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Background: Aging is a strong risk factor and an independent prognostic factor in

idiopathic pulmonary fibrosis (IPF). In this study, we aimed to conduct a comprehensive

analysis based on gene expression profiles for the role of aging in pulmonary fibrosis.

Method: Four datasets (GSE21411, GSE24206, GSE47460, and GSE101286) for

patients with clinical IPF and one dataset for bleomycin (BLM)-induced pulmonary fibrosis

(BIPF) mousemodel (GSE123293) were obtained fromGene Expression Omnibus (GEO).

According to different age ranges, both patients with IPF and BIPF mice were divided

into young and aged groups. The differently expressed genes (DEGs) were systemically

analyzed using Gene Ontology (GO) functional, Kyoto Encyclopedia of Genes and

Genomes (KEGG), and hub genes analysis. Finally, we verified the role of age and core

genes associated with age in vivo.

Results: Via the expression profile comparisons of aged and young patients with IPF, we

identified 108 aging-associated DEGs, with 21 upregulated and 87 downregulated. The

DEGs were associated with “response to glucocorticoid,” “response to corticosteroid,”

and “rhythmic process” in GO biological process (BP). For KEGG analysis, the top three

significantly enriched KEGG pathways of the DEGs included “IL-17 signaling pathway,”

“Mineral absorption,” and “HIF-1-signaling pathway.” Through the comparisons of

aged and young BIPF mice, a total number of 778 aging-associated DEGs were

identified, with 453 genes increased and 325 genes decreased. For GO and KEGG

analysis, the DEGs were enriched in extracellular matrix (ECM) and collagen metabolism.

The common DEGs of patients with IPF and BIPF mice were enriched in the

BP category, including “induction of bacterial agglutination,” “hyaluronan biosynthetic

process,” and “positive regulation of heterotypic cell-cell adhesion.” We confirmed

that aged BIPF mice developed more serious pulmonary fibrosis. Finally, the four

aging-associated core genes (Slc2a3, Fga, Hp, and Thbs1) were verified in vivo.
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Conclusion: This study provides new insights into the impact of aging on pulmonary

fibrosis. We also identified four aging-associated core genes (Slc2a3, Fga, Hp, and

Thbs1) related to the development of pulmonary fibrosis.

Keywords: aging, pulmonary fibrosis, genetic signature, idiopathic pulmonary fibrosis, glucocorticoids

INTRODUCTION

The process of aging is featured by gradual functional
impairments of tissue and organisms of the body, leading to
reduced resilience to environmental damages and increased risks
of occurrence of diseases and death (1). Idiopathic pulmonary
fibrosis (IPF) is an age-associated chronic lethal disease caused
by an unknown reason (2). It is commonly diagnosed in patients
over 50 years old, and the incidence of this disease significantly
increases in the population older than 50 years old. (3). For
this reason, better understandings of the pathophysiology of IPF
and how the process of aging is related to the incidence of IPF
are necessary for the development of new therapies for clinical
treatments of this disease.

Despite the repeated proposals of the association between
aging and IPF, the mechanism underlying this association
is still unclear (4, 5). Lopez-Otin et al. enumerate nine
tentative aging hallmarks: genomic instability, telomere attrition,
epigenetic alterations, loss of proteostasis, deregulated nutrient
sensing, mitochondrial dysfunction, cellular senescence, stem
cell exhaustion, and altered intercellular communication (6).
Meanwhile, heterozygous mutations in four telomere-related
genes are also found to associate with the development of
pulmonary fibrosis (7). Moreover, biomarkers of aging, including
p21 and p16, are also found significantly upregulated in both
epithelial cells and fibroblasts in lung tissue of patients with IPF
as compared with that of healthy people (8). In animal studies
of IPF using the bleomycin (BLM)-induced pulmonary fibrosis
(BIPF), aged BIPF mice failed to resolve fibrosis as compared
with young mice (9). However, despite the wide-recognized
association between aging and IPF, its potential mechanism is
unclear (10).

In this study, to investigate the mechanisms underlying the
association between pulmonary fibrosis and aging, using gene
expression profiles of both patients with IPF and BIPF mice, we
comprehensively analyzed the effects of aging in the development
of pulmonary fibrosis and verified our findings in in vivo studies.

Abbreviations: IPF, idiopathic pulmonary fibrosis; BLM, bleomycin; BIPF,

bleomycin (BLM)-induced pulmonary fibrosis; GEO, gene expression omnibus;

FC, fold change; DEGs, differently expressed genes; GO, gene ontology; KEGG,

Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cell

component; MF, molecular function; SPF, specific pathogen-free; NS, normal

saline; BALF, bronchoalveolar lavage fluid; HE, hematoxylin-eosin; MT, masson

trichrome; RT-PCR, real-time polymerase chain reaction; ANOVA, one-way

analysis of variance; HC, healthy control; MC, mouse control; Slc2a3, solute

carrier family 2 member 3; Fga, fibrinogen alpha chain; Hp, haptoglobin; Thbs1,

thrombospondin 1; ECM, extracellular matrix; Fn-EDA, fibronectin extracellular

domain A;MMPs, matrixmetalloproteinases; AEC2, type 2 alveolar epithelial cells;

Fgb, fibrinogen beta; Fgg, fibrinogen gamma.

METHOD

Microarray Data Acquisition and Process
To identify the genes associated with aging in patients with
IPF, four microarray datasets (GSE21411, GSE24206, GSE47460,
and GSE101286) were downloaded from Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) (11–14). IPF
was diagnosed according to the ATS/ERS criteria published (15,
16). Young patients with IPF were defined as age ≤55 years
old, and aged patients with IPF were defined as age ≥70 years
old. Gender- and age-matched healthy controls were gotten from
GSE47460. In order to explore the genes associated with age in
BIPF mice, we downloaded one microarray dataset (GSE123293)
from GEO (17). In this dataset, mice were divided into
young (2–4 months old) and aged (18–20 months old) groups.
Gender- and age-matchedmouse controls were fromGSE123293.
Detailed information of GSE datasets was summarized inTable 1.
Preprocessed expression matrix and probe annotation files of
the four GSE datasets were obtained from the GEO repository.
Probe annotations and the corresponding expression profiles
from different datasets were mapped into a common gene
expression list according to the method described by Shi et al.
(18). Probes obtained from different datasets were listed using
official gene symbols. Multiple expression results of the certain
gene were replaced by the median value of the expression
results (19, 20). Log2 fold-change (FC) of all expression results
was normalized using the Cross-platform Normalization (xpn)
method by platforms.

Differently expressed genes (DEGs) analysis, Gene Ontology
(GO) functional analysis, and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis were performed.

To identify DEGs between young and aged groups, the limma
R package (http://www.bioconductor.org/packages) was used to
perform the negative binomial distribution method according to
the absolute value of FC (>1.5) and false discovery rate (FDR)
<0.05. According to the hypergeometric distribution algorithm,
pathway enrichment analyses of the GO biological process (BP),
molecular function (MF), and cell component (CC) were carried
out by the “cluster-profler” R package. The same method was
applied for the KEGG analysis. The cutoff value was p< 0.05. The
Cytoscape (version 3.8.0) was used to select hub or core genes.

Animal
Specific pathogen-free (SPF) C57 BL/6N male mice (young mice,
2–4 months old; aged mice, 18–20 months old) were purchased
from the HFK Bioscience company (Beijing, China). All animals
were kept under the SPF environment at Tongji Medical College.
All procedures for animal experiments were approved by the
Animal Care and Use Committee of Tongji Hospital.
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TABLE 1 | Characteristics of studies included.

Dataset Platform Type of sample Sample

(Young group)

Sample

(Aged group)

Reference

GSE21411 GPL570 IPF lung tissue 2 0 (11)

GSE24206 GPL570 IPF lung tissue 1 1 (12)

GSE47460 GPL6480 IPF lung tissue 16 29 (13)

GPL14550

Healthy lung tissue 23 23

GSE101286 GPL6947 IPF lung tissue 0 3 (14)

GSE123293 GPL16570 BIPF lung tissue 3 3 (17)

Healthy lung tissue 3 3

IPF, idiopathic pulmonary fibrosis; BIPF, bleomycin induced pulmonary fibrosis.

FIGURE 1 | DEGs associated with age in IPF. (A) Volcano-plot of the 108 age-associated DEGs in patients with IPF. Pink circle: upregulated genes with fold change

over 1.5; blue circles: downregulated genes with a fold change over 1.5. (B) Top 10 GO biological processes analysis of the 108 age-associated DEGs. Outer gray

circle: a scatter plot for each term of the logFC of the assigned genes; red circles: upregulation genes; blue circles: downregulation genes. (C) Top 10 GO cellular

components analysis of the 108 age-associated DEGs. (D) All GO molecular functions analysis of the 108 age-associated DEGs. (E) Top 15 significantly enriched

KEGG pathways. DEGs, differently expressed genes; IPF, idiopathic pulmonary fibrosis; GO, gene ontology; FC, fold change; KEGG, Kyoto Encyclopedia of Genes

and Genomes.

The animal model of pulmonary fibrosis was established by
single intratracheal administration of BLM (2mg/kg,MCE, USA)
or normal saline (NS) as control. Mice were grouped as follows:
NS (young mice intratracheal with NS), aged NS (aged mice
intratracheal with NS), BLM (young mice intratracheal with
BLM), and aged BLM (aged mice intratracheal with BLM). Mice
were sacrificed 21 days after the establishment of the BIPF mice
model. Bronchoalveolar lavage fluid (BALF) was carried out.
Samples of lung tissue were collected. The left lung was paraffin
embedded for hematoxylin-eosin (HE) staining and masson
trichrome (MT) staining (21). Lung hydroxyproline contents

were measured by hydroxyproline colorimetric assay (Biovision,
Milpitas, USA).

Quantitative Real-Time Polymerase Chain
Reaction (RT-PCR)
Briefly, the total RNA of the lung tissue was extracted by RNAiso
plus kit (TaKaRa) and reversely transcripted to cDNA. RT-PCR
was carried out using SYBR Premix Ex Taq (Tarkara, Shiga,
Japan). The relative mRNA expression was calculated using the
2−11CT method normalized to the level of β-actin. The primers
of four core genes are listed in Supplementary Table 1.
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FIGURE 2 | Age-associated DEGs in BIPF mice. (A) Volcano plot of the 778 age-associated DEGs. Pink circle: upregulated genes with fold change over 1.5; blue

circles: downregulated genes with a fold change over 1.5. (B) Top 10 GO biological processes of the 778 age-associated DEGs. Outer gray circle: a scatter plot for

each term of the logFC of the assigned genes; red circles: upregulation genes; blue circles: downregulation genes. (C) Top nine GO cellular components of the 778

age-associated DEGs. (D) Top 15 GO molecular functions of the 778 age-associated DEGs. (E) Top 15 significantly enriched KEGG pathways. DEGs, differently

expressed genes; BIPF, bleomycin-induced pulmonary fibrosis; GO, gene ontology; FC, fold change; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Statistical Analysis
Data analysis was carried out by Rstudio (version 3.6.2) and
GraphPad Prism 7. The microarray data were analyzed by
different R packages. Results were expressed as means ± SEM.
A two-way analysis of variance (ANOVA) followed by Tukey’s
multiple comparison post-test was used. p < 0.05 was considered
as statistically significant.

RESULTS

DEGs Associated With Age in IPF
To determine the core gene profiles related to age in patients
with IPF, four microarray datasets were obtained from GEO.
Information of the included studies is listed in Table 1;
Supplementary Table 2. According to the age criterion, this
study included 19 young patients with IPF and 33 aged patients
with IPF. Gene expression profiles were compared between the
two groups, generating 108 DEGs, with 21 upregulated and 87
downregulated (Figure 1A). For further understanding of the
function related to these 108 DEGs, GO enrichment analysis,
including BP, MF, and CC, was performed. In BP analysis, the
DEGs were found to associate with “response to glucocorticoid,”
“response to corticosteroid,” and “rhythmic process” (Figure 1B).
In the CC category, the DEGs were related to the “integral
component of postsynaptic membrane,” “intrinsic component of
postsynaptic membrane,” and “integral component of synaptic

membrane” (Figure 1C). Moreover, DEGs were enriched in the
MF category related to “receptor ligand activity” and “growth
factor activity” (Figure 1D). For KEGG pathway enrichment
analysis, the top three significant KEGG pathways of the
DEGs included “IL-17 signaling pathway,” “Mineral absorption,”
and “HIF-1-signaling pathway” (Figure 1E). More information
on IPF DEGs analysis was shown in Supplementary File 1.
The same biological analysis was performed in human young
healthy control (HC) and aged HC (Supplementary File 3;
Supplementary Figure 1). Different from young and aged IPF,
DEGs of young and aged HC were enriched in inflammation
and immune.

DEGs Associated With Age in BIPF Mice
For further identification of the expression features associated
with aging in BIPF mice, we obtained one dataset from GEO
and compared the DEGs between aged and young BIPF mice.
A total number of 778 DEGs were identified, with 453 genes
increased and 325 genes decreased (Figure 2A). Slightly different
from the results obtained from patients with IPF, the top five
BP terms were enriched in “extracellular matrix organization,”
“extracellular structure organization,” “cell chemotaxis,”
“collagen metabolic process,” and “neutrophil chemotaxis”
(Figure 2B). In the CC category, the DEGs were associated
with “extracellular matrix,” “collagen-containing extracellular
matrix,” and “extracellular matrix component” (Figure 2C).
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FIGURE 3 | Common age-associated DEGs in pulmonary fibrosis. (A) A Venn diagram of DEGs of patients with IPF and BIPF mice. (B) Significant enrichments of GO

biological processes analysis of the eight common DEGs. (C) Significant enrichments of GO cellular components analysis of the eight common DEGs. (D) A Venn

diagram of core genes extracted by common DEGs analysis and mouse hub genes datasets. (E) Heatmap of the four core genes in young and aged IPF. (F) Heatmap

of the four core genes in young and aged BIPF mice. DEGs, differently expressed genes; IPF, idiopathic pulmonary fibrosis; BIPF, bleomycin-induced pulmonary

fibrosis; GO, gene ontology.

“Extracellular matrix component,” “glycosaminoglycan binding,”
and “collagen binding” were the most important MF terms
(Figure 2D). Furthermore, KEGG pathway analysis showed
enrichments in “ECM-receptor interaction,” “Cytokine-
cytokine receptor interaction,” and “Amoebiasis” (Figure 2E).
Detailed information of BIPF DEGs analysis was displayed
in Supplementary File 2. The same bioinformatical analysis
was conducted in young mouse control (MC) and aged MC
(Supplementary File 4; Supplementary Figure 2). Similar to
HC age-associated DEGs, inflammation and immune were
enriched in DEGs of young and aged MC.

Common DEGs Associated With Age in
Pulmonary Fibrosis
To comprehensively explore the effects of aging in pulmonary
fibrosis, we combined the results of patients with IPF and BIPF
mice. As shown in the Venn diagram, eight common DEGs
were found in both aged patients with IPF and aged BIPF mice
(Figure 3A). The eight common DEGs were enriched in the
BP category related to “induction of bacterial agglutination,”
“hyaluronan biosynthetic process,” and “positive regulation of
heterotypic cell-cell adhesion” (Figure 3B). In CC analysis, the
eight common genes were associated with “extracellular space,”
“extracellular exosome,” and “extracellular region” (Figure 3C).
Subsequently, to confirm the aging-related core genes, we
overlapped the eight common genes with the top 100 core
DEGs in BIPF mice. In the results, the four aging-related

TABLE 2 | List of 4 core genes.

Human Mouse

Gene ID log2 FC P value Gene ID log2 FC P value

SLC2A3 6515 −0.801 0.00068 Slc2a3 20527 1.14913 4.74E−05

FGA 2243 −1.462 0.00017 Fga 14161 1.42123 0.0001638

HP 3240 −1.162 0.02032 Hp 15439 0.86172 0.000122

THBS1 7057 −0.611 0.03689 Thbs1 21825 −0.94997 0.038588

Human: aged IPF vs. young IPF; mouse: aged BLM vs. young BLM; ID, entrez ID; FC,

fold change.

core genes were identified: solute carrier family 2 member 3
(Slc2a3), fibrinogen alpha chain (Fga), haptoglobin (Hp), and
thrombospondin 1 (Thbs1) (Figure 3D). The heatmap showed
the four core genes expression in both patients with IPF and BIPF
mice (Figures 3E,F). Detailed information on the four core genes
is displayed in Table 2. There was no common gene among aged
and young IPF DEGs, BIPF DEGs, HC DEGs, and MC DECs
(Supplementary Figure 3; Supplementary File 5).

In vivo Validations of the Impact of Aging
and Four Core Genes
Aging is an important risk factor in patients with IPF. In
this study, we compared the fibrosis degree between young
and aged mice. In histopathological analysis, we found that,
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FIGURE 4 | Aging aggravates pulmonary fibrosis in vivo. Young C57BL/6N male mice (2–4 months) and aged C57BL/6 male mice (16–18 months) were

intratracheally injected with 50 µl of NS or 2-mg/kg BLM. (A) Representative HE and MT staining images of lung sections of each group. Magnification X200. Scale

bar, 10 um. (B) Hydroxyproline measurements. The four groups were NS (young mice intratracheal with NS), aged NS (aged mice intratracheal with NS), BLM (young

mice intratracheal with BLM), and aged BLM (aged mice intratracheal with BLM). Values were expressed as mean ± SEM (n = 4). *p < 0.05, compared with the

young NS group, #p < 0.05, compared with the young BLM group. Two-way ANOVA was used. NS, normal saline; BLM, bleomycin; HE, hematoxylin-eosin staining;

MT, masson trichrome staining.

FIGURE 5 | The expression of the four core genes in the lungs of BIPF mice. (A) Slc2a3, (B) Fga, (C) Hp, and (D) Thbs1 in the NS, aged NS, BLM, and aged BLM

groups. The four groups were NS (young mice intratracheal with NS), aged NS (aged mice intratracheal with NS), BLM (young mice intratracheal with BLM), and aged

BLM (aged mice intratracheal with BLM). Values were expressed as mean ± SEM (n = 4), *p < 0.05, compared with the young NS group, #p < 0.05, compared with

the young BLM group. Two-way ANOVA was used. BIPF, bleomycin-induced pulmonary fibrosis; NS, normal saline; BLM, bleomycin.

with the increase of age, fibrosis appeared in lung tissue
spontaneously (Figures 4A,B). Under the stimulation of BLM,
more serious pulmonary fibrosis was developed in aged
mice. This finding was consistent with the previous study
(5). For further confirmation of the expression changes in

the four core genes (Slc2a3, Fga, Hp, and Thbs1) in NS,
aged NS, BLM, and aged BLM groups, qRT-PCR verification
was conducted. The results demonstrated that Slc2a3 and
Fga were significantly increased with age in both NS and
BLM-stimulated mice (Figures 5A,B). Meanwhile, the Hp and
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Thbs1 were found to significantly decreased with the increase
of age (Figures 5C,D).

DISCUSSION

Aging is a strong risk factor and an independent prognostic
biomarker for progressive IPF (22). However, a comprehensive
analysis based on gene expression profiles for the investigation
of the role played by aging in IPF was missing. In this study,
using four human IPF datasets, we identified 108 altered aging-
related DEGs in IPF. Similarly, through the analysis of a dataset
of the BIPF mouse model, we identified 778 aging-related DEGs.
Followed by that, both GO and KEGG analyses of the DEGs were
conducted separately. The resulting DEGs were subsequently
combined and generated eight common DEGs and four core
genes. Finally, we confirmed that aging aggravated pulmonary
fibrosis and validated the four aging-associated core genes in
experimental pulmonary fibrosis.

In the present study, the 108 aging-associated DEGs of
human IPF were found to be involved functionally in “response
to glucocorticoid” and “response to corticosteroid” BP terms.
Given the clinical practice at the time some of these samples
were collected, it is likely some of these patients may have
been receiving steroids, which could further influence this
result. Although glucocorticoid showed no benefit to patients
with IPF in several retrospective studies (23, 24), Zhang et al.
implied that IPF with different gene types may benefit differently
from glucocorticoid therapy (25). Previous research reported
that dexamethasone treatments targeting the macrophages in
long significantly alleviated pulmonary fibrosis through the
regulation of the immune microenvironment (26). Generally,
more comprehensive experimental designs might apply for
exploring the role of glucocorticoids in IPF. Postsynaptic
components are involved in most top five enriched CC terms,
indicating an important role of the nerve system in aged
patients with IPF. A longitudinal IPF cohort demonstrated
that patients with IPF treated with α1 adrenoreceptor blockade
displayed improvements in survival rates (27). Moreover,
vagotomy attenuated symptoms of pulmonary fibrosis in BIPF
mice by enhancing fibrogenic factors and fibrogenic cells (28).
Growth factor activity was one significantly enriched MF term.
Genes related to growth factor activity were downregulated in
aged-related disease (29, 30). Nutrient metabolism imbalance
was enriched in KEGG analysis. Loss of pyruvate kinase M2
resulted in cone degeneration in an age-dependent manner
(31). Moreover, mitochondrial energy production reduction and
cellular redox hemostasis loss played important roles in hearing
loss associated with aging (32).

Different from DEGs of IPF, the significant GO enrichment
of DEGs in the mouse model of BIPF was extracellular matrix
(ECM) and collagen metabolism. Persistent ECM accumulation
was considered to participate in the development of several
diseases, including IPF, causing difficulties in reversing the
disease progression of such disease (33). The ECM of aged
lungs was featured by the upregulated transcriptional level
of fibronectin extracellular domain A (Fn-EDA) and matrix
metalloproteinases (MMPs), including MMP-2 and MMP-9 (5).
Collagen contents were found higher in adult mice; however,

its transcriptional level was found higher in young mice.
This phenomenon was caused by dysregulations in collagen
degradation (9). Despite the wide recognition of the association
between ECM dysregulations and the process of aging, its
underlying mechanisms were still unclear.

Age-associated DEGs of IPF and BIPF exhibited differences,
while age-associated DEGs of HC and MC overlapped more.
Inflammation and immunomodulation were enriched in
age-associated DEGs of HC and MC. Age-related chronic
inflammation is a major contributor to diseases with advancing
age (34). Extensive evidence indicates that persistent low-grade
inflammation is present in the aged population and that age-
associated inflammation occurs in the lungs (35, 36). BALF
collected from aged mice and aged humans contains increased
levels of IL-6, TNF, and complement components, reflective
of a disordered innate immunity (37). Although collagen and
matrix synthesis are important in aged pulmonary fibrosis,
the disordered inflammation and immune response cannot be
ignored in aged pulmonary fibrosis (Figure 2B).

The GO terms of the common eight genes were enriched
in the hyaluronan (HA) biosynthetic process. Hp, one of the
four core genes, produced important effects in the process of
lung injuries and repairments (38). Extracellular matrix Hp
on type 2 alveolar epithelial cells (AEC2s) was critical for
AEC2 renewal, repairments of lung injuries, and limitations
of the development of fibrosis (39). Thbs1 is associated with
aging and promoted matrix homeostasis through the interaction
with collagen, lysyl oxidase precursors, and sites of collagen
cross-linking (40, 41). The relationship between Thbs1 and
aged pulmonary fibrosis was worth studying. Slc2a3, mediating
the uptake of various monosaccharides, was reported to be
associated with pulmonary fibrosis. Aging altered the uptakes
of glucose and the transcription profile of Slc2a3/Slc2a4 before
and after spinal cord injury, which is potentially related to
the inflammation level (42). Fga was cleaved by the protease
thrombin to produce monomers. Subsequently, the monomers
polymerized with fibrinogen beta (Fgb) and fibrinogen gamma
(Fgg), forming the insoluble fibrin matrix. The level of Fga
was higher in patients with IPF compared with that in healthy
controls (43). Moreover, previous research found that the lack of
a C-terminal fragment of Fga preceded the progress of fibrosis
in patients with liver diseases (44). Most importantly, differences
in the expression profiles of the four core genes were found in
both patients with IPF and BIPF mice. In order to clarify that
the expression changes of the four core genes were due to aging
in the context of disease or aging alone, we analyzed the age-
associated DEGs in HC and MC. Comprehensively, analysis of
our research results, the bioinformatics analysis results, and the
expression change of four core genes were due to aging in the
context of pulmonary fibrosis.

Therefore, considering the crucial roles of these four core
genes on the basis of this study and previous studies above,
further studies may be focused on exploring the mechanisms
under pulmonary fibrosis in the context of aging. There were
still several limitations in the study. Firstly, we could not assess
the role of other aging marks in pulmonary fibrosis, such as
telomere attrition, epigenetic alterations, and genomic instability.
They need more professional research methods, whereas we
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only explored the role of age in pulmonary fibrosis from the
perspective of gene transcription. Secondly, the expression of
the four core genes needs to be verified in humans. Thirdly,
while our study was able to identify a number of novel pathways
in aged IPF, it was limited by the available clinical data (such
as the history of glucocorticoid use) and biases inherent in
enrichment analyses. Fourthly, some gene information is lost in
the process of data sets integration because it cannot be repeated
in different datasets. Furthermore, more and larger-scale studies
should be conducted.

It was widely recognized that aging was a dependent
risk factor in pulmonary fibrosis. As shown by our study,
aging-aggravated BLM induced pulmonary fibrosis in BIPF
mice. The pathogenesis of young and aged pulmonary fibrosis
was not exactly the same from the perspective of gene
expression profiles. Four aging-associated core genes (Slc2a3,
Fga, Hp, and Thbs1) were related to the development of
pulmonary fibrosis.
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