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Abstract: Homogenously dispersed Cu oxide nanoparticles on laser-induced graphene (LIG) were
fabricated using a simple two-step laser irradiation. This work emphasized the synergetic photo-
electrothermal effect in Cu oxide particles embedded in LIG. Our flexible hybrid composites exhibited
high mechanical durability and excellent thermal properties. Moreover, the Cu oxide nanoparticles
in the carbon matrix of LIG enhanced the light trapping and multiple electron internal scattering for
the electrothermal effect. The best conditions for deicing devices were also studied by controlling
the amount of Cu solution. The deicing performance of the sample was demonstrated, and the
results indicate that the developed method could be a promising strategy for maintaining lightness,
efficiency, excellent thermal performance, and eco-friendly 3D processing capabilities.

Keywords: flexible; laser-induced graphene; polyimide; deicing; photothermal effect; heater

1. Introduction

There have been growing concerns about the accumulation of ice owing to the increas-
ing use of electronic instruments, aircraft, power grids, and telecommunications, which
leads to many problems in the industry [1–4]. Furthermore, ice accumulation can cause
immediate safety problems while driving an electronic car or boarding an airplane [5,6].
Therefore, developing rapid deicing devices is essential to help maintain the performance
of electronic products, especially in the aerospace industry. In recent years, tremendous
efforts have been devoted to finding materials for deicing, such as electroconductive tex-
tiles, carbon nanotubes (CNTs), sprayable metal layers, and carbon fibers (CFs) [7–10].
Among these, highly efficient, lightweight, and flexible materials are vital for applications
based on electronic devices. Recently, graphene has received great attention because of its
large surface area, good thermal conductivity, excellent mechanical strength, and superior
electronic mobility [11–13].

Graphene, a single-atom thick two-dimensional honeycomb lattice of sp2 carbon
allotropes is a versatile material that offers high photothermal conversion efficiency, tunable
wettability, high mechanical strength, and ease of functionalization [14–16]. Recently,
significant effort has been devoted to graphene-based deicing devices. Graphene-based
devices could efficiently heat up by combining the photo/electro-to-heat effect of graphene
for highly efficient deicing devices. While graphene-based devices have unique properties,
their applications are limited by complicated, expensive, and inefficient manufacturing
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routes and are not suitable for industrial applications [17–20]. Laser-induced graphene
(LIG) could be a good strategy to fabricate graphene-based composites [21,22]. LIG is
produced by directly irradiating carbonaceous precursors, and it naturally exhibits a three-
dimensional porous structure. LIG and its derivatives have broad applications, such as
sensors, batteries, and catalysts [23–26], because of their simple, time-efficient, low-cost,
and eco-friendly preparation using an expanding range of raw materials.

In this paper, we report a facile and efficient strategy to engineer polyimide (PI) and
metal solutions into metal oxide nanoparticles with LIG for a deicing device using a two-
step irradiation method. This method uses a 355 nm UV pulsed laser to directly convert
PI into hydrophilic LIG and fabricate Cu oxide nanoparticles. By regulating the amount
of the metal solution, we can readily control the Cu oxide nanoparticle configuration.
The proposed method allows facile fabrication of durable deicing devices with a high
photo-electrothermal effect.

2. Materials and Methods
2.1. Laser Delivery System

A commercial 355 nm pulsed laser system (AONano 355-5-30-V from Advanced
Optowave, Ronkonkoma, NA, USA) was used as the laser source for fabricating the LIG.
An Nd:YVO4 laser with a maximum average power of 5 W at λ = 355 nm, a pulse length of
τ = 15 ns, and repetition rate of ƒ = 30 kHz was used to irradiate the samples in a standard
atmospheric environment (25 ◦C and normal pressure), as described in Table S1. Laser direct
writing (LDW) was adopted for the preparation of LIG patterns during laser induction
under ambient conditions at room temperature. Laser beam delivery was performed by
moving the mirrors of a Galvano scanner (HurrySCAN III 14 from SCANLAB, Pucheim,
Germany) and the F-θ lens of focal length f = 105.9 mm (S4LFT4100/075 Telecen-tric Scan
Lens from Sill Optics, Wendelstein, Germany).

2.2. Preparation of LIG and Cu Oxide Nanoparticles on LIG

The fabrication process is illustrated in Figure 1. The laser path of the 355 nm UV
pulsed laser is shown in Figure 1a. The laser power was 1.1 W, the laser scan mode was
unidirectional, and the laser scanning speed was 60 and 40 mm/s. Table S2 shows the laser
beam condition. The weak laser power prevents the excessive oxidation of LIG, which
causes corrosion and weakens the photo-electrothermal effect. The other experimental
details are described in the Supporting Information. The laser beam was scanned using a
crosshatching process to form grooved LIG patterns with a porous structure. The hatch
distance was fixed at 0.05 mm. Both the horizontal and vertical scan modes provided a
high porosity to the surface. Figure S1 shows the LIG patterns fabricated using only the
horizontal scan mode (0◦). The porosity of this pattern was fabricated at the laser spot area.
As shown in Figure 1b, the LIG patterns were directly fabricated with the laser scanning
speed of 60 mm/s on a commercial polyimide (PI) film with a thickness of 125 µm (Kapton®

from DupontTM Wilmington, DE, USA). Figure 1e shows the FEM image of Porous LIG.
Then, 1% CuCl2 solution (Sigma-Aldrich, Saint Louis, MO, USA) was dropped on the
LIG patterns for the formation of Cu oxide nanoparticles. The LIG sample containing the
Cu solution was subsequently re-irradiated with the 355 UV pulsed laser under the laser
speed of 40 mm/s, as shown in Figure 1c. Figure 1d shows the actual LIG with Cu oxide
nanoparticles. For convenience, we refer to this material as Cu/LIG. Figure 1f shows the
FE-SEM image of the Cu/LIG. This has porous structures nanoparticles on the surface.
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These methods can produce metal hybrid graphene with excellent performance, but they 
require harmful chemicals or an environment that applies high pressure and heat. We 
fabricate Cu oxide nanoparticles on the LIG surface very quickly and easily using LDW 
without harmful chemicals under ambient conditions. 
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is analyzed that the amount of solution is not enough to spread Cu oxide nanoparticles 
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Figure 1. Fabrication of process of LIG deicing systems: (a) illustration of laser pulse spot; (b) first
irradiation onto PI for porous LIG; (c) second laser irradiation with CuCl2 solutions for the fabrication
of Cu oxide nanoparticles; (d) actual photograph of Cu/LIG with silver paste electrode; FE-SEM
images of (e) porous LIG and (f) Cu/LIG.

2.3. Characterization

The morphology of the LIG was studied using field emission scanning electron mi-
croscopy (FE-SEM, TESCAN MIRA 3 LMH In-Beam Detector, Brno, Czech Republic). Ra-
man spectra were measured using a Raman spectrometer (NRS-5100 JASCO International
Co., Ltd., Tokyo, Japan) with a 532-nm excitation line. X-ray photoelectron spectroscopy
(XPS) was also performed to further analyze the surface chemical compositions of LIG
and Cu/LIG. The instantaneous electrothermal performance was recorded using an LCR
meter 4100 (Wanye Kerr Electronics, Woburn, MA, USA) and a Keithley 2450 source meter
(Keithley Tektronix, Beaverton, OR, USA). Moreover, the zeta potentials were analyzed
using a Litesizer 500 (Anton Paar, Graz, Austria), and the surface area and pore size were
recorded using an Autosorb-iQ instrument (Quantachrome, Boynton Beach, FL, USA).

3. Results
3.1. Morphological Characteristics of Cu/LIG

For the fabrication of graphene-based metallic hybrid materials, many methods are
attempted, such as reduction, liquid-phase exfoliation, and electrodeposition [27–29]. These
methods can produce metal hybrid graphene with excellent performance, but they require
harmful chemicals or an environment that applies high pressure and heat. We fabricate
Cu oxide nanoparticles on the LIG surface very quickly and easily using LDW without
harmful chemicals under ambient conditions.

Figure 2 shows the FE-SEM images of the Cu/LIG patterns according to Cu solution
varying 2.5, 5, and 7.5 µL. Figure 2a,d,g shows the patterns with 2.5 µL Cu solution. Cu
oxide nanoparticles on LIG could be shown, but their distribution density looks lower. It
is analyzed that the amount of solution is not enough to spread Cu oxide nanoparticles
on the LIG surface. Figure 2b,e,h shows the patterns fabricated at an amount of 5 µL.
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Their highly distributed Cu oxide nanoparticles show that the 5 µL Cu solution is the best
condition for Cu/LIG samples. Their Cu oxide nanoparticles could be used as a synergetic
effect for photo-electrothermal effect with LIG. Figure 2c,f,i shows Cu/LIG fabricated at
the amount of 7.5 µL. Owing to the relatively higher amount of Cu solution, the energy of
fluency of second irradiation could be used as vaporizing of water solution, which weakens
fabrication of Cu oxide nanoparticles.
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(a,d,g) 2.5 µL; (b,e,h) 5 µL; (c,f,i) 7.5 µL.

3.2. Chemical Characteristics of Cu/LIG

The Raman spectra of LIG Cu/LIG show three characteristic peaks located at 1346,
1584, and 2695 cm−1, which belong to the D, G, and 2D peaks of the graphene-derived ma-
terial, as shown in Figure 3a,b [30,31]. The D peak was caused by the defects or disordered
sp2 carbon, the G peak was induced by the sp2 carbon, and the 2D peak originated from
the second-order zone-boundary phonons. Both spectra have sharp, symmetrical 2D peaks,
providing that graphene is indeed produced during the LIG process [31].

If the Ig/I2D ratio is greater than 1, then the graphene is multilayered. Because the
experimental Ig/I2D ratio was 1.13, it was considered as a multilayered structure. In
addition, the D peak was much stronger than that of conventional graphene [31]. This is
because the LIG contains both graphene oxide and reduced graphene oxides.
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Compared with the bare LIG, the ratio of the D peak gradually increased in Cu/LIG,
as shown in Figure 3b. The ID/IG ratio of LIG was approximately 0.97, and that of Cu/LIG
was approximately 1.01. Thus, dangling bonds and substitution of Cu elements through
the catalytic reaction of aqueous copper chloride can lead to defective LIG. In addition,
the peaks near 300 cm−1 and 610 cm−1 are copper oxide peaks [32]. Meanwhile, Figure 3c
shows the XPS survey spectra of LIG and Cu/LIG, which show that carbon and oxygen
are the main peaks. As shown in Figure 3d,e, the C1s region for LIG and Cu/LIG was
deconvoluted into three peaks at 284.6, 286, and 290 eV, corresponding to C–C bonds
with sp2 hybridization, C–O bonds, and C=O bonds, respectively. Their full width at half
maximum (FWHM) indicates the ratio of the C1s peak to the O1s peak. The relatively
lower FWHM of Cu/LIG compared with LIG indicates that the second irradiation with
Cu solution reduces the oxygen functional groups [33,34]. The XPS spectra for Cu/LIG
were also examined in the Cu2p region, as shown in Figure 3f. The binding energies of
Cu2p3/2 and Cu2p1/2 peaks were located at 933 eV and 952.3 eV, respectively [35]. The
broader Cu2p peaks show that Cu/LIG has Cu nanoparticles of oxide foam rather than
metallic foam. As shown in Figure S2, EDS spectra of Cu/LIG show Cu oxide particles
have abundant oxygen groups. Table S3 shows the EDS spectra table of Cu/LIG. The strong
Cu2+ satellite peaks located at 942.7 eV and 962.8 eV show that the Cu oxide nanoparticles
appear to be CuO [36]. Figure S3 shows the TGA curves of Cu/LIG with enhanced thermal
stability performance.

3.3. Photothermal Properties of Cu/LIG

The excellent photothermal properties of Cu/LIG samples were observed, as shown
in Figure 4. We graphed the data as the average value of the results of three or more experi-
ments. Furthermore, we studied the temperature change of the sample surface according
to the solar power (SUN), as shown in Figure 4a,b. Figure 4a shows the temperature as a
function of solar power for LIG patterns fabricated according to the laser scanning speed.
The solar generator supplied power from 0.5 to 1.2 sun in 0.1 increments. Each prepared
sample was exposed for 3 min, and the temperature was measured using a thermal imaging
camera. All samples showed a linear temperature increase from 0.5 to 1.1 sun. However,
the difference temperature presented in Figure 4a is very small. We measured the sur-
face temperature of the Cu/LIG surface according to the Cu solution from 0 to 7.5 µL in
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2.5 increments, as shown in Figure 4b. LIG (1) and (2) showed the lowest temperature
rise in all the samples, which confirmed that copper oxide nanoparticles improved the
photothermal conversion properties of the LIG. Among the three Cu/LIG samples, Cu/LIG
(5 µL) showed the highest temperature increase. Thus, the higher the Cu oxide particle
content on the LIG surface, the larger the photothermal conversion. These results are
consistent with the FE-SEM images showing that the amount of Cu oxide nanoparticles is
largest at Cu/LIG (5 µL).
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We compared the heating and cooling time of LIG (2) and Cu/LIG (5 µL), as shown in
Figure 4c. This graph shows the time required to reach the maximum temperature at 1 sun
and the cooling time when the solar generator was turned off. As the temperature gradient
changes of LIG (2) and Cu/LIG (5 µL) were similar, the rising speed was also similar. We
confirmed that the temperature difference was approximately 8 ◦C until the solar generator
was turned off when both samples showed a rapid temperature drop. In the case of the
Cu/LIG (5 µL) sample, the cooling time was slightly delayed compared with that of the
LIG (2) sample. The cooling time of LIG was approximately 32 ◦C after 150 s, whereas
that of Cu/LIG (5 µL) was approximately 33 ◦C after 300 s. This shows that LIG with Cu
oxide nanoparticles produces heat more efficiently than bare LIG through photothermal
conversion [37].

Figure 4d shows the surface temperature according to the area change from 1 × 1 cm2

with 5 µL, 2 × 2 cm2 with 20 µL, and 3 × 3 cm2 with 45 µL, which are the best conditions
for photothermal conversion. The samples were exposed to 1 sun for 5 min and showed
temperature changes of 78.6 ◦C, 81.7 ◦C, and 84 ◦C, respectively. We confirmed that the
surface area affected the photothermal conversion. However, the temperature difference
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between 1 × 1 and 2 × 2 cm2 is 3.1 ◦C, and the difference between 2 × 2 and 3 × 3 cm2 is
2.3 ◦C. As the area increases, the difference in temperature conversion ability is expected
to be insignificant, and it is expected that laser-induced heat will influence the fabricated
smaller areas.

Figure 5a is a state in which 0.5 mm of water is frozen in the form of a column with a
diameter of 0.8 cm to check the photothermal deicing performance of our Cu/LIG (5 µL)
pad with a 3 × 3 cm2 area. The deicing tests were conducted by exposing the sample to a
solar lamp at 1 sun from the ground. As soon as the pad is exposed to the light source, the
interface between the LIG and ice is immediately melted, as shown in Figure 5b. The heat
through photothermal conversion started to melt the ice gradually from the interface, and
a water layer is eventually formed at the weak interface. Then, ice and LIG were separated
by the formed water layer. As shown in Figure 5c, the water layer flows to the column
by gravity and forms a droplet further away from the interface by surface tension [38].
At 93 s, the entire interface is melted, and the ice column falls to the bottom owing to
gravity, as shown in Figure 5d. Figure 5e shows a schematic illustration of Cu/LIG of
the deicing based on the photothermal effect. The excellent photothermal performance of
our deicing device could be attributed to the three advantages of Cu/LIG: π-bonds, Cu
oxide nanoparticles, and 3D porous structure. The general heat generation mechanism
of carbonaceous materials is mainly through the thermal vibration of molecules. After
absorbing incident solar light, carbon materials tend to be in an excited state with high-
frequency phonon modes and then turn to the low-frequency modes via a phonon–phonon
coupling process to release the energy, thus generating heat energy [39,40]. To enhance the
photothermal efficiency, the molecular structure of LIG has numerous conjugated π-bonds
that are different from those of conventional amorphous carbon. Configuration design
plays a crucial role in light-to-heat efficiency. In addition to improving solar absorption,
reducing the losses of incident light is another encouraging technology route to boost
the photothermal property [41]. When incident light is irradiated onto the surface of the
LIG, light reflection is usually accompanied by light absorption [42]. The reflected light
will return to the air and thus cannot be effectively utilized if the surface of the deicing
device is planar [43]. Taking these into account, reducing or reusing the reflected light is an
effective approach to improve the deicing performance [44]. Hybridization of photothermal
materials has also been demonstrated to be a powerful tool to obtain satisfactory light-
to-heat performance. This approach takes advantage of the optical response of different
solar absorbers to maximize the optical properties in both absorption range and intensity,
based on multiple internal reflections at the interface owing to impedance mismatch, which
then leads to photoabsorption. The interface of Cu oxide nanoparticles and LIG leads to
enhanced optical absorption and reinforced hot electron–phonon interactions for efficient
photothermal conversion [45]. Figure 5e shows the thermal images of 3 × 3 cm2 LIG and
Cu/LIG pad at the maximum temperature of 1 sun. The maximum temperatures of LIG (2)
and Cu/LIG (5 µL) were 80.9 ◦C and 88.3 ◦C, respectively. The Cu oxide particles showed
an improved photothermal change of approximately 7.4 ◦C. Therefore, the excellent deicing
performance of our Cu/LIG samples was explained by the hybridization of Cu oxide
nanoparticles on porous LIG.

3.4. Electrothermal Performance Test

Figure 6 shows the electrical and electrothermal properties of the samples. The most
important parameters in Joule heating are the resistance and current within the materials.
Therefore, the I–V curve in Figure 6a is used to assess the electrical properties of the
deicing device. The LIG and Cu/LIG (5 µL) show both linear I–V curves, which means
that both samples have good ohmic behavior and can be controlled with applied voltage
for electrothermal devices [46]. As shown in Figure 6b,c, we tested the linearity between
the input voltage and temperature. We raised the temperature to 200 ◦C for safe operation
considering the glass transition temperature of polyimide [47]. Cu/LIG heater has better
temperature stability and linearity than LIG, according to varying voltage. Likewise,
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Cu/LIG shows a higher temperature change when applying the same voltage. These results
indicate that the second irradiation with Cu solution increases the electrical conductivity
of Cu/LIG patterns [48]. Meanwhile, power density is an index for the energy efficiency
of the heater. It is the energy consumption per unit area in the case of a two-dimensional
system. Thus, achieving a higher temperature at the same power density corresponds to a
higher heater efficiency. Figure 6d shows the energy efficiency of the two kinds of heaters
we manufactured. The Cu/LIG heater has much higher temperatures than bare LIG in
all operating power densities. We found that the temperature difference widens as the
power density increases. Our Cu/LIG heater showed very efficient heating performance
with 0.27 W/ cm2 at 100 ◦C through a 1 cm2 scale. Compared with previous research,
which showed a temperature of about 100 ◦C at a power density of 0.35 W/ cm2, our heater
needed about 18.5% lower power density to reach the same temperature [49].
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Furthermore, we found that the threshold voltages at 200 ◦C were 4 V and 6 V,
respectively. Then, we measured the rising time to reach 200 ◦C, as well as the cooling
time. As shown in Figure 6e,f, we confirmed that Cu/LIG decreases both the rising time
and cooling time. The Cu/LIG heater reached the target temperature within 5 s, and its
cooling time was just 13 s. Therefore, copper oxide can realize a rapid heater. We applied
our Cu/LIG heater to the deicing.
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Aircraft icing refers to the formation of ice on the surface of an aircraft due to cloud
particles or supercooled water droplets below the freezing point temperature [50]. Super-
cooled water droplets are most often observed between 0 ◦C and –20 ◦C [51]. Therefore,
we conducted a deicing test while maintaining an environment at –10 ◦C. Figure S4 shows
the process of the electrothermal performance test for deicing. First, 20 mm thick ice was
formed on a 3 × 3 cm2 heater, which was attached above a cold metal to compensate for the
real condition. Because of the heat sink and cold environment, we input a power density
of 1.06 W/cm2. Figure 7a describes in detail how ice is finally vaporized. First, there is a
state in which no voltage is applied to the heater. When voltage is applied, it undergoes
rapid heating, which immediately creates water at the interface between the ice and heater.
Water can reduce the adhesion of the ice and heater interface [52]. This means that ice
can be removed easily by external forces such as wind and gravity. The third schematic
shows that most of the heat is used to melt the ice again, but the edge side far from the
ice undergoes evaporation. In this step, some of the moisture penetrates the 3D porous
structure of the microscale. When whole ice is melted, as in the fourth image, all the heat is
used to vaporize the moisture on the surface. Then, the temperature of the heater surface
rises rapidly. Through this process, the heater was transformed into a completely dried
state. This additional process must prevent icing because the remaining moisture on the
surface subsequently acts as a frozen seed [53].

Figure 7b shows the change of the highest temperature point on the surface. As soon
as the heater is turned on at −10 ◦C, the edge side is melted, and the temperature rises to
about 50 ◦C. After that, the temperature rapidly increases continuously to 80 ◦C until 40 s.
Then it faces an evaporation state. The temperature slowly rises from 40 s to 135 s.; the
reason why it does not go over 102 ◦C is the boiling point of water. After the evaporation
process, the temperature rises about 135 ◦ during 240 s.
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4. Conclusions

In conclusion, we attempted to grow Cu oxide nanoparticles on a LIG surface using
only a UV nanosecond pulsed laser. After optimizing the best Cu/LIG process through
a photothermal experiment, the configuration of the Cu/LIG composites was studied by
structural and morphological analyses. The hybrid Cu/LIG composites showed synergistic
photo-electrothermal effects for deicing. We also analyzed the chemical characteristics us-
ing Raman spectroscopy. The photo and electrothermal effect of LIG was further improved
through Cu oxides nanoparticles on the LIG surface based on light trapping and multiple
electron internal scattering. By optimizing the photothermal effect with the number of Cu
solutions, we found that a 5 µL Cu solution is suitable for a 1 × 1 cm2 area for Cu/LIG
deicing devices. This work presents an eco-friendly, sustainable, and cost-effective fabrica-
tion pathway for potential deicing devices. We hope that this strategy could be used as an
industrially viable route for the mass production of high-performance deicing devices.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12060960/s1, Figure S1: FE-SEM image of LIG fabricated
with 0◦ hatching process.; Table S1: Specifications of the 355 nm UV pulsed laser.; Figure S2: EDS
spectra of Cu/LIG.; Table S2: Laser beam condition.; Figure S3: TGA curves of Cu/LIG.; Table S3:
EDS spectra of Cu/LIG.; Figure S4: (a) Illustration of electrothermal performance test for deicing,
(b) actual photograph of Cu/LIG with ice accumulation of the surface, (c) thermal images of Cu/LIG
patterns with ice accumulation. References [49,54–56] are cited in the Supplementary Materials.
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