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Time for primary review: 24 days

In human and experimental myocardial infarction (MI), cessation of blood supply leads to rapid necrosis
of cardiac myocytes in the ischaemic heart. Immediately after injury, various intra- and intercellular
pathways contribute to healing the myocardial wound in order to achieve tissue integrity and function.
MI and the consequent loss of myocardium are the major aetiology for heart failure. Despite aggressive
primary therapy, prognosis remains poor in patients with large infarction and severe left ventricular dys-
function. Thus, it would be highly desirable to improve healing of the cardiac wound to maintain struc-
ture and function of the heart. Healing in the heart occurs in overlapping phases. Herein, we review the
inflammatory phase as a trigger of tissue formation.
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1. Introduction

One major determinant of remodelling post-myocardial
infarction (MI) is infarct size.1 Infarct size depends on the
amount of myocardium supplied by the infarct-related cor-
onary artery, the time to effective reperfusion therapy,
and myocardial energy consumption during coronary occlu-
sion. Early reperfusion and beta-blockers are therefore stan-
dard therapy today. However, slow-flow or no-reflow
phenomena are quite frequent post-MI and may contribute
to ongoing ischaemia. After reperfusion, ‘the infarct’ in
most instances will consist of highly inhomogeneous tissue
which may immediately recover, be stunned, or be
apoptotic/necrotic. Sensitivity to ischaemia varies among
myocardial cells, vasculature, and connective tissue
adding to inhomogeneity of infarct tissue composition.2 In
addition, inflammatory cells and macrophages may invade
from circulating blood and start as well as maintain pro-
cesses of inflammation, clearing debris, and wound
healing. Toxic or protective mediators, circulating and
locally released by autochthonous or recruited cells, add
to the complexity. It may be of major therapeutic value to
influence myocardial healing as it opens a new time
window and addresses new mechanisms for therapy.
However, specific measures have not yet been developed

mostly due to a lack of precise knowledge of processes con-
tributing to wound healing. The present review (i) puts
forward the hypothesis that a reperfused MI may be con-
sidered a healing wound, (ii) compiles evidence for cells
and factors controlling the inflammatory phase of wound
healing, and (iii) proposes potential anti-inflammatory
mechanisms as targets for therapeutic research.

2. Myocardial infarction: a healing wound

The capacity for regeneration and reparation certainly was
of selection value in evolution and is highly variable
among species. Some species may restore organs or limbs
in total; mammals are mostly restricted to reparation; and
variability is high among individual organs. Healing of exter-
nal wounds is a conditio sine qua non for survival and there-
fore secured by multiple redundant mechanisms.
Nevertheless, it may vary substantially among individuals.
There appear to be differences in wound healing with
regard to sex, age, and race, whereas genetics of wound
healing have not been clarified. A large body of empirical
knowledge has been accumulated on measures to support
wound healing. More recently, essential factors for wound
healing have been identified, but implications of such
‘healing factors’ for healing of internal wounds remain
unclear. Two types of ‘wounds’ are particularly frequent
and highly clinically relevant in the cardiovascular system:
rupture of an atherosclerotic plaque and MI. For the latter,
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if survived, healing is essential for further prognosis. Both of
them are modern diseases and thus evolution has not yet
developed specific strategies by selection. Thus, general
strategies of coping with stress and wound healing take
place.

The healing process may first be dominated by inflam-
mation (degradation of extracellular matrix, inhibition
of tissue proliferation, and release of inflammatory
mediators ¼ ‘inflammatory phenotype’) and turn then to
reparation (increased matrix synthesis, proliferation of
fibroblasts and inflammatory cells, and release of fibrosis-
promoting cytokines leading to scar formation ¼ ‘activated
phenotype’). The analysis of these processes may be
of major therapeutic importance. Herein, we will focus
on the early inflammatory phase as the trigger of tissue
formation.

3. The inflammatory phase of wound healing

3.1 Triggers of inflammation after cardiac injury

What is the trigger of an inflammatory reaction after cardiac
injury? Indeed, activation of the immune system after
cardiac injury follows the pattern of immune activation
after infection: most microorganisms encountered daily by
a healthy individual are detected and destroyed within
hours by defence mechanisms that are not antigen-specific,
the so-called innate immune system. In contrast to adaptive
immunity, whereby specific antigen receptors are generated
by somatic hypermutation and selection, the innate immune
system uses germline-encoded proteins that recognize
specific patterns shared by groups of pathogens, but not
the host. These receptors, called ‘pattern recognition
receptors’, detect largely invariant patterns, for example,
lipopolysaccharides (LPS) of bacteria or double-stranded
RNA of viruses.3–5 They are constitutively expressed; thus,
defence mechanisms are readily available and need not be
upregulated. The heart itself expresses all parts of the
innate immune system, including pattern recognition
receptors and effector proteins.

Although it is commonly accepted that the innate immune
system is activated by microbial patterns, Matzinger and
co-workers6 assume in the ‘Danger’ model that the presence
of potentially infectious patterns does not necessarily
trigger an immune response, unless there is evidence of
host tissue injury by the so-called ‘alarm’ signals. In
support of this hypothesis, Matzinger and co-workers have
demonstrated that, in the absence of any foreign pathogens,
resting dendritic cells can be activated by virally infected or
necrotic cells, but not by healthy cells or cells undergoing
programmed cell death (apoptosis). Potential mediators
include reactive oxygen species (ROS), heat shock proteins
(HSP), and fibronectin.7 Thus, this work suggests that
certain products of tissue injury, such as ROS and intracellu-
lar proteins released from necrotic cells, initiate an inflam-
matory response, leading to the activation of pattern
recognition receptors such as Toll-like receptors (TLRs),
the transcription nuclear factor kappa B (NF-kB), and
complement.

3.1.1 Toll-like receptors
TLRs have emerged as the primary, non-antigen-specific
defence mechanisms that enable innate immune detection

of foreign pathogens. Thus, TLRs could be important for
the initiation of the inflammatory phase after tissue injury.

To date, 11 human and 13 mouse TLRs have been cloned.5

The ligands for TLRs are molecular motifs produced by
pathogens, but also certain host-derived proteins such as
HSP or fibronectin. As recently reviewed by us,7,8 TLR2, -3,
-4, and -6 are expressed in cardiac myocytes, whereas
TLR1 and -5 are not.9,10 TLRs and their signalling com-
ponents are activated in experimental or clinical heart
failure. TLR4 expression is increased in the myocardium of
patients with advanced heart failure.10,11 In addition,
there is a change in the TLR expression pattern: whereas
in normal murine and human myocardium the TLR4
expression is diffuse and predominantly confined to
cardiac myocytes, myocardium from patients with advanced
heart failure displays focal areas of intense TLR4 staining10

(Figure 1).
The data on myocardial wound healing and TLRs are very

limited. After coronary artery ligation, mortality and left
ventricular dilatation were significantly reduced, and left
ventricular function was preserved in TLR22/2 and
TLR42/2 mice.12,13 In ischaemia/reperfusion experiments,
the invasion of inflammatory cells as well as infarct size
were significantly reduced in TLR4 KO animals.14 Conclus-
ively, the data suggest a role of TLRs for the activation of
inflammatory cells after cardiac injury.

3.1.2 Nuclear factor kappa B (NF-kB)
TLR signalling converges on the activation of the transcrip-
tion factor NF-kB, a key signalling component for early
inflammatory activation. As for TLRs, the role of NF-kB in
healing can only indirectly be deduced from heart failure
as well as ischaemia/reperfusion models. NF-kB-dependent
signalling mechanisms in ischaemia/reperfusion injury are

Figure 1 TLR4 in rat, murine, and human myocardium. Primary isolates of
adult rat ventricular myocytes 24 h after isolation, stained with a polyclonal
antibody targeted to a TLR4-specific epitope adjacent to the cytoplasmic TIR
domain of hTLR4 (upper panel). Normal murine cardiac muscle (magnification
200�; second panel) exhibited diffuse, homogeneous myocyte staining.
However, cardiac myocytes adjacent to an area of ischaemic injury induced
by coronary artery ligation exhibited intense sarcolemmal TLR4 staining.
Finally, cardiomyocytes from humans with dilated cardiomyopathy (lower
panel) displayed intensely stained focal expression of TLR4 (figure reprinted
with permission of Frantz et al.10).
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well defined by now.15 After ischaemia/reperfusion injury,
NF-kB activation is biphasic, with peaks after 15 min and
3 h, i.e. early in the healing process.16,17 As for TLR, ischae-
mia/reperfusion injury is reduced by the inhibition of NF-kB
using molecular [inhibition of p65 by double-stranded
oligonucleotides18 and use of an IkB triple mutant (S32A,
S36A, and Y42A) completely abrogating NF-kB activation19],
as well as pharmacological methods (IKK inhibition20).
We recently demonstrated that mice with targeted deletion
of the NF-kB subunit p50 are protected against ischaemia/
reperfusion injury.21 KO and WT animals underwent 30 min
of coronary artery ligation and 24 h of reperfusion in vivo.
Ischaemia–reperfusion damage was significantly attenuated
in the p50 KO, compared with WT mice. Although adhesion
molecules such as intercellular adhesion molecule-1 (ICAM)
were upregulated in left ventricles of p50 KO animals,
fewer neutrophils infiltrated the infarct area, suggesting
leukocytes as a potential mediator of protection observed
in p50 KO. This was confirmed in adoptive transfer exper-
iments: transplantation of KO bone marrow in KO animals
sustained the protective effect on ischaemia–reperfusion
injury, whereas transplantation of WT bone marrow in KO
animals abolished it. Thus, impaired NF-kB activation in
p50 KO leukocytes attenuated cardiac damage.

After permanent coronary artery ligation, activation of
NF-kB peaks after 3 days (Figure 2).22,23 Mice with targeted
deletion of the NF-kB subunit p50 are protected from left
ventricular dilatation after MI and have preserved left ven-
tricular function. Collagen content and matrix metallopro-
teinase (MMP)-9 expression are significantly lower in KO

mice after MI and may account for improved left ventricular
remodelling.24

Thus, NF-kB is important for activation of inflammation
and healing after MI. The effects on healing seem to be
cell type-specific.

3.1.3 Complement
The complement system is central to the innate immune
system. It can be activated via the classical, alternative,
and lectin pathway. Complement has long been implicated
in mediating tissue injury in ischaemic organs, with or
without reperfusion.25–28 Activation of complement is an
early event in ischaemia/reperfusion injury and healing,
although the mechanism(s) leading to complement
activation has only recently been identified. Carroll and co-
workers28,29 have demonstrated that selective depletion of
natural IgM is sufficient to abrogate most ischaemic–reperfu-
sion injury in both murine hindlimb28 or murine intestinal29

reperfusion injury models. The self-target for this monoclonal
natural IgM is non-muscle myosin heavy chain type II A and
C.30 These data could also be reproduced for the heart.31

Mice baring an altered natural IgM repertoire (Cr22/2) were
protected from ischaemia/reperfusion injury and had a
reduction in inflammatory infiltrates. This effect could be
blunted by IgM reconstitution, suggesting that neoepitopes
recognized by natural IgM appear on the surface of endo-
thelium damaged by reperfusion injury. In conclusion, comp-
lement is activated and an important mediator of neutrophil
and monocyte recruitment early after injury.32

3.1.4 Oxidative stress
ROS are atoms or molecules with unpaired electrons in their
outer orbit. It can directly react with lipids, proteins, and
DNA causing cell injury and death. It can trigger cytokine
and chemokine release partially mediated by NF-kB.
Oxidative stress produces myocardial contractile dysfunc-
tion and structural damage and has been implicated in the
development of heart failure and left ventricular remodel-
ling following MI.33–35 Indeed, cardiac tissue itself is a rich
source of ROS, and NADPH oxidases, xanthine oxidases,
and mitochondria are critical determinants of myocardial
ROS generation.36,37

The normal heart possesses substantial ability to neutralize
ROS; however, in the injured heart, the antioxidant defence
is overwhelmed, resulting in the generation of oxygen-related
free radicals. Markers of oxidative stress are elevated after
MI.38 Various antioxidant approaches reduce adverse cardiac
remodelling,39 for example, overexpression of glutathione
peroxidase.40 Despite the damaging effects of oxidation
itself, ROS can directly influence signalling, for example,
increased ROS production promotes the development of
interstitial fibrosis and extracellular matrix turnover, in part
through activation of matrix metalloproteinases. Thus, ROS
are able to generate an inflammatory response of the
healing phase by necrosis and redox signalling.

In the clinical arena, the results of antioxidant therapy
are discouraging. In the HOPE and Heart Protection study,
cardiovascular events were not improved by vitamin E
treatment.35 There are a number of reasons why vitamin E
supplementation did not have the proposed effect: usage
of the wrong antioxidant, necessity of other antioxidative
cofactors, binding of vitamin E to the cell membrane while
oxidative stress is intracellularly generated, and the

Figure 2 NF-kB activation in the heart after ischaemic injury. In transgenic
mice that express a luciferase reporter whose transcription is dependent on
NF-kB, light generated at the site of NF-kB activation within the transgenic
mouse is sufficiently intense to be detected externally by a light-sensitive
camera upon injection of luciferin. Myocardial infarction induced
NF-kB-dependent in vivo luminescence in the heart of transgenic mice
when compared with sham-operated mice. Maximal NF-kB activity was
observed 3 days after myocardial infarction by serial molecular imaging
(figure reprinted with permission of Tillmanns et al.22).
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problem that a single supplement may not be able to com-
pensate for other coexisting abnormalities. Thus, the final
role of antioxidant medication remains to be determined.

3.1.5 Coagulation cascade
In the first stage of wound healing, activation of the coagu-
lation cascade is necessary to prevent ongoing blood and
fluid loss. Haemostasis is achieved by the formation of a
platelet plug, which becomes a scaffold for infiltrating
cells. Several coagulation factors are able to activate an
innate immune response, for example, thrombin and
factor Xa promote cytokine and chemokines synthesis.41

With respect to healing and inflammation after MI, blood
coagulation factor XIII (FXIII) has been most thoroughly
investigated. It is activated by thrombin in the final stage
of the clotting cascade. FXIII2/2 mice invariably die after
MI due to left ventricular rupture accompanied by reduced
migration of neutrophils into the ischaemic zone.42 FXIII
levels are decreased in patients with insufficient healing
after MI.43 Gene variants (L34) increasing FXIII activity are
associated with improved survival after MI.44 The most
likely source of FXIII in healing infarcts are invading
macrophages.45

3.2 Mediators of inflammation

Upon activation of the innate immune system by ischaemic
injury, several inflammatory mediators are released and
inflammatory cells are attracted to the site of injury. All
these humoral and cellular factors have distinct function
for the healing process.

3.3. Humoral immune response

3.3.1 Cytokines
A variety of cytokines are activated after MI and implicated
in healing. We will exemplify their role by focusing on
interleukin (IL)-1b and tumour necrosis factor (TNF) in this
review.

Blood levels and/or myocardial expression levels of IL-1b
are increased in patients with coronary artery disease,46

acute MI,47 dilated cardiomyopathy,48,49 and in patients
and animal models of congestive heart failure.50 There are
two peaks of IL-1b expression after MI in the rat: there is
an initial rise in the healing phase, within 24 h, that
appeared on immunohistochemical analysis to be located
predominantly in the microvascular endothelium and a
second peak at 7 days with predominant staining of infiltrat-
ing macrophages in the infarct zone.51

Despite these observations, there have been only a few
reports about IL-1b function in ischaemic heart disease.
Indeed, in some experimental models, early administration
of inflammatory cytokines decreases myocardial injury.
Brown et al.52,53 observed protective effects of TNF and
IL-1b in a model of ischaemia/reperfusion injury. Pre-
treatment with IL-1b in an ischemia/reperfusion model in
the isolated rat heart increased the pressure developed
in the left ventricle and decreased the area at risk.54 In
contrast, long-term activation of cytokines seems to be
detrimental: mice lacking the active forms of IL-1b and
IL-18 (i.e. a caspase-1 knockout model) exhibited both
improved peri-infarct survival and decreased ventricular
dilatation after experimental MI, possibly due in part to a
decrease in MMP-3 activity and reduction of apoptosis.55,56

With respect to the healing phase, in IL-1 receptor KO
mice, myofibroblast infiltration and collagen deposition
were decreased as was the development of adverse left
ventricular remodelling after experimental MI.57 Thus, IL-1
signalling is essential for the activation of inflammatory
pathways in the healing infarct.

The role of another innate immunity cytokine, TNF, has
been extensively investigated after cardiac injury. In fact,
TNF can mimic several symptoms of heart failure: mice over-
expressing TNF develop heart failure.58,59 Systemic infusions
of recombinant TNF that yielded blood concentrations of
TNF seen in patients with advanced heart failure depressed
left ventricular function and caused left ventricular dilata-
tion.60 Moreover, the expression of TNF mRNA and protein
is elevated in patients and in animal models with advanced
heart failure due to a number of different aetiologies.50,61

Importantly, TNF has also a prognostic impact: TNF was
elevated in a large portion of heart failure patients with pre-
served and reduced ejection fraction and was associated
with a large decrease in survival.62 However, the function
of TNF is much more complex than initially anticipated:
double knockout mice for the TNF receptor 1 and 2 had
larger infarct sizes and increased apoptosis after MI, indicat-
ing that TNF has also protective functions for the
myocardium.63

3.3.2 Chemokines
Chemokines64 are small polypeptides synthesized by a
number of cells of the immune system as well as by a
number of non-immune cells including endothelial cells
and keratinocytes. All chemokines are related in their
amino acid sequences and function primarily as chemoat-
tractants for phagocytic cells. Generally, CXC chemokines,
such as RANTES, promote neutrophil migration, whereas
CC chemokines, such as IL-8, mediate migration of mono-
cytes and other cell types. A number of CXC chemokines,
including IL-8 and others, appear to play a role in mediating
angiogenesis. Induction of chemokines occurs in the post-
infarction inflammatory response.65 IL-8 is a critical regula-
tor of neutrophil influx in inflammatory processes. The
inhibition of IL-8 in a rabbit ischaemia/reperfusion model
reduced necrosis without altering inflammatory cell inva-
sion.66 However, the role of other chemokines in cardiac
wound healing has not been extensively investigated so far.

3.4 Cellular immune response

Neutrophils are important mediators of the inflammatory
response. They release oxidants and proteases, secrete
mediators for inflammatory cell recruitment, and phagocyte
cell debris, and dead cells.

The recruitment of neutrophils to ischaemic tissue
requires neutrophil–endothelial interactions that are
regulated by a cascade of molecular steps. After activation,
leukocytes roll along post-capillary venules, change shape,
and extravasate in the tissue. The selectin family (E-, L-, P-
selectin) of adhesion molecules mediates the initial capture
of leukocytes. The importance of these proteins for healing
is documented by the fact that E- and P-selectin knockout
mice are protected from ischaemia/reperfusion injury and
have reduced inflammatory cell infiltrates,67 as are feline
hearts treated with an antibody against L-selectin.68
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Selectin adhesion of leukocytes is not very tight. Firm
adhesion and transmigration need the engagement of integ-
rins. Integrins are a family of heterodimeric membrane
glycoproteins. Consequently, integrin-related strategies
have been used to mitigate ischaemia/reperfusion injury.
Indeed, inhibition of integrin CD18 reduced infarct size.67

Crude depletion of neutrophils itself by leukocyte filters
reduces infarct size in ischaemia–reperfusion models,69

indicating a detrimental role of neutrophils for infarct
healing. The detrimental effects seem to be mediated by
ICAM-1-dependent neutrophil–cardiomyocyte adhesion, a
primary ligand of CD18 integrin. ICAM-1 KO mice have less
myocardial injury early after MI.70 Neutrophils release
various cytokines and growth factors important for
healing. However, this effect is not essential for scar
formation since depletion of neutrophils had no effect on
granulation tissue formation in a cutaneous wound healing
model.71 It is especially problematic that neutrophil
effects vary depending on the stage of activation. For
example, it seems that neutrophils release toxic products
almost exclusively when adherent to the vascular wall, but
not when they have evaded in the tissue. Thus, although
multiple experiments suggest a central role of neutrophils
in myocardial healing, the function of neutrophils remains
unclear.

3.4.1 Macrophages
Healing of MI requires monocytes/macrophages. The mono-
nuclear phagocytes degrade released macromolecules and

scavenge dead cardiomyocytes. Infarcted hearts modulate
their chemokine expression profile over time, and they
sequentially and actively recruit Ly-6C(hi) and -6C(lo) mono-
cytes. Ly-6C(hi) monocytes dominate early and exhibit pha-
gocytic, proteolytic, and inflammatory functions. Ly-6C(lo)
monocytes dominate later. Consequently, Ly-6C(hi) mono-
cytes digest damaged tissue, whereas Ly-6C(lo) monocytes
promote healing via myofibroblast accumulation, angiogen-
esis, and deposition of collagen.72 Depletion of macrophages
in a murine cryoinjury model impaired wound healing
since non-resorbed cell debris could not be discarded. This
was accompanied by increased mortality. Macrophage
accumulation in the healing heart is regulated by the
renin–angiotensin–aldosterone system: selective mineralo-
corticoid receptor blockade immediately after MI improved
healing (Figure 3), an effect that was blunted by macro-
phage depletion.45 Thus, macrophages are of central
importance for adequate healing after MI.

4. Post-inflammation phase

Following the initial inflammatory phase, optimal healing
requires mechanisms that inhibit cytokine release, clear
the inflammatory infiltrates, and initiate collagen pro-
duction to institute a solid scar.

Granulocytic infiltrates are cleared by phagocytes after
granulocyte apoptosis.65 In contrast to necrosis that triggers
an inflammatory response, apoptotic cells lead to the
production of anti-inflammatory cytokines such as IL-10

Figure 3 MR blockade after myocardial infarction reduced thinning and dilatation of the infarcted wall. (A) Typical sections from infarcted hearts, perfusion-
fixed 7 days after myocardial infarction, scar thickness, and infarct expansion index in placebo (PLA) and eplerenone-treated rats (EPLE). Mean+SEM (n ¼ 10 to
14). †P , 0.05, ‡P , 0.01 vs. PLA. (B) Representative LV pressure–volume loops measured in vivo with conductance catheter in sham-operated rats (sham) and in
placebo- (PLA) and eplerenone-treated (EPLE) rats 7 days after MI (figure reprinted with permission of Fraccarollo et al.45).
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and transforming growth factor (TGF), initiating the tran-
sition phase from inflammation to fibrosis.

TGF-b is a locally generated cytokine and of central
importance for this transition phase:73 TGF-b decreases
leukocyte adhesion and stimulates fibroblast proliferation
and extracellular matrix production.74 TGF-b expression is
increased in the ischaemic as well as hypertrophied
heart.75,76 TGF-b has an important function for healing
after MI: We demonstrated recently that anti-TGF-b treat-
ment in the first days after coronary artery ligation increases
mortality and worsens left ventricular remodelling in mice
with MI due to alterations in the extracellular matrix
(Figure 4).77

A detailed review of the post-inflammation phase is
beyond the scope of the present article due to space
constraints.

5. How far is the translation of experimental
inflammation/healing data from the present
clinical arena?

The importance of inflammation for healing processes after
MI has been recognized for several years, and pathophysiolo-
gical concepts have been established by experimental
data. Consequently, transfer of this knowledge into standard
clinical practice has been tried: for example, inflammatory
markers have been used to predict mortality. Indeed, some
inflammatory proteins (e.g. TNF) are associated with
outcome; however, they could not be established as stan-
dard clinical utility since other parameters turned out to
be more powerful. The translation of the experimental
knowledge into new therapeutic modalities turned out to
be a difficult task. Several treatments have been tried
after acute MI.

Complement inhibitors have been evaluated as an adjunc-
tive therapy to fibrinolysis or percutaneous coronary
intervention (PCI) in acute MI. A humanized monoclonal
antibody against complement component C5, pexelizumab,
was used that specifically binds to C5 with high affinity
and prevents cleavage and generation of activated C5a
and C5b-9. However, although pexelizumab had been pre-
viously shown to reduce infarct size and apoptosis in rats
after ischaemia and reperfusion,78 it had no effect on
infarct size in patients treated with fibrinolysis (COMPLY
trial79) or PCI (COMMA trial).80

In a multicentre, placebo-controlled trial, patients under-
going PCI for acute MI were treated with a blocking antibody
for the CD11/CD18 integrin receptor. In 400 patients, infarct
size and mortality were not improved by treatment.81

However, not all trials have been negative. For example,
the data for the use of steroids after MI are not clear at
the moment. Initial small and observational studies reported
an increase in left ventricular rupture, i.e. impaired
healing, and thus the concept was not thoroughly pursued.
A recent meta-analysis (n ¼ 2646) revealed decreased
mortality in steroid-treated patients after MI, but summar-
ized only data from small trials with no large, adequately
powered study.82

Furthermore, established drugs in the treatment post-MI
may play a role in inflammatory healing. For example, the
early use of mineralocorticoid receptor antagonists
reduces mortality after MI.83

The interpretation of clinical trials with regard to healing
and inflammation is difficult due to confounding variables
such as different infarct sizes, gender, age, and so on. For
example, ageing is associated with decreased ability to
control infection (so-called immunosenescence), alters the
inflammatory response in wounds,84 and changes inflamma-
tory markers in heart failure.85 Whereas infarct size is a
major determinant of remodelling in patients younger than
65 years, in older patients, left ventricular remodelling
can also occur even in the presence of small infarct sizes
(PREAMI study86) potentially mediated by defects in healing.

Problematic for new anti-inflammatory approaches is that
an intact immune system is necessary for many protective
pathways and adequate healing in the beginning, whereas
prolonged immune activation may also activate unfavour-
able signal cascades that drive disease progression. The
major challenge of immunosuppressive drugs in the healing
phase will be to limit detrimental innate immune influences
while simultaneously maintaining and stimulating adequate
and appropriate innate immune mechanisms. Nevertheless,
there are several exciting targets such as the coagulation
cascade, modulation of immune cell function, and the
early use of RAS inhibitors to promote healing, improve
the inflammatory response, and subsequently avoid
adverse cardiac remodelling. Thus, further research is
necessary to better understand the interaction of inflam-
mation and cardiac healing. This will allow us to choose
better targets at better time points for clinical intervention.
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