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Simple Summary: This experiment was conducted to assess the effects of three diets on
diarrhoea, performance (weight change, feed intake and feed conversion ratio), selected
bacterial populations and blood measures of weaner pigs infected with enterotoxigenic
E. coli. The three diets were: base diet (no antimicrobial compounds), base diet containing
zinc oxide, and base diet containing a feed additive (blend of organic acids, cinnamaldehyde
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and permeabilizing complex). Only feeding zinc oxide decreased diarrhoea, with zinc
oxide-fed pigs performing better than base diet-fed pigs. Zinc oxide-fed pigs performed
similarly to pigs fed the organic acids, cinnamaldehyde and permeabilizing complex.
Significant interactions between treatment and day after weaning were found for some
bacterial populations, although the implications of such findings require further examination.

Abstract: The effects of feeding a diet supplemented with zinc oxide (ZnO) or a blend
of organic acids, cinnamaldehyde and a permeabilizing complex (OACP) on post-weaning
diarrhoea (PWD) and performance in pigs infected with enterotoxigenic E. coli (ETEC)
were examined. Additionally, changes in selected bacterial populations and blood
measures were assessed. A total of 72 pigs weaned at 22 d of age and weighing
7.2 ˘ 1.02 kg (mean ˘ SEM) was used. Treatments were: base diet (no antimicrobial
compounds); base diet + 3 g ZnO/kg; base diet + 1.5 g OACP/kg. Dietary treatments started
on the day of weaning and were fed ad libitum for 3 weeks. All pigs were infected with an
F4 ETEC on d 4, 5 and 6 after weaning. The incidence of PWD was lower in pigs fed ZnO
(p = 0.026). Overall, pigs fed ZnO grew faster (p = 0.013) and ate more (p = 0.004) than the
base diet-fed pigs, with OACP-fed pigs performing the same (p > 0.05) as both the ZnO- and
base diet-fed pigs. Feed conversion ratio was similar for all diets (p > 0.05). The percentage
of E. coli with F4 fimbriae was affected a day by treatment interaction (p = 0.037), with
more E. coli with F4 fimbriae found in pigs fed ZnO on d 11 (p = 0.011) compared to base
diet-fed pigs. Only significant time effects (p < 0.05) occurred for blood measures. Under the
conditions of this study, inclusion of OACP gave statistically similar production responses
to pigs fed ZnO, however pigs fed ZnO had less PWD compared to OACP- and the base
diet-fed pigs.

Keywords: cinnamaldehyde; enterotoxigenic E. coli; organic acids; post-weaning diarrhoea;
pigs; zinc oxide; permeabilizing complex

1. Introduction

Weaning is a stressful process for pigs and typically causes a growth check, but the stressors
of weaning can also render pigs more susceptible to gastrointestinal tract (GIT) diseases and
dysfunction [1,2]. Post weaning diarrhoea (PWD) is associated with the proliferation of enterotoxigenic
β-haemolytic strains of Escherichia coli (E. coli) [3], and can be a major cause of economic loss in
a herd [4]. The commensal bacteria in the intestine, including Lactobacillus spp., play important roles
in preventing the colonization of pathogens through competitive exclusion and excretion of bacteriocins
capable of bacterial lysis [5]. Antibiotics and (or) mineral compounds such as zinc oxide (ZnO) have
traditionally been used to control PWD and GIT dysbiosis [6–8]. Health and consumer concerns related
to the development of antimicrobial resistance [9–11], and concerns related to the accumulation of
minerals such as zinc in the environment [6], have resulted in the development of alternative strategies
to maintain health and performance in the post-weaning period.
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Organic acids in weaner pig diets can control PWD and enhance growth performance [12,13]. Acetic,
formic and propionic acids have a direct effect on Gram-negative bacteria, impeding the replication of
deoxyribonucleic acid [14]. Formic acid has been found to decrease colonization of enterobacteria in the
lower part of the GIT of pigs [15], increasing growth efficiency when supplemented to market pigs [16]
and having a positive effect on controlling PWD in pigs [17]. Propionic acid has also displayed positive
effects on controlling PWD and a general improvement in performance [17]. Furthermore, acetic acid,
when fed in a combination with formic, phosphoric and citric acid, was found to have positive effects on
performance in newly-weaned pigs [18].

Essential oils (EO) are phytochemicals acquired from plant material [19], and are the plants’
natural defence mechanism against predators and pathogens [20]. There is considerable interest in the
antibacterial and (or) antiviral properties of some EO for application in the post-weaning period [21,22].
In this regard, cinnamaldehyde was found to decrease faecal E. coli concentrations, with no effect on the
concentration of faecal lactobacilli, in weaned pigs [23].

Organic acids and EO have different modes of action to antimicrobial growth promoters (AGP), and it
is therefore unlikely that one alone is going to be able to substitute AGP to control PWD. A combination
of organic acid blends and EO would give a broader spectrum of activity as organic acids exert their
activity in feed and the upper part of the GIT whilst EO exert their activity more in the distal part of the
GIT [24]. Furthermore, Gram-negative bacteria such as E. coli possess a cell wall in addition to their cell
membrane, which prevents compounds such as organic acids from entering the bacteria and destroying
vital cellular functions. A permeabilizing complex has been found to disrupt this cell wall, making the
bacteria more susceptible to these compounds and contributing to enhanced post-weaning growth [25].

The hypothesis tested in this experiment was that a post-weaning diet supplemented with a blend of
organic acids (propionic, formic and acetic), cinnamaldehyde and a permeabilizing complex (OACP)
will decrease the incidence of PWD in pigs and increase growth performance following infection with
enterotoxigenic E. coli. This product was examined against a base diet without any antimicrobial
compounds and a diet containing ZnO, which is still commonly used in the post-weaning period to
mitigate disease and improve performance.

2. Experimental Section

This study was reviewed and approved by the Animal Ethics Committee of Murdoch University
(R2631/14). Animals were handled according to the Australian Code of Practice for the Care and Use
of Animals for Scientific Purposes [26].

2.1. Animals, Experimental Design, Diets and Housing

A total of 72 entire male pigs (Large White ˆ Landrace) weaned at an average of 22 days (d) of age
and weighing 7.2 ˘ 1.02 kg (mean ˘ SEM) was used. The pigs were obtained from a commercial pig
farm (Yarloop, Western Australia) on the day of weaning and transported to an experimental facility at
Murdoch University. Due to supply issues the pigs arrived in two batches 3 days apart, but were placed
on test according to the same timeframe. On arrival, the pigs were weighed and faecal rectal swabs
were taken and cultured for baseline presence of β-haemolytic E. coli. Pigs were randomly allocated to
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their experimental diet in 6 replicate pens of 4 pigs per pen according to a completely randomised block
distribution and live weight (3 treatments ˆ 6 replicate pens per treatment ˆ 4 pigs per pen; n = 72).

Treatments comprised three different diets: a base diet without any antimicrobial compounds; the base
diet with 3 g ZnO/kg added; and the base diet with 1.5 g OACP/kg (Biotronic Top 3r, Biomin Australia
Pty Ltd., Carlingford, Australia) added. The base diet, comprised mainly of wheat, soybean meal,
barley and whey, was formulated to meet the animals’ requirements according to National Research
Council [27] (10.4 MJ NE/kg, 0.9 g standardised ileal digestible lysine/MJ DE). Diet compositions and
analysed gross energy and nutrient contents are presented in Table 1. The diets, along with water, were
offered on an ad libitum basis for 3 weeks after weaning.

Table 1. Composition of experimental diets (g/kg, as fed basis).

Ingredient Base Diet ZnO OACP

Barley 100.0 100.0 100.0

Wheat 492.2 489.2 490.7

Soybean meal 150.0 150.0 150.0

Blood meal 20.0 20.0 20.0

Fish meal 84.1 84.1 84.1

Whey powder 100.0 100.0 100.0

Canola Oil 34.2 34.2 34.2

L-lysine 2.71 2.71 2.71

DL-methionine 2.30 2.30 2.30

L-threonine 1.30 1.30 1.30

L-tryptophan 0.13 0.13 0.13

Vitamin/Mineral premix : 1.0 1.0 1.0

Limestone 5.2 5.2 5.2

Dicalcium phosphate 4.4 4.4 4.4

Salt (NaCl) 2.0 2.0 2.0

Zinc Oxide 0.0 3.0 0.0

Choline chloride (60%) 0.4 0.4 0.4

Biotronic Top 3r ; 0.0 0.0 1.5

Calculated composition
NE, MJ/kg 10.4 10.4 10.4

Protein 213 213 213

Fat 54 54 54

NDF 95 95 95

ADF 28 28 28

Calcium 9.0 9.0 9.0

Digestible phosphorus 4.5 4.5 4.5

Total lysine 14.1 14.1 14.1

SID lysine 13.5 13.5 13.5

SID meth + cysteine 8.1 8.1 8.1
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Table 1. Cont.

Ingredient Base Diet ZnO OACP

SID threonine 8.5 8.5 8.5

SID tryptophan 2.4 2.4 2.4

SID isoleucine 7.7 7.7 7.7

SID leucine 14.8 14.7 14.8

Analyzed composition
Dry matter 927 926 926

Gross energy, MJ/kg 17.6 17.3 17.6

Protein 221 218 224

Crude fibre 20 20 18

NDF 104 90 90

ADF 34 33 31

Zinc 0.22 2.55 0.22

pH 6.26 6.63 6.20

: Provided the following nutrients (per kg of air-dried diet): vitamins: A, 7000 IU; D3, 1400 IU; E, 20 mg; K,
1 mg; thiamine, 1 mg; riboflavin, 3 mg; pyridoxine, 1.5 mg; cyanocobalamin, 15 µg; calcium pantothenate,
10.7 mg; folic acid, 0.2 mg; niacin, 12 mg; biotin, 30 µg. Minerals: Co, 0.2 mg (as cobalt sulfate); Cu, 10 mg
(as copper sulfate); iodine, 0.5 mg (as potassium iodine); iron, 60 mg (as ferrous sulfate); Mn, 40 mg (as
manganous oxide); Se, 0.3 mg (as sodium selenite); Zn, 100 mg (as zinc oxide); BJ Grower 1, BioJohn Pty
Ltd., Perth, Western Australia; ; Biotronic Top 3r, Biomin Australia Pty Ltd., Carlingford, Australia (a mixture
of an organic acid blend, cinnamaldehyde and permeabilizing complex (OACP)). NDF, neutral detergent fibre;
ADF, acid detergent fibre; SID, standardised ileal digestible.

Pigs were kept in pens of metal wire-meshed construction with plastic flooring and with a space
allowance of at least 0.6 m2 per pig. Each pen was equipped with a nipple water drinker and a plastic
feeding trough. Pens were in three different rooms, with 6 pens per room and 2 pens per treatment
in each room. The ambient temperature was maintained at 26.3 ˘ 1.0 ˝C (mean ˘ SD). Pigs were
monitored twice daily and weighed weekly. Feed disappearance from each pen was recorded weekly
and feed wastage was visually assessed (by the same person) and recorded daily to calculate feed intake,
body weight gain, and feed conversion ratio.

2.2. Induction of PWD with Enterotoxigenic E. coli and Measurements of PWD

Pigs were infected with an enterotoxigenic E. coli (ETEC, serotype O149:K98:K88; toxins LT, ST,
STb, EAST) on d 4, 5 and 6 after weaning. Inoculation cultures of ETEC were prepared as described
by Heo, et al. [28]. All pigs were orally dosed, using mild restraint, with the inoculum via a drench
gun to provide 9 mL aliquots of 1.03 ˆ 109 colony forming units (CFU)/mL of ETEC per pig. Faecal
swabs were taken on d 0, 3, 5, 7, 9 and 11 to assess faecal shedding of ETEC, by inserting a cotton swab
into the anus. Swabs were inoculated on sheep blood (50 mL/L) agar plates (Path West Laboratories,
Perth, Western Australia). Plates were incubated overnight at 37 ˝C and assessed based on morphology
and haemolysis. Scores were given on a scale from 0 to 5 according to the number of streaked sections
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containing viable haemolytic E. coli, where 0 was no growth and 5 was growth out in the fifth section of
the plate [28].

Faecal consistency and the incidence of diarrhoea of individual pigs were visually assessed daily, by
the same person, for 21 d after weaning. A score between 1 and 4 was given, as follows: (1) firm,
well-formed faeces; (2) soft formed faeces; (3) soft and loose shape; or (4) watery liquid consistency,
with this considered as diarrhoea. To allow for statistical analysis the scores were converted into
percentiles (1 = 0%, 2 = 33.3%, 3 = 66.7% and 4 = 100%). The diarrhoea index (DI) was calculated as
the mean proportion of days pigs had diarrhoea with respect to 14 d after weaning [29]. Faecal samples
from 8 focus pigs (median weight pigs) were collected per treatment, on d 4 and 11 after weaning, for
subsequent volatile fatty acid (VFA) analysis and enumeration of specific bacterial groups by quantitative
PCR (qPCR). Samples were stored at ´20 ˝C until analyzed.

2.3. Blood Sampling

Blood samples were collected on d 4 and 11 from 2 pigs per pen (12 samples per treatment). Samples
were collected via jugular vein puncture into either a lithium heparin or K3EDTA coated tube. Lithium
heparin tubes were immediately placed on ice and K3EDTA tubes were kept cool. The heparin tube was
centrifuged at 3000ˆ g for 10 min at room temperature. Plasma was then collected and stored at´20 ˝C
until analyzed for plasma urea nitrogen (PUN), total antioxidant content (TAC), and the acute phase
proteins (APP) haptoglobin, albumin, and C-reactive protein (C-RP). Whole blood samples collected in
K3EDTA tubes were subjected to blood cell count assessment on the same day.

2.4. Analytical Methods

Diet samples were analyzed for dry matter, gross energy, crude protein, crude fibre, neutral detergent
fibre (NDF), acid detergent fibre (ADF), and zinc. Dry matter content was determined using AOAC
official method 930.15 [30]. The N content was determined using combustion method 990.03 [30] and
crude protein content was calculated as N content ˆ6.25. Crude fibre content was determined using
AOAC official method 962.09 [30]. The NDF and ADF contents were determined using the AOAC
official methods 925.10 [30]. Gross energy content was determined using a ballistic bomb calorimeter
(SANYO Gallenkamp, Loughborough, UK). Zinc content was determined using inductively coupled
atomic emission spectroscopy. The pH levels in the diets were assessed by preparing 1:9 w/v feed in
water, which were then measured using a pH meter (ROSS Ultrar pH/ATC Trioder, Thermo Fisher
Scientific Inc., Beverly, MA, USA).

Faecal samples were analyzed for volatile fatty acids (VFA) content using gas chromatography.
Samples were prepared as described by Kim, et al. [31], except that the thawed samples were diluted
1:2 (w/v), and expressed as the molar percentage of total VFA. The TAC was determined using
the OxiselectTM Total Antioxidant Capacity (TAC) Assay Kit (Cell Biolabs, Inc., catalogue number
#STA-360, San Diego, CA, USA). The PUN, haptoglobin and albumin contents were determined using
a Beckman Coulter/Olympus Reagent Kit (OSR6134), an in-house method NTM-62 based on [32],
and Randox Ranbut Reagent kit (RB1007), respectively. All kits and methods were performed on
an Olympus AU400 Clinical Chemistry Analyser at the Department of Agriculture and Food, Animal
Health Laboratories (South Perth, WA, Austrlia). The C-RP levels were determined by the use of
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a porcine ELISA kit (R & D Systems, catalogue #DY2648). Whole blood cell count was conducted
using an automatic haematology analyser (ADIVA 2120, Bayer Healthcare, Siemens, Germany).

2.5. DNA Extraction and Quantitative Real Time Polymerase Chain Reaction

The QIAampr DNA Stool Mini Kit (QIAGEN GmBH, Hilden, Germany) was used to extract DNA
from frozen faecal samples with DNA stored at ´20 ˝C until qPCR was performed. Quantitative PCR
was used to measure numbers of total E. coli, E. coli with F4 fimbria (the specific E. coli used for oral
infection in this experiment), Enterobacteriaceae, Lactobacillus spp., and total bacteria by targeting 16S
rRNA genes, the 16S–23S rRNA intergenic spacer region and the F4 fimbriae gene (Table 2). Primers
and probes were synthesized by Biosearch Technologies (Novoto, CA, USA). TaqMan probes were
labelled with 51 carboxyfluorescein (FAM) on the 51 end and Black Hole Quencher (BHQ-1) on the 31 end
(Table 2). Standard curves for each of the qPCRs were constructed from 10-fold serial dilutions of each
DNA extracted using the DNeasy Blood and Tissue Kit (Qiagen, Venlo, Netherlands) from broth cultures
of F4 E. coli, E. coli, Salmonella typhimurium and Lactobacillus acidophilus. Numbers of each bacterial
species were enumerated using ISO 16649-2, ISO 21528-2 and ISO 15214 international standards.

Table 2. Primers and probes used for quantitative real time PCR.

Target Primer/Probe Reference PCR Product Length (bp)

Total E. coli

Forward
Bartosch, et al. [33]

195Reverse

Probe Designed by Y. Chen, EMAI (unpublished)

Enterobacteriaceae

Forward
Bartosch, et al. [33]

195Reverse

Probe Designed by Y. Chen, EMAI (unpublished)

Lactobacillus spp.
Forward Walter, et al. [34]

190Reverse Modified from Heilig, et al. [35]

Probe Modified from Delroisse, et al. [36]

E. coli with F4 fimbria
Forward

Franklin, et al. [37] 764
Reverse

Total bacteria

Forward
Suzuki, et al. [38] 152Reverse

Probe

The F4 E. coli qPCR was the only assay to use SYBR Green to detect DNA amplification, and all
other assays used the TaqMan probe technology. Each TaqMan qPCR contained 1ˆ AgPath-ID reaction
buffer (Applied Biosystems, Foster City, CA, USA), 1 unit AgPath-ID Taq polymerase, 40 nM probe,
and 200 nM of the forward and reverse primers. The qPCR amplification protocols for the total E. coli,
Enterobacteriaceae and Lactobacillus spp. included an initial denaturation step of 95 ˝C for 10 min, then
40 cycles of 95 ˝C for 15 s and 65 ˝C for 45 s. A reduced annealing temperature was used (58 ˝C) for
the total bacteria qPCR. The F4 E. coli qPCR contained 1ˆ SensiMix SYBR Low-ROX reaction buffer
including Taq polymerase (Bioline, London, UK) and 300 nM forward and reverse primers. Cycling
conditions for the F4 E. coli qPCR were 95 ˝C for 10 min, then 40 cycles of 95 ˝C for 15 s, 65 ˝C for
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30 s and 72 ˝C for 60 s. Samples were quantified on a ViiA7 PCR machine (Applied Biosystems, Foster
City, CA, USA), and numbers of total E. coli, Enterobacteriaceae, Lactobacillus spp. and F4 E. coli
were expressed as a percentage of total bacteria to account for differences in faecal water content.

2.6. Statistical Analyses

Statistical analysis of production data, faecal score, faecal ETEC excretion and DI was performed
using one-way ANOVA in SPSS (Version 21, IBM Corporation, Armonk, NY, USA) with dietary
treatment as the independent variable, and batch as a random factor (to account for a difference in
start weight between batches of pigs). Plasma measures, faecal SCFA, faecal bacterial counts and
ratios measured on d 4 and 11 were analysed by repeated-measures ANOVA. Faecal bacterial counts for
total E. coli, F4 E. coli and Enterobactericeae, and faecal bacterial ratios for Lactobacillus spp.:E. coli
and F4 E. coli:Lactobacillus spp., were not normally distributed and therefore were logarithmically
transformed before analysis. Means were back-transformed and expressed as least-square means with
95% confidence intervals. Significant interaction means were separated using Tukey’s HSD test. Pen
was used as the experimental unit for performance, faecal score, faecal ETEC excretion, and DI. Pig was
used as the experimental unit for plasma measurements, blood cell counts, faecal VFA concentration, and
bacterial enumeration by qPCR. Chi-squared analysis (SPSS; Version 21, IBM, Armonk, NY, USA) was
used to compare the percentage of pigs having PWD between the different diets. Statistical significance
was accepted at p < 0.05 and 0.05 < p < 0.10 was considered a trend.

3. Results

One animal was removed from the trial prior to the ETEC challenge due to ill thrift. The analysed diet
composition did not vary significantly from calculated values. As expected, the Zn concentration was
lower in the base and OACP diets (Table 1). The pH levels were as expected, with the ZnO diet having
the highest pH and the OACP diet having the lowest pH (Table 1).

3.1. Incidence and Severity of PWD and Shedding of ETEC

Approximately 4% of pigs fed ZnO had PWD in the 3 weeks after weaning, which was lower than pigs
fed OACP (29%, p = 0.024) or the base-fed pigs (25%, p = 0.047). There was no difference (p = 0.745)
in PWD between pigs fed the OACP or base diets. This related to the DI, which was lower (p = 0.026) in
pigs fed ZnO compared to pigs fed either the OACP or the base diet. There was an increase (p < 0.001) in
the haemolytic E. coli score after infection, with no difference (p = 0.987) between treatments (Table 3).
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Table 3. The effects of dietary treatment on post-weaning diarrhoea, the diarrhoea index,
and the E. coli score before and after infection, in pigs experimentally infected with
enterotoxigenic E. coli (ETEC).

Item
Treatment *

SEM
p-Value

Base ZnO OACP D T D ˆ T

% of pigs with PWD : 25 a 4 b 29 a

Diarrhoea index (%) ; 5.06 a 0.62 b 6.25 a 1.526 0.026

E. coli score §

Days 0–3 (pre-infection) 0.08 <0.01 0.15
0.048 0.001 0.987 0.442

Days 5–11
(post-infection)

0.94 1.05 0.91

* Base diet; ZnO: base + 3 g ZnO/kg; OACP: base + 1.5 g/kg of a mixture of an organic acid blend,
cinnamaldehyde and a permeabilizing complex (Biotronic Top 3r, Biomin Australia Pty, Ltd., Carlingford,
Australia); : PWD was defined as pigs having a faecal consistency score of 4; ; The mean proportion of days
with diarrhoea with respect to 14 d after weaning; § Agar plates were scored from 0–5 according to number
of streaked sections containing viable haemolytic E. coli, where 0 was no growth and 5 was growth out in the
fifth section of the plate; PWD, Post weaning diarrhoea; SEM, standard error of the mean; D, day; T, treatment;
a,b Means within a row with different superscripts are significantly different (p < 0.05).

3.2. Performance Data

Production performance of all pigs was sound, with the average daily gain (ADG) being in excess of
250 g/d in the first week after weaning. Pigs fed ZnO diet were heavier than pigs fed the base diet on
d 14 (p = 0.024) and d 21 (p = 0.038), with pigs fed the OACP diet differing from neither (p > 0.05).
The ADG was higher in pigs fed ZnO compared to the base diet-fed group for the first (p = 0.008) and
the overall 3-week period after weaning (p = 0.013). Daily gain was higher for pigs fed ZnO or OACP
compared to the base diet group in the second week (p = 0.011), however no differences were found for
the third week after weaning (p = 0.421) (Table 4).

Pigs fed ZnO had a greater average daily feed intake (ADFI) compared to the base diet-fed pigs in
week 1 (p = 0.007) and in the overall 3-week period after weaning (p = 0.004). Pigs fed ZnO or OACP
had a greater (p = 0.006) ADFI compared to the base diet-fed group in week 2. For the 3 weeks after
weaning, a trend (p = 0.057) was found for pigs fed ZnO to consume more food than the base diet group.
There was no difference (p > 0.05) in feed conversion ratio between treatment groups (Table 4).
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Table 4. The effects of feeding different diets on the performance of pigs experimentally
infected with ETEC after weaning.

Item
Treatment *

SEM p-Value
Base ZnO OACP

LW (kg)

d 0 7.3 7.2 7.2 0.11 0.761

d 7 9.1 9.9 9.4 0.25 0.122

d 14 12.1 a 13.6 b 13.0 a,b 0.34 0.024

d 21 16.3 a 18.2 b 17.4 a,b 0.46 0.038

ADG (g/d)

d 0–7 253 a 381 b 312 a,b 24.3 0.008

d 8–14 430 a 533 b 510 b 21.3 0.011

d 15–21 611 661 626 26.7 0.421

d 0–21 431 a 525 b 483 a,b 19.1 0.013

ADFI (g/d)

d 0–7 336 a 454 b 390 a,b 21.8 0.007

d 8–14 543 a 725 b 668 b 33.6 0.006

d 15–21 835 942 871 28.9 0.057

d 0–21 571 a 707 b 643 a,b 23.6 0.004

FCR (g/g)

d 0–7 1.34 1.18 1.26 0.059 0.218

d 8–14 1.25 1.36 1.30 0.045 0.282

d 15–21 1.37 1.43 1.39 0.039 0.515

d 0–21 1.32 1.34 1.33 0.029 0.847

* Base diet; ZnO: base + 3 g ZnO/kg; OACP: base + 1.5 g/kg of a mixture of an organic acid blend,
cinnamaldehyde and a permeabilizing complex (Biotronic Top 3r, Biomin Australia Pty, Ltd., Carlingford,
Australia); LW, live weight; ADG, average daily gain; ADFI, average daily feed intake; FCR, feed conversion
ratio; SEM, standard error of the mean; a,b Means within a row with different superscripts are significantly
different (p < 0.05).

3.3. Quantitative Real Time PCR

The total number of bacteria in faecal samples ranged from 4.30 ˆ 1010 to 5.69 ˆ 1011, with
an average of 2.52 ˆ 107, 1.57 ˆ 109, 2.69 ˆ 108 and 6.38 ˆ 107 for Lactobacillus spp.,
Enterobacteriaceae, total E. coli and F4 E. coli detected per gram of faeces, respectively. The percentage
of total E. coli in faeces was not affected (p > 0.05) by treatment or day of sampling, and there was
no significant interaction between day and treatment. The percentage of E. coli with F4 fimbriae was
affected a day by treatment interaction (overall, p = 0.037), with more F4 E. coli found in pigs fed ZnO
on d 11 (p = 0.011) compared to base diet-fed pigs. Similarly there was a day and treatment interaction
(overall, p = 0.020) for Enterobacteriaceae, with pigs fed ZnO having more bacteria than pigs fed the
base diet on d 11 only. There was no difference between pigs fed OACP and the base diet. There was
a weak trend for an interaction between day and treatment for Lactobacillus spp. (p = 0.078) (Table 5).
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Table 5. Selected bacterial counts (in percentage of total bacterial count) on day 4 and day
11 in pigs experimentally infected with ETEC and fed different diets after weaning.

Item
Treatment *

SEM
p-Value

Base Diet ZnO OACP D T D ˆ T

Total E. coli :

d 4
2.3

(0.74–7.03)
1.1

(0.38–3.12)
3.9

(1.16–13.18)
0.715 0.405 0.386

d 11
1.4

(0.34–5.55)
2.8

(0.75–10.16)
4.2

(0.92–18.75)

F4 E. coli :,;

d 4
0.017

(0.0022–0.13)
0.0073

(0.0011–0.049)
0.025

(0.0032–0.20)
<0.001 0.374 0.037

d 11
0.034

(0.0052–0.22)
1.05

(0.18–6.03)
0.30

(0.047–1.95)

Enterobacteriaceae :

d 4
34.2

(11.9–97.9)
21.0

(8.4–52.2)
22.2

(6.1–80.5)
0.169 0.595 0.020

d 11
6.4

(1.2–37.8)
46.1

(9.9–214.2)
14.6

(1.7–128.2)

Lactobacillus spp.

d 4 0.8 1.3 2.0
0.00 0.340 0.567 0.078

d 11 1.4 0.9 0.9

* Base diet; ZnO: base + 3 g ZnO/kg; OACP: base + 1.5 g/kg of a mixture of an organic acid blend,
cinnamaldehyde and a permeabilizing complex (Biotronic Top 3r, Biomin Australia Pty, Ltd., Carlingford,
Australia); : Data that are not normally distributed were logarithmically transformed, then analysed by GML.
Values were back-transformed and expressed as least square means with 95% confidence intervals (in brackets);
; Specific E. coli used for oral infection in the experiment; SEM, standard error of the mean; D, day;
T, treatment.

There were some trends for interactions between treatment and day influencing several bacterial ratios
including F4 E. coli:E. coli (p = 0.068), F4 E. coli:Enterobacteriaceae (p = 0.062), and Lactobacillus
spp.:Enterobacteriaceae (p = 0.095). There were no day or treatment differences (p > 0.05) in the
proportion of Lactobacillus spp.:E. coli, however the ratio of F4 E. coli:Lactobacillus spp. was
influenced by a day by treatment interaction (p = 0.010). On d 11 only, ZnO-fed pigs and OACP-fed
pigs had higher ratios compared to base diet-fed pigs (Table 6).
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Table 6. Ratios of selected bacterial counts (expressed as a percentage) on day 4 and day 11
in pigs experimentally infected with ETEC and fed different diets after weaning.

Item
Treatment *

SEM
p-Value

Base ZnO OACP D T D ˆ T

F4 E. coli ;:E. coli

d 4 40.2 3.5 7.6
8.20 0.321 0.963 0.068

d 11 6.0 51.7 38.0

E. coli:Enterobacteriaceae

d 4 15.0 237.1 10.0
0.29 0.592 0.048 0.705

d 11 13.3 111.4 16.7

F4 E. coli:Enterobacteriaceae

d 4 0.2 0.5 1.3
0.70 <0.001 0.083 0.062

d 11 1.1 8.2 6.8
Lactobacillus
spp.:Enterobacteriaceae

d 4 5.3 21.6 35.0
10.90 0.394 0.705 0.095

d 11 64.7 6.4 27.6

Lactobacillus spp.:E. coli :

d 4
268 97.7 32.4

0.380 0.513 0.145
(8.6–82.8) (33.9–280.5) (9.6–109.6)

d 11
75.2 19.9 12.8

(13.0–435.5) (3.9–102.8) (1.9–85.3)

F4 E. coli:Lactobacillus spp. :

d 4
2.7 0.7 1.6

<0.001 0.450 0.010
(0.4–20.3) (0.1–4.5) (0.2–12.1)

d 11
3.3 191.7 47.3

(0.4–27.1) (26.5–1386.8) (5.7–392.6)

* Base diet; ZnO: base + 3 g ZnO/kg; OACP: base + 1.5 g/kg of a mixture of an organic acid blend,
cinnamaldehyde and a permeabilizing complex (Biotronic Top 3r, Biomin Australia Pty, Ltd., Carlingford,
Australia); : Data not normally distributed were logarithmically transformed then analysed by GML. Values
were back-transformed and expressed as least square means with 95% confidence intervals (in brackets);
; Specific E. coli used for oral infection in the experiment; SEM, standard error of the mean; D, day;
T, treatment.

3.4. Blood Measurements

The levels of PUN decreased from d 4 to d 11 (p = 0.001), however there was no difference between
treatments (p = 0.220). The TAC levels decreased from d 4 to 11 (p < 0.001), with no difference between
treatments (p = 0.134). There was no difference over time or between treatments in levels of haptoglobin
(p > 0.05). Albumin decreased from d 4 to d 11 (p = 0.016), however there was no difference between
treatments (p = 0.752). The levels of C-RP increased from d 4 to d 11 (p = 0.003), with no difference
between treatments (p = 0.267; Table 7).
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Table 7. Plasma levels of plasma acute phase proteins, plasma urea nitrogen, and total
antioxidant capacity on day 4 and day 11 in pigs experimentally infected with ETEC and fed
different diets after weaning.

Item
Treatment *

SEM
p-Value

Base ZnO OACP D T D ˆ T

Haptoglobin (mg/mL)

d 4 1.2 1.0 1.3
0.09 0.325 0.210 0.285

d 11 1.4 0.8 0.9

Albumin (mmol/L)

d 4 24.8 24.6 24.9
0.36 0.016 0.752 0.689

d 11 23.1 23.4 24.2

C-RP (µg/mL)

d 4 9.8 9.0 10.4
1.51 0.003 0.267 0.161

d 11 20.5 10.0 18.5

PUN (mmol/L)

d 4 3.3 3.1 2.7
0.11 <0.001 0.220 0.435

d 11 2.8 2.4 2.4

TAC (µM)

d 4 250.1 265.7 246.5
3.12 <0.001 0.134 0.659

d 11 213.9 224.8 218.3

* Base diet; ZnO: base + 3 g ZnO/kg; OACP: base + 1.5 g/kg of a mixture of an organic acid blend,
cinnamaldehyde and a permeabilizing complex (Biotronic Top 3r, Biomin Australia Pty, Ltd., Carlingford,
Australia); C-RP, C-reactive protein; PUN, plasma urea nitrogen; TAC, total antioxidant capacity; SEM,
standard error of the mean; D, day; T, treatment.

There was no difference between days or between treatments for levels of haemoglobin, proportions
of lymphocytes and neutrophils, or the lymphocyte to neutrophil ratio (p > 0.05).

3.5. VFA Composition

There were no significant interactions between day and treatment for total VFA concentration or for
molar ratios of VFA. Pigs fed the OACP diet had the highest levels of total VFA compared to pigs fed
ZnO or the base diets (p = 0.013), however there was no difference between days (p = 0.475) (Table 8).

Only pigs fed the ZnO diet showed a change in the molar ratios of the VFA measured, with pigs
fed ZnO having a lower (p = 0.003) molar ratio of valeric acid compared to pigs fed the base diet or the
OACP diet. The molar ratio of acetic acid increased (p = 0.028) from d 4 to d 11 whereas the molar ratios
of isovaleric and caproic acids both decreased from d 4 to d 11 (p = 0.024 and p = 0.017 respectively).
There was a trend for a decrease in both isobutyric acid and valeric acid from d 4 to d 11 (p = 0.061 and
p = 0.064, respectively) (Table 8).
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Table 8. Volatile fatty acid composition on d 4 and d 11 in pigs experimentally infected with
ETEC and fed different diets after weaning.

Item
Day after
Weaning

Treatment *
SEM

p-Value

4 11 Base ZnO OACP D T D ˆ T

Total VFA (mmol/L) 50.4 55.1 49.7 a 49.1 a 61.1 b 1.57 0.475 0.013 0.832

Molar ratios

Acetic acid (%) 51.9 a 54.5 b 54.9 54.1 50.7 0.84 0.028 0.139 0.279

Propionic acid (%) 22.3 21.8 23.2 21.4 22.0 0.82 0.586 0.673 0.756

Butyric acid (%) 14.7 15.9 13.4 15.9 15.6 0.73 0.660 0.416 0.117

Isobutyric acid (%) 2.5 1.9 2.4 2.0 2.3 0.18 0.061 0.650 0.946

Valeric acid (%) 4.4 3.6 4.9 a 2.9 b 4.9 a 0.24 0.064 0.003 0.578

Isovaleric acid (%) 3.9 a 2.6 b 3.6 3.0 3.5 0.33 0.024 0.683 0.929

Caproic acid (%) 1.2 a 0.6 b 1.0 0.7 1.1 0.10 0.017 0.344 0.943

* Base diet; ZnO: base + 3 g ZnO/kg; OACP: base + 1.5 g/kg of a mixture of an organic acid blend,
cinnamaldehyde and a permeabilizing complex (Biotronic Top 3r, Biomin Australia Pty, Ltd., Carlingford,
Australia); VFA, volatile fatty acids; SEM, standard error of the mean; D, day; T, treatment; a,b Means within
a main effect within a row with different superscripts are significantly different (p < 0.05).

4. Discussion

Data from this experiment showed that the incidence of PWD decreased only for the pigs
supplemented with ZnO, as both the number of pigs with PWD and the DI were decreased. Despite
there being a decrease in the incidence of PWD for the ZnO-treated group, the shedding of ETEC was
similar for all groups. These data support other studies [39,40] suggesting that supplementation of ZnO
suppresses PWD and increases growth performance, but that these effects are not necessarily related
to a reduction in ETEC or faecal score but possibly to improved intestinal barrier and (or) epithelial
immune functions. Roselli, et al. [41], for example, concluded that ZnO protects cells from ETEC by
the inhibition of bacterial adhesion and internalization, preventing disruption of barrier integrity. This
inhibition reduces levels of endotoxin production and decreases the severity of PWD. This may explain
the decrease in DI but not in ETEC shedding for pigs fed ZnO in the present study. Furthermore, pigs
may not express the receptors necessary for the E. coli to attach [42,43] and hence not display PWD
whilst shedding ETEC. Other pigs may have receptors that are only weakly adhesive, and the presence
of receptors also varies between individuals [43]. These factors will have a strong influence on the
occurrence of PWD but not necessarily the faecal shedding of ETEC [43]. Unfortunately it was not
possible to conduct genotype screening for F4 receptors in this experiment.

In the present study and in agreement with numerous other studies [44–47], ZnO addition to the
diet increased growth rate and feed intake after weaning and reduced PWD. A plethora of reasons have
been provided for the mechanism(s) whereby ZnO exerts positive effects in the post-weaning period
(e.g., [4,48]). However, in the current study we were unable to determine the precise cause(s) for the
improved production and reduction in PWD from the data collected. In addition, supplementation with
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OACP gave a statistically similar production performance as the ZnO-supplemented diet, however and
aside from the second week after weaning, performance for the OACP-fed pigs was equivalent to the
base-fed pigs. The OACP product contains a mixture of organic acids, cinnamaldehyde and a proprietary
permeabilizing complex. An abundance of research has been conducted on organic acids and their
effects on performance in weanling pigs, as summarized by Partanen and Mroz [13] and Mroz [49],
among others. Meta-analyses of the data show that organic acids generally improve growth performance.
However large variation exists due to factors such as form and type of the organic acid, inclusion level,
production of intraluminal SCFA, differences in the amount of fermentable carbohydrate substrates in the
diet for bacterial growth, colonization and activity leading to SCFA production, weaning age, presence
or absence of bacterial receptors, and hygiene and welfare [49].

Essential oils (EO) such as cinnamaldehyde tend to have ambivalent effects on production and
PWD in young pigs [22,50]. The EO are believed to exert positive effects through mechanisms
including antibacterial actions, alteration of intestinal microbiota, increased digestibility and absorbance
of nutrients, and antioxidative and immunomodulatory activities [51,52]. In relation to changes in
microbiota, Muhl and Liebert [53] reported that the EO (carvacrol and thymol) did not elicit any
change to specific groups of the intestinal microbiota. Jiang, et al. [54], however, found a decrease
in counts of Lactobacillus spp. when supplementing with EO (thymol and cinnamaldehyde), whilst
Castillo, et al. [55] found an increase in bacterial counts of Lactobacillus spp. when diets were
supplemented with carvacrol and cinnamaldehyde. Li, et al. [56] found an increase in Lactobacillus
spp. counts and a decrease in the E. coli count, and suggested this was due to lactobacilli being less
sensitive to any antimicrobial effects of EO compared to potentially pathogenic bacteria such as E. coli.

In the current study and for the group of pigs supplemented with OACP, a decrease in E. coli
counts and an increase in Lactobacillus spp. counts before and after ETEC infection was anticipated,
as inclusion of organic acids is thought to decrease pH and increase proteolytic enzyme activity in
the gastrointestinal tract (GIT), producing a more favourable environment for Lactobacillus spp. and
suppressing E. coli populations [57]. This was not generally supported by our data. No significant
decreases were found in the proportions of F4 E. coli with fimbriae (relative to total bacteria)
and Enterobacteriaceae (relative to total bacteria), nor was an increase seen in the proportion of
Lactobacillus spp. (relative to total bacteria), following infection with ETEC in pigs fed OACP. In
contrast, pigs supplemented with ZnO showed increases in the proportions of F4 E. coli (relative to total
bacteria) and Enterobacteriaceae (relative to total bacteria) following infection, demonstrating further
that ZnO had no direct efficacy against F4 E. coli. Nevertheless Højberg, et al. [46] found a decrease
in Lactobacillus spp. when piglets were supplemented with 2.5 g ZnO/kg, and suggested that the
influence of ZnO on the GIT microbiota worked in similar ways as some AGP, reducing Gram-positive
commensals rather than potentially pathogenic Gram-negative bacteria.

Measuring ratios of commensal to pathogenic bacteria to evaluate GIT health overcomes the potential
need to account for differences in faecal dry weight [58]. Castillo, et al. [59] successfully used qPCR to
quantify total bacteria, Enterobacteriaceae and Lactobacillus spp. numbers in the digestive fluid of pigs,
finding that qPCR was more sensitive than traditional microbiological methods, but ratios of lactobacilli
to enterobacteria were comparable between methods. In the current study, the trend for an increase in
ratios of F4 E. coli:total E. coli, F4 E. coli:Enterobacteriaceae, and F4 E. coli:Lactobacillus spp. for the
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ZnO-fed pigs on d 11 only suggests that feeding ZnO exacerbated the presence of the F4 fimbriae subtype
in the faeces relative to other bacterial populations. Only the ratio of total E. coli:Enterobacteriaceae
was affected by the dietary treatment, this again being higher in ZnO-fed pigs. Numbers and ratios of
Enterobacteriaceae including E. coli with F4 fimbriae were generally higher after infection in pigs fed
ZnO compared to pigs fed the other diets, and were generally not reduced with OACP. These data are in
general agreement with the recent work from Starke, et al. [60].

Given the sound growth rates achieved in this study, the decrease in PUN levels from d 4 to d 11 could
be attributable to a decrease in microbial fermentation of nitrogenous compounds in the large intestine
commensurate with enhanced protein digestion and amino acid absorption. Catabolism of amino acids
by microbes produces NH3, which is converted to urea in the liver. The urea synthesized in the liver
is either excreted as urine or diffused back into the caecum and combined into microbial nitrogen [61].
A decrease in urea could also be linked to more efficient utilization of dietary protein or decrease in
protein breakdown [62]. As pigs overcome the post-weaning growth check, their protein requirements
increase from 13.1 g/d (5–7 kg LW) to 23.1 g/d (7–11 kg LW) [27]. In the present study only one diet
was fed for the entire 3-week trial period, thus as pigs became heavier there would be an increase in
utilization (i.e., less excess N) as the requirements increased.

The APP are proteins that are a part of the acute phase response, the early defence or innate immune
system triggered by different stimuli such as trauma, infection, stress and inflammation [63]. The APP
are divided into two categories, positive and negative, which increase or decrease during the acute
phase response, respectively [64]. Haptoglobin, a positive APP, increases in concentration according
to deteriorated health status, infection, inflammation or trauma [32]. No increase in haptoglobin levels
was found in the present study. C-RP is another positive APP and would be expected to increase
in levels over time after the challenge, which was observed in this study. It has been established
that APP have different induction sensitivities, and hence some react to a lesser extent than others
to the same infection/inflammation [65]. When measuring APP levels in pigs infected with ETEC,
Houdijk, et al. [66] found that C-RP concentrations increased more than 10-fold, whilst haptoglobin
concentrations only increased three-fold. Furthermore, the decrease in TAC concentration from d 4 to 11
suggests that the ETEC infection decreased the antioxidative capacity, however and as with the APP, no
difference between treatments was observed in the present trial, indicating that they all elicited a similar
inflammatory response to the E. coli infection.

Concurrently, the lack of any differences found in white blood cell counts, over time, in the present
study confirm that the overall level of infection was most probably insufficient to cause a major health
issue for the pigs. The lymphocyte to neutrophil ratio has been used previously as an indicator of the
pigs’ responses to stress [67], and the lack of any difference in the current study supports this notion.

The increase in total VFA concentration in the OACP group compared to the base diet and ZnO
groups was expected, as the OACP diet was supplemented with organic acids. The addition of organic
acids aids in the acidification of the stomach, thus increasing proteolytic enzyme activity, which then
may increase the digestibility of protein and amino acids [68]. It has also been found that an increase
in VFA stimulates GIT epithelial cell proliferation and villous height, hence increasing surface area for
absorption [69], and some studies have shown that increased production of VFA can reduce pathogenic
bacterial numbers such as salmonella [70,71]. However, the lack of any improvement in growth rate and
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feed conversion ratio, or any significant decrease in Enterobacteriaceae numbers in the present study,
indicates that the increase in total VFA levels in pigs fed OACP was unrelated to these measurements.

5. Conclusions

This experiment demonstrated that feeding a diet supplemented with a blend of organic acids
(propionic, formic and acetic), cinnamaldehyde and a permeabilizing complex, in comparison to a diet
with ZnO or a base diet, did not decrease the incidence of PWD and did not increase growth performance
of pigs experimentally infected with ETEC. Numbers and ratios of Enterobacteriaceae, including E. coli
with F4 fimbriae, were generally higher after infection in pigs fed ZnO compared to pigs fed the other
diets, and were not reduced with OACP. Nevertheless, pigs in the present study performed very well
and the overall level of infection challenge was most likely low, hence testing the additives under more
challenging commercial conditions may be warranted.
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