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Abstract

Despite being phylogenetically very close to Anopheles gambiae, the major mosquito vector of human malaria in Africa,
Anopheles quadriannulatus is thought to be a non-vector. Understanding the difference between vector and non-vector
mosquitoes can facilitate development of novel malaria control strategies. We demonstrate that An. quadriannulatus is
largely resistant to infections by the human parasite Plasmodium falciparum, as well as by the rodent parasite Plasmodium
berghei. By using genetics and reverse genetics, we show that resistance is controlled by quantitative heritable traits and
manifested by lysis or melanization of ookinetes in the mosquito midgut, as well as by killing of parasites at subsequent
stages of their development in the mosquito. Genes encoding two leucine-rich repeat proteins, LRIM1 and LRIM2, and the
thioester-containing protein, TEP1, are identified as essential in these immune reactions. Their silencing completely
abolishes P. berghei melanization and dramatically increases the number of oocysts, thus transforming An. quadriannulatus
into a highly permissive parasite host. We hypothesize that the mosquito immune system is an important cause of natural
refractoriness to malaria and that utilization of this innate capacity of mosquitoes could lead to new methods to control
transmission of the disease.
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Introduction

The Anopheles gambiae Giles complex comprises seven mosquito

species and several incipient species [1–3]. Sibling species are

closely related to each other, are morphologically indistinguish-

able, and can crossbreed in captivity; however, they vary greatly in

their capacity to transmit human malaria [3–5]. An. gambiae sensu

stricto (henceforth An. gambiae) and Anopheles arabiensis are highly

efficient vectors in sub-Saharan Africa and surrounding islands.

Other species of this complex are only locally important vectors:

Anopheles melas in western Africa, Anopheles merus in eastern Africa,

and Anopheles bwambae in Uganda. Finally, An. quadriannulatus

Theobald species A and B, found in southern Africa and Ethiopia,

respectively, are exceptional in that they are considered medically

unimportant: human malaria parasites have never been detected

in wild caught An. quadriannulatus females [4]. Both species display

characteristics that are believed to have existed in ancestral forms

of the complex, i.e. standard chromosomal arrangements,

disjointed distribution and adaptation to temperate climates [1].

Furthermore, they have been considered strictly zoophilic

although recent laboratory and field studies report equal feeding

preference for human and cattle [6–8]. Although laboratory

reared An. quadriannulatus species A can be infected with cultured P.

falciparum, the infection prevalence is significantly lower than in An.

gambiae and Anopheles stephensi [9].

Plasmodium undergoes a complex developmental lifecycle in the

mosquito. As shown for the rodent malaria parasite P. berghei, a

standard laboratory model system, the parasite suffers substantial

losses during its passage through the mosquito. The greatest

reduction in parasite numbers occurs at the ookinete-to-oocyst

transition stage [10]. Ookinetes, an invasive parasitic form, are

often eliminated by lysis (and clearance) or melanization in the

mosquito midgut epithelium, which are controlled by reactions of

the mosquito innate immune system [11]. However, the few

parasites that survive to reach the oocyst stage, a sessile parasitic

form developing on the basal side of the midgut epithelium,

multiply and produce thousands of sporozoites. When the oocysts

burst, sporozoites are released to the haemolymph, invade the

salivary glands and, upon subsequent mosquito bites, infect human

hosts. Here, we investigate the mechanisms of refractoriness to

Plasmodium in the malaria non-vector mosquito An. quadriannulatus.

We show that refractoriness is controlled by partially dominant

genetic traits and is manifest by clearance and melanization of

ookinetes in the mosquito midgut as well as by killing of other

parasitic stages developing later in the mosquito. The mosquito

immune system appears to play a fundamental role in these

reactions: inactivation of genes known to contribute to parasite

killing in the malaria vector An. gambiae renders An. quadriannulatus a

highly efficient vector of the rodent parasite P. berghei. We

speculate that the same resistance traits may be present in wild

vector populations at lower frequencies, since genetic selection for

refractoriness apparently generates An. gambiae lines with pheno-

types that are similar to that of An. quadriannulatus [12,13]; these

phenotypes can be reversed after silencing specific immunity genes

[14]. Our data suggest that resistance to malaria may be an

ancestral state of mosquitoes and prompt us to hypothesize that
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co-evolution and co-adaptation between the parasite and its insect

host have lead to less refractory populations (and species) and

successful malaria transmission.

Results/Discussion

Plasmodium killing in An. quadriannulatus
We tested the ability of An. quadriannulatus species A, strain

SKUQUA (henceforth An. quadriannulatus), to support development

of P. falciparum. An. gambiae mosquitoes of the Yaoundé strain [15]

were used as a reference. Three to four-day-old female mosquitoes

were fed via a membrane with cultured P. falciparum gametocytes,

and 10 days later their midguts were dissected and examined for

oocysts. The results from two independent feeding experiments

showed 0 of 18 (0/18) and 6/39 An. quadriannulatus midguts

infected (0% and 15.4% infection prevalence, respectively); the

corresponding median oocyst densities were 0.0 in both experi-

ments (Table 1). In the paired feedings of An. gambiae, a known host

for P. falciparum, 13/38 and 13/30 midguts had at least one viable

oocyst (34.2% and 43.3% infection prevalence, respectively) with

corresponding median oocyst densities of 5.0 and 12.0. Two

subsequent An. quadriannulatus infections showed no live oocysts,

but melanized ookinetes were occasionally observed in the

mosquito midguts (Figure 1A); however, control An. gambiae

mosquitoes were not used in these experiments, and thus

comparisons cannot be made. Clearance of pre-oocyst parasitic

stages and melanization of ookinetes are established important

immune reactions of mosquitoes against Plasmodium. Thus, these

data suggested that mosquito immunity could contribute to the

reduced susceptibility of An. quadriannulatus.

To investigate further this possibility, we utilized the convenient

laboratory parasite, P. berghei, against which an extensive repertoire

of mosquito immune responses has been previously documented.

In these experiments, An. quadriannulatus and control An. gambiae

mosquitoes were infected with a transgenic P. berghei parasite line

that constitutively expresses green fluorescent protein (GFP)

throughout its lifecycle [16]. Data from four independent infection

experiments showed that An. quadriannulatus mosquitoes are highly

refractory to P. berghei, in terms of oocyst prevalence, parasite

density and ookinete melanization. A representative picture of an

infected An. quadriannulatus midgut, with melanized P. berghei

ookinetes, is shown in Figure 1B. The four experiments were

analyzed by the Residual Maximum Likelihood (REML) variance

components analysis, which revealed that the outcomes of these

experiments were homogeneous and unlikely to be the result of

random effects; thus justifying pooling of the data. Compared to

An. gambiae (n = 118, where n is the number of midguts in the

pooled data), An. quadriannulatus (n = 167) exhibited both reduced

oocyst prevalence (67% vs. 100%; P,0.001) and increased

ookinete melanization prevalence (93% vs. 13%; P,0.001) in

their midguts 7–10 days post infection. As shown in Figure 1C, the

density of melanized parasites per midgut of An. quadriannulatus was

markedly greater than in An. gambiae (P,0.001) where melaniza-

tion was only sporadically observed. In contrast, the live oocyst

density was much lower (P,0.001) in An. quadriannulatus than in An.

gambiae. The distributions of oocyst densities varied significantly

(P,0.01) between the two mosquito species, as one-third of An.

quadriannulatus had no oocysts whereas almost every An. gambiae

midgut had one or more (Figure S1).

We assessed mosquito salivary gland infection by sporozoites to

determine whether the losses of midgut parasitic stages in An.

quadriannulatus can ultimately affect the transmission capacity of

these mosquitoes. Importantly, we observed that parasite losses

continue at later stages of the parasite lifecycle. In pooled data

from three infection experiments (different from the above), the

prevalence of P. berghei salivary gland sporozoites at day 21–22 post

infection was much lower (20%; n = 115) compared to the

prevalence of oocysts (57%; n = 104) at day 10 in the correspond-

ing infection (P,0.001; Figure 1D and Table S1). No significant

difference in prevalence between midgut (n = 105) oocysts and

salivary gland (n = 85) sporozoites was detected in the paired

infections of An. gambiae (76% vs. 79%, respectively). Moreover,

salivary gland sporozoites in An. quadriannulatus appeared to be less

infective compared to those in An. gambiae. From four bite-back

experiments, using equal numbers of An. quadriannulatus or An.

gambiae females (ranging from 10 to 15), which were infected 21–

22 days earlier with P. berghei and then allowed to feed on naı̈ve

TO mice (one per experiment per mosquito species), only one

resulted in mouse infection. In contrast, all four An. gambiae control

bite-back experiments were infectious.

Resistance to Plasmodium is heritable and dominant
A great variability in the degree of refractoriness to P. berghei was

observed between An. quadriannulatus individuals, indicating genetic

polymorphism within the mosquito population. The majority of

mosquitoes in the four infection experiments described above

displayed an intermediate phenotype with high numbers of both

live oocysts and melanized parasites; others were fully resistant

exhibiting strong ookinete melanization and no live oocysts, and

yet others were highly susceptible, displaying many oocysts and

few or no melanized ookinetes. No correlation (R2 = 0.001) was

detected between oocyst and melanized ookinete counts (Figure

S2). This variability within the population suggested that these

phenotypes are determined by quantitative genetic traits. Two

independent crossing experiments were carried out to determine

whether the refractory traits of An. quadriannulatus are heritable. In

these experiments, F1 females were generated by mass mating of

An. quadriannulatus males and An. gambiae females (the reciprocal

cross is uninformative because it predominantly yields males [17]).

The resulting F1 females were then backcrossed to An.

quadriannulatus males to obtain backcrossed F2 females. First

Author Summary

Malaria is a mosquito-borne infectious disease that
threatens almost half of the human population and kills
1 to 3 million people every year. In sub-Saharan Africa,
where the vast majority of deaths occur, the capacity of
mosquitoes to transmit malaria varies greatly even
between closely related species. We compared the ability
of malaria parasites to develop in two very closely related
mosquitoes, one vector and one non-vector, and found
that non-vector mosquitoes kill parasites at various stages,
predominantly when they invade the mosquito midgut.
This is achieved by parasite clearance, possibly by lysis in
the midgut cells and by melanization, both of which are
reactions of the mosquito immune system. This phenotype
depends on heritable and dominant traits that can be
passed on to vector/non-vector mosquito hybrids. We
examined whether specific components of the mosquito
immune system affect the resistance of these mosquitoes
to infection. By silencing the activity of three immunity
genes, we transformed mosquitoes of the resistant species
into highly susceptible. Our results suggest that the
mosquito immune system may affect refractoriness to
malaria in non-vector mosquitoes. This innate capacity of
mosquitoes to kill malaria parasites could be utilized in
future integrated efforts to control and ultimately eradi-
cate the disease.

Mosquito Resistance to Malaria
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generation F1 and F2 progenies, and the parental An. quad-

riannulatus and An. gambiae populations were compared for their

ability to support parasite development (see Materials and

Methods). The data resulting from the two crossing and infection

experiments were pooled and analyzed with Kruskal-Wallis non-

parametric ANOVA.

In terms of infection, the F1 hybrids were phenotypically similar

to the An. quadriannulatus but different from the An. gambiae parental

populations in both prevalence of infection (P,0.001) and oocyst

density (P = 0.03; Figure 2). They displayed 80% oocyst

prevalence with a median density of 5.5 per midgut (n = 66)

compared to 71% and 5.0 in An. quadriannulatus (n = 49) and 98%

and 14.0 in An. gambiae (n = 53), respectively. F1 and parental An.

quadriannulatus mosquitoes exhibited marked similarity in their

pattern of ookinete melanization. The prevalence of melanization

was 77% in F1 hybrids and 80% in parental An. quadriannulatus;

Figure 1. Plasmodium parasite killing in An. quadriannulatus. (A, B) Melanized ookinetes (arrows) of P. falciparum (A) and P. berghei (B) while
crossing the An. quadriannulatus midgut. (C) Melanized ookinete and live oocyst density in the midguts of An. quadriannulatus and An. gambiae
females infected with P. berghei. Four independent paired experiments were performed and their results were analysed by REML variance
components analysis by fitting the mixed effect model. The geometric means6SD of the pooled data from the four independent experiments are
shown. The melanized parasite densities (black bars) were 12.463.1 for An. quadriannulatus (n = 167) and 0.260.5 for An. gambiae (n = 118; P,0.001),
and the oocyst densities were 3.663.3 and 12.862.6, respectively (P,0.001). n, number of midguts. (D) Prevalence (% of mosquitoes with at least one
live parasite) of midguts at day 10 and salivary glands in corresponding infections at day 21–22 showing live P. berghei oocysts and sporozoites,
respectively. The results of three independent experiments (see Table S1) were pooled and analyzed using the Chi-square goodness-of-fit test. A
significant decrease in prevalence is detected in An. quadriannulatus (P,0.001), but not in An. gambiae. Bars represent standard errors.
doi:10.1371/journal.ppat.1000070.g001

Table 1. P. falciparum infection of An. quadriannulatus and An. gambiae.

Experiment Species n Oocyst prevalence P
Oocyst
density Range P

1 An. quadriannulatus 18 0.0 ns 0.0 0 ,0.01

An. gambiae 38 34.2 5.0 1–43

2 An. quadriannulatus 39 15.4 ,0.001 0.0 1 ,0.01

An. gambiae 30 43.3 12.0

Mosquito midguts were examined for P. falciparum live oocysts 10 days post-infection. Two independent experiments were performed. Oocyst prevalence is the
percentage of mosquitoes displaying at least one live oocyst, and oocyst density is the median number of oocysts in infected mosquitoes. The range of oocyst numbers
is also presented. In both experiments, the oocyst prevalence and density were substantially less in An. quadriannulatus compared to An. gambiae. Infection of An.
quadriannulatus was not observed in experiment 1. The oocyst prevalence was analyzed with the Chi-square Fishers exact test with Yates correction, and the oocyst
density with the Kruskal-Wallis non-parametric ANOVA. n, number of mosquitoes; ns not significant.
doi:10.1371/journal.ppat.1000070.t001

Mosquito Resistance to Malaria
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both of these were very different from the prevalence of

melanization in An. gambiae (23%; P,0.001). A more striking

similarity of refractoriness with the parental An. quadriannulatus

was detected in the F2 backcrossed mosquitoes (n = 86; 69%

oocyst prevalence and 4.0 oocyst density). Melanized ookinetes

were detected in 75 of the 86 F2 females (87% prevalence) with

median density 12.0 per midgut. All these measurements were

significantly different from those reported above for An. gambiae (all

at P,0.001 but the oocyst density which was at P,0.01).

Together these data suggested that the refractoriness exhibited

by An. quadriannulatus is heritable and that both traits contributing

to this phenotype, reduction in the number of oocysts and increase

in the number of melanized ookinetes, are dominant or partially

dominant.

Innate immunity controls resistance to Plasmodium
Given that the refractory mechanisms of An. quadriannulatus are

under genetic control, we sought to determine if these are due to

reactions of the mosquito innate immune system. Several An.

gambiae genes have been implicated in lysis, clearance and

melanization of P. berghei ookinetes in the mosquito midgut. In

this initial study, we examined three genes, LRIM1, LRIM2

(previously called APL1 [13]; synonym is suggested here for

systematization) and TEP1, all of which exhibit potent antagonistic

effects against P. berghei. LRIM1 and LRIM2 encode leucine-rich

repeat proteins, and silencing of either gene by RNA interference

(RNAi) remarkably increases live oocyst densities in An. gambiae

[13,18]. LRIM1 also mediates melanization of ookinetes in

mosquitoes that are deficient for the melanization inhibitor C-

type lectin 4, CTL4. TEP1 is the founder member of a thioester-

containing protein family; it binds ookinetes promoting their lysis

or melanization [14].

We used An. gambiae-specific oligonucleotide primers to amplify

exon sequences of these genes from a cDNA pool constructed from

An. quadriannulatus adult females. Sequencing the amplified

fragments revealed a high degree of sequence similarity between

An. gambiae and An. quadriannulatus for all the three genes: 98.9% for

LRIM1, 96.2% for LRIM2 and 98.7% for TEP1 (Figure S3). This

was not surprising as the two species are very closely related in the

evolutionary scale and genetic introgression has likely taken place

for some time after their separation. Using these gene fragments as

templates, we produced double stranded RNA (dsRNA) sequences

for each of these genes, which were microinjected separately in the

body cavity of freshly emerged An. quadriannulatus females, as

described for An. gambiae [19]. Mosquitoes injected with dsRNA of

the LacZ gene were used as a control. Quantitative RT-PCR

(qRT-PCR) revealed robust and specific silencing of cognate gene

expression 4 days later, which ranged from 98% for LRIM1 to

89% for LRIM2. As shown in Figure 3, silencing of LRIM1,

LRIM2 or TEP1 in An. quadriannulatus resulted in a striking increase

in P. berghei oocyst density (P,0.001) and complete inhibition of

ookinete melanization compared to the control (P,0.001). While

the oocyst density was 2.0 per midgut in control mosquitoes, this

number increased to 102.5 in LRIM1 and 141.0 in LRIM2

knockdown (kd) mosquitoes. A similar increase was observed by

silencing TEP1 compared to the control: 116.5 vs. 1.1,

respectively. These results suggest an effect for these genes in

both ookinete melanization and clearance of parasites (possibly by

lysis), as the number of oocysts in kd mosquitoes is much higher

than the sum of oocysts and melanized ookinetes in the controls.

The very high sequence similarity between An. gambiae and An.

quadriannulatus, which is expected for most genes in the two

genomes, pointed to an intriguing possibility: that An. gambiae-

specific dsRNA can be directly used to silence genes in An.

Figure 2. An. quadriannulatus refractoriness to Plasmodium is heritable and dominant. F1 hybrids were obtained by crossing male (square)
An. quadriannulatus with female (circle) An. gambiae. F1 hybrid females were then backcrossed with An. quadriannulatus males to obtain F2
backcrossed mosquitoes. The prevalence of melanized parasites (inner pie, black) and live oocyst (outer pie, green) in the midguts of females from
the parental An. quadriannulatus (n = 49) and An. gambiae (n = 53) populations, F1 (n = 66) and F2 (n = 86) are shown as concentric pie charts. Box
plots depict the distribution of melanized ookinetes (black) and live oocysts (green) in each female mosquito group, with the respective median value
shown in red. Two independent experiments were performed and the pooled data were analyzed using the Chi-square goodness-of-fit test for the
prevalence and the Kruskal-Wallis non parametric ANOVA for the parasite densities. n refers to the number of mosquito midguts in the pooled data.
doi:10.1371/journal.ppat.1000070.g002
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quadriannulatus. Indeed, An. gambiae-specific dsRNA for LRIM1 fully

rescued the susceptibility phenotype when injected into An.

quadriannulatus females, causing an approximately 4-fold increase

in the oocyst density, 71% increase in oocyst prevalence (from

29% to 100%) and complete inhibition of ookinete melanization

(data not shown). This result would constitute an important

breakthrough if it pertains to additional genes: this non-vector

species could then be utilized in conjunction with the An. gambiae

vector as a model system, to further understand differences

contributing to its reduced vectorial capacity.

Our results clearly indicate that a mosquito innate immune

response accounts for most of the resistance of An. quadriannulatus to

P berghei. LRIM1, LRIM2 and TEP1 are essential elements of this

response and likely to operate in the same pathway, since their

effects on the parasite are very similar. We examined with qRT-

PCR whether the transcriptional profile of any of these three genes

is different between the two mosquito species. In two independent

experiments, mosquitoes were allowed to feed either on naive mice

or on mice infected with P. berghei, and RNA samples from whole

mosquitoes were prepared 24 hrs later. Sugar-fed mosquitoes of

the same generation and age were also included. The results

showed that the expression levels of LRIM1 and TEP1 were similar

between the two species at all three conditions, with minor

variations (Figure S4). However, the levels of LRIM2 in sugar-fed

and naive blood-fed mosquitoes were consistently elevated in An.

quadriannulatus compared to An. gambiae. It remains to be explored

whether this difference in LRIM2 expression is directly related to

the refractoriness phenotype of An. quadriannulatus. Furthermore,

although only few nucleotide differences were identified in the

sequenced gene fragments between An. gambiae and An. quad-

riannulatus, some of these differences in LRIM1 and LRIM2 lead to

non-synonymous amino acid substitutions. Future research will

aim to determine if any of these changes (or others in the non-

sequenced gene segments) can enhance or otherwise alter the

function of these genes, thus contributing to the refractoriness

phenotype.

The An. gambiae LRIM2 gene is located in a genomic region that

was recently identified to control the density of mosquito infection

Figure 3. Silencing LRIM1, LRIM2 and TEP1 transforms An. quadriannulatus into a vector species. (A) Representative microscopy images of
midguts dissected from P. berghei-infected mosquitoes which were injected with either LacZ dsRNA (control) or dsRNAs for each of the examined
genes. GFP-fluorescent oocysts are shown in the right panels whereas arrows in the bright field images indicate melanized ookinetes. No melanized
ookinetes and higher oocyst densities are observed in kd mosquitoes. (B) Quantitative effects of gene kds on melanized ookinete density (black bars)
and oocyst density (green bars) in mosquito midguts compared to LacZ dsRNA-treated controls. The pooled results from two independent
experiments were analyzed using the REML variance component analysis by fitting the mixed effects model. Geometric means and standard
deviations are shown. Experiments with LRIM1 and LRIM2 kds were performed separately from those with TEP1 kd; thus they are presented in
separate graphs.
doi:10.1371/journal.ppat.1000070.g003

Mosquito Resistance to Malaria
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with P. falciparum in a natural malaria transmission system in Mali,

West Africa [13]. The same locus was responsible for almost 90%

of parasite-free mosquitoes and 100% of mosquitoes with

melanized parasites. These responses are highly similar to those

we report here for An. quadriannulatus, making LRIM2 a strong

candidate for regulating natural mosquito refractoriness to the

human malaria parasite. On the other hand, LRIM1 was recently

shown to have undergone strong positive selection in the other

major African vector, An. arabiensis; this ‘‘arabiensis-like’’ allele has

been introduced in An. gambiae populations at lower frequencies

through multiple introgression events, but it is not present in other,

less competent species of the complex including An. quadriannulatus

[20]. These data in conjunction with the failure to demonstrate an

apparent effect of An. gambiae LRIM1 on sympatric field isolates of

P. falciparum in a laboratory transmission setting in Cameroon [21],

could suggest that LRIM1 is subject to evolutionary adaptation to

the human parasite; however, the effect of LRIM1 on allopatric

isolates or laboratory strains of P. falciparum is yet to be examined.

Finally, An. gambiae TEP1 was shown to have a strong antagonistic

effect against a laboratory P. falciparum line [22]. Furthermore, a

refractory allele of this gene is found in a genetically selected

mosquito strain which kills and melanizes all Plasmodium species or

strains that have been tested, except sympatric isolates of P.

falciparum [12]. The phenotype of this refractory An. gambiae strain

is identical to that of An. quadriannulatus. Therefore, it is tempting to

speculate that persistent interaction of An. gambiae (and other major

vectors) with P. falciparum might have led to an evolutionary co-

adaptation between the mosquito immune responses and this

parasite, whereas the resistance phenotype of the mostly zoophilic

An. quadriannulatus could represent the ancestral function of the

mosquito immune system against the parasite.

Perspective
Malaria kills up to three million people every year and threatens

the lives of almost half of the global population. Of the several

hundreds of mosquito species only some anophelines can transmit

human malaria. Even within the An. gambiae species complex,

which includes some of the most important malaria vectors in

Africa, the two An. quadriannulatus species are considered non-

vectors. Researchers have proposed that understanding the

differences between vector and non-vector mosquitoes could

provide a new means for malaria control. Our research establishes

for the first time a model laboratory system to study these

differences at a genetic and molecular level. It demonstrates that

mosquito immunity, which regulates the density of infection by the

model rodent parasite, P. berghei, in the most competent vector of

human malaria, An. gambiae, is the main cause of refractoriness to

P. berghei in its non-vector sibling An. quadriannulatus species A. It

remains to be revealed whether these findings also apply to

infections with the human parasite P. falciparum.

Materials and Methods

Mosquito colonies, infections and dissections
The An. quadriannulatus SKUQUA strain was established from

wild mosquitoes collected from an area near Skukuza, Kruger

National Park, South Africa, in December 1995. The An. gambiae

Yaoundé strain was colonized from wild mosquitoes collected from

the Yaoundé area in 1988 [15]. Both mosquito colonies were

raised at 28uC, 65–70% relative humidity, under a 12 hr light/

dark cycle; adult mosquitoes were maintained on a 10% (w/v)

sucrose solution. Infections with P. berghei were performed using

the PbGFPCON parasite line [16], cultured using standard methods

[23]. For infection, 50–70 female mosquitoes were randomly

separated in paper caps, fed on anaesthetized mice infected with P.

berghei (parasitaemia .5%) and kept at 20–21uC until the day of

dissection. Midguts of mosquitoes were dissected 7–10 days post

infectious blood meal, fixed in 4% para-formaldehyde and

mounted on microscopy slides using VectaShield (Vector Labo-

ratories Inc) before visualized with a light/fluorescence micro-

scope. Killed parasite that appear as melanized ookinetes in the

midguts and living oocyst that fluoresce green were separately

quantified; melanized ookinetes were detected in bright field and

oocysts were visualized with the fluorescein isothiocyanate filter.

For P. falciparum infections, erythrocytic stages of the 3D7 clone

of the NF54 isolate were cultured as described [24], followed by

induction of gametocytogenesis [25]. Cultures were then added to

RBCs with HI AB serum at packed cell volume (ca. 40%) and

introduced into membrane feeders. Mosquitoes were exposed to

the membrane feeders for 25–30 min, and thereafter kept at

standard insectary conditions until dissection. Mosquito midguts

were dissected 7–9 days post infection, stained with 0.5%

mercurochrome and examined for live oocysts and melanized

ookinetes using a light microscope.

Bite-back experiments
Detection of the infectivity of salivary gland sporozoites was

carried out by mosquito bite-back experiments as described [26],

with minor modifications. Female An. quadriannulatus and An.

gambiae mosquitoes were infected with PbGFPCON P. berghei after

feeding on an infected TO mouse. Non blood-fed mosquitoes were

removed. The presence of oocysts on the mosquito midguts was

confirmed at day 8–10 post infection. At day 21–22 post infection,

10–15 of these mosquitoes were allowed to feed on naı̈ve 8–10

week-old TO mice. The mice were then screened for blood staged

parasites on day 5 after the mosquito bite, and the screening was

continued every other day until day 15. The bite-back was

considered non-infective if no blood-staged parasites were detected

by day 15. Four independent replicate experiments were

performed.

Crossing experiments
In each crossing experiment, male An. quadriannulatus (300–400)

and female An. gambiae (100–150) adult mosquitoes were allowed to

mass mate to produce the F1 progeny. 100–150 females from this

F1 progeny were then backcrossed to 300–400 An. quadriannulatus

males to obtain the F2 progeny. In parallel to this backcrossing,

the initial crossing of the parental populations was repeated in

order to obtain first generation F1 progeny which were of the same

age as the F2 progeny. Females of the parental populations and the

F1 and F2 progenies were allowed to feed on P. berghei-infected

mice as described above. Because there were four groups of

females for each infection experiment, we used two mice of similar

parasitaemia, each of which was randomly allocated to two of

these groups; after 10 min in feeding, mice were swapped between

group pairs. The entire crossing and infection experiment was

repeated twice.

DsRNA production and qRT-PCR
DsRNA production was performed as previously described,

using gene specific oligonucleotide primers tailed with the short T7

promoter sequence TAATACGACTCACTATAGGG [27]. The

sequences of these primers are: LRIM1 F, AATATC-

TATCTCGCGAACAATAA; LRIM1 R, TGGCACGGTA-

CACTCTTCC; LRIM2 F, GCTTACGCGCACACTATTCA;

LRIM2 R, GCTATTGTGCGATGCGTCTA; TEP1 F,

TTTGTGGGCCTTAAAGCGCTG; TEP1 R, ACCACG-

TAACCGCTCGGTAAG; LACZ F, AGAATCCGACGGGTTGT-
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TACT; LACZ R, CACCACGCTCATCGATAATTT. Injection of

dsRNA in adult female mosquitoes was performed as described [19]. The

aforementioned primers were also used to PCR amplify and determine the

sequence of the An. quadriannulatus genes. Two additional primers were

used for sequencing another fragment of the LRIM1 gene in An.

quadriannulatus, which was not part of the dsRNA-targeted sequence:

LRIM1 988 F, ATCGCGCTGAAGCGCAAAGAG; LRIM1 1530 R,

TTATCCCAGCTGGCTCGCTAAATTCTG.

qRT-PCR was performed as described previously [27], with the

following modifications. Total RNA was extracted from approx-

imately 10 adult mosquitoes with 1 ml of TRIzol reagent

(Invitrogen) and treated with Turbo DNAfree (Ambion) according

the manufacturer’s directions. 1 mg of total RNA was used for

reverse transcriptions using Superscript II (Invitrogen). Transcript

abundance was measured with an Applied Biosystems 7700 Real-

Time PCR system using the ribosomal S7 gene as an internal

control. Reactions of 25 ml consisted of 16 SYBR green mix

(Applied Biosystems) and cDNA, corresponding to 2.5 ng of total

RNA. The primer sequences and concentrations in the final

reaction are: LRIM1 1914 F (0.9 mM), CATCCGCGATTGG-

GATATGT; LRIM1 1983 R (0.9 mM), CTTCTTGAGCCGTG-

CATTTTC; LRIM2 825 F (0.9 mM), GCAAAGAAAGTGA-

CAAGCCGTAT; LRIM2 884 R (0.3 mM),

CGCTCGTCAGGGCAATGTA; TEP1 2676 F (0.9 mM),

AAAGCTGTTGCGTCAGGG; TEP1 2750 R (0.3 mM),

TTCTCCCACACACCAAACGAA; S7 F (0.3 mM),

GTGCGCGAGTTGGAGAAGA; S7 R (0.3 mM): ATCGGTTTGGG-

CAGAATGC.

Data analysis
For analysis of the data, the prevalence of infection and parasite

density were treated as two independent infection variables,

although they are likely to be partly connected. The prevalence

data were analysed using the chi-square goodness-of-fit test, except

for comparing the prevalence of P. falciparum infection between An.

quadriannulatus and An. gambiae where Fisher exact test with Yates

correction was used. For the analysis of density of oocysts and

melanised ookinetes, mosquitoes showing no parasites (neither live

oocysts nor melanised ookinetes) in their midguts were excluded,

and the data were subjected to normality and homogeneity tests.

As counts of both live and dead parasites (x) displayed right-

skewed distributions, the geometric means were computed after

data normalization by log10(x+1) transformation. The log-

transformed data from all replicates within a study (dataset) were

analyzed by REML (Rresidual Maximum Likelihood) variance

components analysis by fitting the mixed effect model. In this

model, we treated mosquito species or the control kd status as a

fixed effect and introduced a random effect for the replicates. For

each dataset a combined P-value is reported for the fixed effects.

When normality of datasets could not be achieved by the above

transformation method (i.e. for the P. falciparum oocyst density and

for the density of oocysts and melanised ookinetes in the crossing

experiments) the median value of untransformed data was

computed and datasets were subjected to Kruskal-Wallis one-

way ANOVA. Comparison of oocyst and melanised ookinete

distributions between An. quadriannulatus and An. gambiae midguts

was carried out using the Kolmogorov-Smirnov (KS) test. All these

statistical analyses were performed using the GenStatH software.

Supporting Information

Figure S1 Distributions of P. berghei oocysts in mosquito midguts.

Midguts of P. berghei-infected An. quadriannulatus (n = 167) and An.

gambiae (n = 118) were dissected 10 days post infection and oocysts

were visualized. The midguts were grouped into successive bins

according to their oocysts density. Kolmogorov-Smirnov (KS)

statistical test reveals that the oocyst distributions are significantly

different between the two mosquito species (P,0.01).

Found at: doi:10.1371/journal.ppat.1000070.s001 (3.85 MB TIF)

Figure S2 No correlation between melanized ookinete and

oocyst densities. Corresponding densities of P. berghei live oocysts

and melanized ookinetes in the midguts of An. quadriannulatus

mosquitoes. The absence of correlation between these two

phenotypic measurements suggests that they are genotypically

unrelated.

Found at: doi:10.1371/journal.ppat.1000070.s002 (3.56 MB TIF)

Figure S3 LRIM1, LRIM2 and TEP1 are highly conserved

between the two mosquitoes. Alignment of nucleotide and

deduced aminoacid sequences of LRIM1 (A, B), LRIM2 (C) and

TEP1 (D) gene fragments between An. gambiae (Ag) and An.

quadriannulatus (Aq). The gene fragments shown in A, C and D

correspond to those used for dsRNA construction. Non-synony-

mous nucleotide differences are highlighted in red and synony-

mous differences are highlighted in grey.

Found at: doi:10.1371/journal.ppat.1000070.s003 (20.13 MB

TIF)

Figure S4 Transcriptional profiles of LRIM1, LRIM2 and TEP1

in An. gambiae vs. An. quadriannulatus. Analysis of the relative

transcription levels of LRIM1 (A), LRIM2 (B) and TEP1 (B) in An.

gambiae (white bars) and An. quadriannulatus (grey bars) female

mosquitoes. The expression was assessed in sugar-fed mosquitoes,

and mosquitoes fed 24 hrs earlier either on naı̈ve or P. berghei-

infected mice. Transcripts of the S7 ribosomal protein gene were

used as internal normalization control. All data points for each

gene were calibrated to the transcript levels in sugar-fed An.

gambiae, which were set at 100%. The standard error of two

independent experiments is shown.

Found at: doi:10.1371/journal.ppat.1000070.s004 (2.01 MB TIF)

Table S1 Prevalence of An. quadriannulatus and An. gambiae

infection with P. berghei. Mosquito midguts were dissected 10 days

post-infection and salivary glands were dissected 21–22 days post-

infection to determine the prevalence of live oocysts and score the

presence of sporozoites, respectively. Three independent experi-

ments were performed. Prevalence values show the percentage of

mosquitoes displaying P. berghei oocysts or salivary gland

sporozoites, respectively; these values within each species were

compared using the Chi-square goodness-of-fit test. n, number of

midguts and salivary glands (SG); ns, not significant.

Found at: doi:10.1371/journal.ppat.1000070.s005 (0.06 MB

DOC)
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