuclear phagocyte system [26]. C. burnetii actively replicates in monocytes and their

derived macrophages [27, 28], including cell lines created from circulating monocytes [29].

Identifying the genetic influences underlying the amount of available circulating monocytes

is paramount to characterizing the immune response to diseases influenced by their presence.

Genome-wide association studies (GWAS) are a useful methodology employed to identify

sites in the genome associated with phenotypes such as monocyte counts. Genotyping a wide

array of natural variations across the genome such as single nucleotide polymorphisms (SNPs)

or insertion-deletions (indels) followed by a GWAS can identify loci associated with a trait of

interest. The genetic influences on monocyte count in humans have been explored extensively

using GWAS and related methods. Variations in several leukocyte receptors and other proteins

associated with leukocytic differentiation and function have been observed to partially account

for circulating monocyte count and occasionally other circulating leukocytes in humans [30–
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36]. From these studies, variations in or near ITGA4 and LPAR1 have been found to be impor-

tant in multiple human populations [33–35].

The effect of genetic variation on monocyte count in domestic animals has not been studied

despite the important influence of the mononuclear phagocyte system in disease. Additionally,

the ability of a GWAS to identify loci associated with a trait can be assisted by imputation, a

process by which an algorithm estimates genotypes from a lower density genotyping profile to

a higher density profile through principles of chromosomal linkage. This is performed when

existing high-density (HD) genotypes from a reference population are available to accurately

estimate the missing HD genotypes in a new population. This study uses imputed HD geno-

types in a GWAS to identify loci and putative candidate genes that are associated with circulat-

ing monocyte count in sheep.

Materials and methods

Populations and phenotypes

Absolute monocyte count analysis. Whole blood was obtained by jugular venipuncture

into EDTA-coated vacutainer tubes from ewes (Ovis aries) at the U.S. Sheep Experiment Sta-

tion in Dubois, Idaho as part of a previous study [37], using methods previously described

[38]. For the present study, a subset of 513 sheep was selected from ewes of Columbia

(N = 67), Polypay (N = 196), and Rambouillet (N = 250) breeds and of ages between 1 and 5

years. These three breeds were chosen based on their divergence of growth, reproductive,

immune, and blood traits, and previous genetic studies [37, 39–44], and because they are

among the most common production breeds in the United States. The Columbia and Polypay

breeds were derived from the Rambouillet breed [45, 46], and close genetic relationships still

exist between these breeds [46]. Complete blood counts were performed on this subset as pre-

viously described [37]. Briefly, absolute monocyte counts were obtained as part of complete

blood counts performed by Phoenix Labs, Inc. (Everett, Washington, USA) within approxi-

mately 24 hours of the time of collection, with reference values provided by Phoenix Labs, Inc.

Ethics statement. All animal care and handling procedures were reviewed and approved

by the Washington State University Institutional Animal Care and Use Committee (Permit

Numbers: 3171, 4885, and 4594) and/or by the U.S. Sheep Experiment Station Animal Care

and Use Committee (Protocol Numbers: 04–14, 10–07, 15–04, 15–05). All efforts were made

to minimize any discomfort during blood collection.

Genotyping methods

Genotyping with Ovine SNP50 BeadChip. The process of genotyping and imputation is

summarized in S1 Fig. Genotyping at a lower density was performed for the study population

of 513 animals as described in a previous study [37]. Briefly, DNA was isolated using the Invi-

trogen GeneCatcherTM gDNA 3–10 ml Blood Kit using the manufacturers’ instructions (Life

Technologies, Carlsbad, CA). Genotyping services were provided by Geneseek Inc. (Lincoln,

NE) using the OvineSNP50 BeadChip (Illumina Inc., San Diego, CA) with a set of 54,977 SNPs

designed by the International Sheep Genome Consortium [47].

Genotyping with Ovine Infinium1 HD SNP BeadChip. Using the same DNA, a subset

of 222 sheep from the lower density dataset (Columbia N = 33, Polypay N = 80, Rambouillet

N = 109) were genotyped again using the Ovine Infinium1HD SNP BeadChip, which uses a

set of 606,006 SNPs also designed by the International Sheep Genome Consortium [48]. A sep-

arate group of 258 sheep (Columbia N = 33, Polypay N = 140, Rambouillet N = 85) also from

the U.S. Sheep Experiment Station, had blood drawn [49] with DNA extraction as previously
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described [38] but without complete blood counts. These sheep were also genotyped with the

HD SNP BeadChip to aid in a reference panel for genotype imputation.

Genotype imputation. Unphased genotype data were converted from PLINK v1.9.ped

format [50, 51] to variant call format with a script in R v4.0.2 using the data.table v1.13.2 and

R.utils v2.10.1 packages [52]. As part of pre-imputation quality control, loci without an

assigned chromosome or base pair position, loci with a call rate lower than 95% from either

the lower density (2,407 SNPs) or HD array (25,183 SNPs), and individuals with a call rate

lower than 95% from either array (0 individuals) were removed from the dataset. Genotypes of

the sheep were designated into two major sets based on genotyping density: a to-be-imputed

group of 291 sheep genotyped by the Ovine SNP50 BeadChip (Columbia N = 34, Polypay

N = 116, Rambouillet N = 141), and a reference panel of 480 sheep genotyped by the Ovine

Infinium1HD SNP BeadChip (Columbia N = 66, Polypay N = 220, Rambouillet N = 194) cre-

ated by merging the groups of 222 and 258 sheep previously described.

Each set was in turn separated into its three component breeds, and imputation of each

low-density breed group was performed using its corresponding breed group in the reference

panel. Imputation occurred in two major steps. First, the reference panel for each breed was

phased with imputation of SNP50-exclusive loci using Beagle v5.1 [53, 54]. Once all genotypes

had been determined in these groups, they were used as reference panels for breed-specific

imputation and phasing of the low-density genotypes, again using Beagle v5.1 [53, 54]. Impu-

tation accuracies were predicted by five-fold cross-validation in the reference population and

were 0.705 for Columbia sheep, 0.735 for Polypay sheep, and 0.680 for Rambouillet sheep.

Statistical analysis

Genome-wide association analysis with absolute monocyte count. Genome-wide asso-

ciation with the absolute monocyte count was performed using SNP & Variation Suite (SVS)

version 8.9.0 (Golden Helix, Inc., Bozeman, MT, US). Variants with minor allele frequency

below 1% were removed (45,263 SNPs). A Hardy-Weinberg test of equilibrium test was per-

formed, and 768 SNPs at extreme skew (p< 1 x 10−80) were removed. After all quality control

measures, 542,255 SNPs remained for absolute monocyte count analysis. Initially chosen fixed

effects included age and breed. Thirty principal components were initially generated from the

final curated set of genotypes using SVS. The ten principal components with the highest eigen-

values accounted for 84.4% of the variation explained by all thirty, and as such the other princi-

pal components were dropped from the analysis (S1 Table). As the principal components were

found to account for breed (S2–S4 Figs), breed was removed as a fixed effect. The association

model used was a single-locus mixed linear model implementing EMMAX [55] using age and

varying amounts of principal components as fixed effects with a calculated identity-by-state

matrix as a random effect. A threshold of p< 5x10-7 was used for genome-wide significance,

and a threshold of p< 1x10-5 was used for genome-wide suggestive evidence [56]. Genomic

inflation factor (pseudo lambda) was calculated using a custom script for SVS hosted on the

Golden Helix website [57]. The Manhattan plot was generated using a modification of a script

developed by Pagé Goddard in R (https://github.com/pcgoddard/Burchardlab_Tutorials/wiki/

GGplot2-Manhattan-Plot-Function, viewed on December 27, 2018). The Quantile-Quantile

(Q-Q) plots were constructed using the qqman v0.1.8 package in R [52, 58].

Results

Absolute monocyte counts measured in the 513 sheep varied from 0 to 880 per microliter,

with a mean of 205.7, a median of 190, and a standard deviation of 125.0 (S2 Table). More

detailed distribution characteristics are listed in S3 Table. The monocyte count reference
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interval typically ranges up to 750 per microliter in sheep [59, 60], and only one animal

exceeded this reference interval at 880 per microliter. No study sheep were noted to be clini-

cally ill during sampling. The calculated genomic inflation factor (pseudo lambda) for the final

genome-wide association analysis was 1.01.

As can be seen in the Manhattan plot (Fig 1), two loci had p values below the genome-wide

significance threshold, while ten loci passed the genome-wide suggestive threshold. Detailed

information on genome-wide significant SNPs is in Table 1, and more information on

genome-wide suggestive SNPs is in Table 2. A Q-Q plot for this analysis is given in S5 Fig. A

second single-locus analysis was performed with the same terms as the first but with the five

SNPs with the lowest p values as fixed effects (S6 Fig). The allele frequencies by breed for each

the genome-wide significant and suggestive SNP are in S4 Table.

Discussion

The advent of high-density GWAS has provided the potential to improve scientific under-

standing of the genetic influences behind many important health and developmental traits

[61], including those in the livestock industry. Previous GWAS in sheep have identified genetic

variants underlying factors important to agriculture such as litter size [62], growth and meat

Fig 1. Manhattan plot of absolute monocyte count GWAS. The Manhattan plot displays all nominal p values from the GWAS for absolute monocyte count

by chromosomal position. Representative data from the additive genetic analysis is shown. The dotted and solid lines respectively denote p values of 1x10-5

(genome-wide suggestive) and 5x10-7 (genome-wide significant).

https://doi.org/10.1371/journal.pone.0266748.g001

PLOS ONE High-density genome-wide association with domestic sheep monocyte count

PLOS ONE | https://doi.org/10.1371/journal.pone.0266748 May 6, 2022 5 / 15

https://doi.org/10.1371/journal.pone.0266748.g001
https://doi.org/10.1371/journal.pone.0266748


production [63], and wool production [64]. Similar analyses have also shed light on the genetic

architecture underpinning disease susceptibility in sheep [38, 42, 65] and can highlight genes

not previously known to be involved with the assessed pathogen in a species [38]. Analyzing

circulating levels of monocytes, an important immune effector cell in sheep diseases [21–23,

29], has a similar potential to benefit animal agriculture and expand on knowledge of genes

associated with immune functions. Thus, we performed the first GWAS for circulating mono-

cytes in sheep, associating genotypes imputed to high density in sheep with absolute monocyte

counts. The breed imputation accuracies are mildly lower than initially reported accuracies in

sheep [66], which may reflect the relatively limited availability of reference animals in this

study. As a result, the findings must be interpreted in light of this limitation, which may affect

their reliability. GWAS findings should be validated in an independent population to prevent

overfitting and rule out spurious findings, and this is especially important as this study was

limited somewhat by sample size and correspondingly low imputation accuracy. To the

authors’ knowledge, however, this is the first association study utilizing imputation in Colum-

bia, Polypay, and Rambouillet sheep. The model from our analysis had a genomic inflation fac-

tor of 1.01, indicating minimal test statistic inflation, and identified two SNPs of genome-wide

significance and ten genome-wide suggestive SNPs across eight autosomes as listed in Tables 1

and 2. In this discussion, we delve into the potential importance of some of the associated loci,

particularly with regard to nearby genes and how those genes may impact circulating mono-

cyte count, though a link was not apparent with every locus.

Two genome-wide significant SNPs were identified. One SNP (rs401041089; p = 1.10 x

10−8; Table 1) is approximately 60 kilobases downstream of KCNK9, a gene encoding a pH-

dependent potassium channel. This channel, also called TASK3, is constitutively expressed by

T lymphocytes and affects downstream functions of T cell-receptor activation in vitro, includ-

ing secretion of the proinflammatory cytokines IFNγ and IL2 [67]. IFNγ is linked in particular

to the monocyte-macrophage lineage, with these cells both producing and becoming activated

in response to IFNγ [68]. Monocyte precursors in murine bone marrow express the IFNγ
receptor IFNγR1 [69]. IFNγ is thought to shift hematopoiesis in favor of monocytes during

inflammation based on models of infectious disease in mice [70, 71]. TASK3 is also linked

with apoptosis in cultured neurons [72] and human gastric adenocarcinoma cell lines [73].

The other significant SNP (rs428401450; p = 2.05 x 10−7) was not within 100 kilobases of any

recognized genes in the Oar rambouillet v1.0 assembly [74–76], though its association is sug-

gested by the presence of three SNPs within 50 kilobases with p values less than 1 x 10−3. How-

ever, rs428401450 is approximately 114 kilobases upstream of the gene GOLIM4, which

encodes a type II Golgi-resident protein considered to play a role in cell proliferation and apo-

ptosis in some neoplastic cell lines [77, 78]. Additionally, the genomic locus where the SNP is

found has a chromatin state consistent with an active promoter in tissue from the spleen [79],

and the SNP is within 100 bases of chromatin consistent with an active promoter in alveolar

Table 1. Genome-wide significant single nucleotide polymorphisms (SNPs) associated with absolute monocyte count.

Chr refSNP Variant type Position bp A1 A2 MAF P-value Genes within 100 Kb

9 rs401041089 intergenic 18,019,166 G A+ 0.011 1.10x10-8 Potassium two pore domain channel subfamily K member 9 (KCNK9)2

1 rs428401450 intergenic 238,399,139 G T+ 0.151 2.05x10-7 No genes within 100 Kb

All positions use the Oar rambouillet v1.0 reference genome unless otherwise indicated.
+Allele associated with higher absolute monocyte count.
1Located upstream from gene.
2Located downstream from gene.

https://doi.org/10.1371/journal.pone.0266748.t001
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macrophages [80]. While a gene is not identified in any closer vicinity than that of GOLIM4, it

is not uncommon for GWAS findings to reside within “gene deserts”, with one studying esti-

mating that nearly half of published SNPs associated with disease discovered by GWAS are not

within or near genes [81]. Such areas may still contain regulatory elements that act on distant

genes utilizing the three-dimensional structure of chromatin [81, 82], and projects that anno-

tate genomes and elucidate chromatin structure are expected to reveal more information

about these regions. For example, annotation in sheep is an ongoing effort with recent devel-

opments by the Functional Annotation of Animal Genomes (FAANG) consortium [79]. The

FAANG project aims to map functional elements in the genomes of several domesticated ani-

mal species [83], and the ovine FAANG project has published multiple papers describing func-

tional elements in the recent Oar rambouillet v1.0 genome [75, 79, 80].

Regarding the genome-wide suggestive SNPs, one locus (rs425174370; p = 7.98 x 10−7;

Table 2) resides within a gene cluster on OAR9 including GML, LY6D, LYNX1, LYPD2, and

SLURP1, which are members of the lymphocyte antigen-6/urokinase-type plasminogen activa-

tor receptor (Ly6/uPAR) family of genes [84, 85]. Ly6/uPAR genes are associated with stem

cells and are particularly implicated in immune cell differentiation and clearance of cancer

[84], and expression of the family member Ly6C defines classical and non-classical monocyte

subsets in mice [13, 14, 86]. The gene family is conserved across species, though some gene

family members are species-specific [85], and human monocyte subsets are classified as

Table 2. Genome-wide suggestive single nucleotide polymorphisms (SNPs) associated with absolute monocyte count.

Chr refSNP Variant

type

Position bp A1 A2 MAF P-value Genes within 100 Kb

9 rs425174370 intergenic 15,830,787 T G+ 0.014 7.98x10-7 Lymphocyte antigen 6 family member D (LY6D)1, Ly6/neurotoxin-like protein

1 (LYNX1)1, Ly6/PLAUR domain containing 2 (LYPD2)1, Secreted Ly6/LAUR

domain containing 1(SLURP1)1, Cytochrome P450 family 11 subfamily B

polypeptide 1 (CYPB11B1)1, Thioesterase superfamily member 6 (THEM6)1,

Prostate stem cell antigen (PSCA)1, ENSOARG000200137072,

Glycosylphosphatidylinositol anchored molecule like (GML) 2

15 rs399452398 intergenic 41,848,001 C T+ 0.038 1.26x10-6 Spondin 1 (SPON1)2

10 rs429734375 intergenic 69,691,108 A G+ 0.260 1.30x10-6 No genes within 100 Kb

1 rs421879522 intergenic 125,531,997 C T+ 0.065 1.33x10-6 Family with sequence similarity 78 member B (FAM78B)1, Uridine-cytidine

kinase 2 (UCK2)2, Aldehyde dehydrogenase 9 family member A1 (ALDH9A1)2

3 rs428909416 intron 100,745,902 or

96,180,662

G+ A 0.415 1.74x10-6 High mobility group nucleosome binding domain 1 (HMGN1)1, Exocyst

complex component 6B (EXOC6B)

3 rs414400434 intron 100,784,103 T+ C 0.485 2.42x10-6 Exocyst complex component 6B (EXOC6B)

4 rs399619443 intergenic 100,335,490,

109,357,840, or

109,444,337

C+ T 0.075 2.55x10-6 Cholinergic receptor muscarinic 2 (CHRM2)1

2 rs418310516 intergenic 253,537,862 C A+ 0.074 4.49x10-6 No genes within 100 Kb

16 rs427185509 intergenic 75,515,758 T C+ 0.025 6.65x10-6 No genes within 100 Kb

4 rs423783355a intergenic 104,754,549 A G+ 0.033 9.97x10-6 Olfactory receptor family 6 subfamily V member 1 (OR6V1)1, Kell metallo-

endopeptidase (KEL)2, Transient receptor potential cation channel subfamily

V member 5 (TRPV5)2, LLLL and CFNLAS motif containing 1 (LLCFC1)2

All positions use the Oar rambouillet v1.0 reference genome unless otherwise indicated. Loci with multiple positions listed mapped to multiple positions in Ensembl

Release 104.
+Allele associated with higher absolute monocyte count.
1Located upstream from gene.
2Located downstream from gene. aThe SNP rs423783355 did not map to the Oar rambouillet v1.0 genome, so information from the Oar v3.1 genome is used for this

SNP.

https://doi.org/10.1371/journal.pone.0266748.t002
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classical, non-classical, or intermediate by a different system [12]. While such a classification

scheme does not exist in sheep, the association of loci within this gene cluster with absolute

monocyte count could indicate such a system exists in sheep and/or that members of the LY6/

uPAR family play a role in monocyte differentiation; establishing such subsets could be an

exciting development in sheep monocyte physiology that deserves to be explored further.

Two genome-wide suggestive loci are on OAR3 (rs428909416; p = 1.74 x 10−6 and

rs414400434; p = 2.42x10-6; Table 2), with rs428909416mapping to two positions in Oar ram-
bouillet v1.0 in Ensembl release 104 [74, 75, 87]. If the position at 100,745,902 is used for

rs428909416, both SNPs are within EXOC6B, which encodes part of a multimeric protein

called the exocyst, which is highly expressed in mast cells [88] and has a general role in exocy-

tosis [89]. However, using the alternate position for rs428909416 places the locus close to the

ENSOART00020002401.1 transcript on Ensembl [87], and a pairwise comparison of its 360 bp

cDNA sequence had 100% nucleotide sequence identity with a predicted transcript from

HMGN1 (XM_027963980.1) using a BLASTn search [90].HMGN1 codes for a chromatin

accessibility regulator closely linked with myeloid differentiation, being highly expressed in

hematopoietic stem cells and progenitor cells but losing expression in differentiated myeloid

cells [91]. In addition, extracellular product acts as an alarmin that favors a Th1 type response

[92], an inflammatory pattern associated with IFNγ [93] and a strong cell-mediated response

including macrophages [94].

Finally, a genome-wide suggestive SNP on OAR4 (rs423783355; p = 9.97 x 10−6; Table 2)

does not map to Oar rambouillet v1.0 but maps close to several annotated genes in Oar v3.1 in

NCBI [95] and near a long non-coding RNA in Ensembl [87]. Of particular interest, it is

approximately 15 kilobases downstream of KEL, which encodes the Kell blood antigen group

[96]. While best characterized as a glycoprotein determining blood groups in erythrocytes,

Kell is also expressed on myeloid progenitor cells and monocytes [97, 98].

While no previous GWAS with monocyte counts have been performed in sheep, similar

studies have been done for humans, with the genes ITGA4 and LPAR1 implicated in multiple

study populations [33–35]. These genes were not associated with absolute monocyte count in

this study. While this study identifies several loci that have not been previously associated with

the number of circulating monocytes in humans, one associated locus is near several genes in

the Ly6/uPAR family, members of which are associated with immune cell differentiation and

monocyte subclassification in mice [13, 85]. These findings shed new light on monocyte differ-

entiation in sheep and can potentially help characterize the immune response associated with

important infectious diseases of this species. These findings will be further investigated to

determine their associated causal variant(s) and assess their validity.

Conclusions

This study is the first to perform a genome-wide association with a measure of circulating

monocytes in sheep. Several significant and suggestive loci, all novel loci compared with those

identified in human studies, were identified and are located near genes associated with mono-

cyte subset differentiation, cytokine production, cell-mediated immunity, and hematopoiesis.

Characterizing the genetic influences underlying monocyte counts in sheep may also have

value in investigating the susceptibility to diseases that closely involve the monocyte-macro-

phage system such as Coxiella burnetii and ovine lentivirus. More research such as fine map-

ping is needed to identify what causal variants may be in linkage disequilibrium with the

identified loci, and these functional mutations should be validated in an independent popula-

tion. Fully characterizing these loci has the potential to benefit veterinary medicine, producers,

and expand knowledge of immunologic development.
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