Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2011, Article ID 640208, 12 pages
doi:10.1155/2011/640208

Research Article

Heterogeneous Computing for Vertebra Detection and

Segmentation in X-Ray Images

Fabian Lecron, Sidi Ahmed Mahmoudi, Mohammed Benjelloun,

Said Mahmoudi, and Pierre Manneback

Computer Science Department, Faculty of Engineering, University of Mons, Place du Parc, 20 7000 Mons, Belgium

Correspondence should be addressed to Fabian Lecron, fabian.lecron@umons.ac.be and

Sidi Ahmed Mahmoudji, sidi.mahmoudi@umons.ac.be
Received 8 March 2011; Accepted 3 June 2011

Academic Editor: Yasser M. Kadah

Copyright © 2011 Fabian Lecron et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The context of this work is related to the vertebra segmentation. The method we propose is based on the active shape model (ASM).
An original approach taking advantage of the edge polygonal approximation was developed to locate the vertebra positions in a X-
ray image. Despite the fact that segmentation results show good efficiency, the time is a key variable that has always to be optimized
in a medical context. Therefore, we present how vertebra extraction can efficiently be performed in exploiting the full computing
power of parallel (GPU) and heterogeneous (multi-CPU/multi-GPU) architectures. We propose a parallel hybrid implementation
of the most intensive steps enabling to boost performance. Experimentations have been conducted using a set of high-resolution
X-ray medical images, showing a global speedup ranging from 3 to 22, by comparison with the CPU implementation. Data transfer
times between CPU and GPU memories were included in the execution times of our proposed implementation.

1. Introduction

The general context of the present work is the cervical
vertebra mobility analysis on X-ray images. The objective is
to be able to automatically measure the vertebral angular
movements. The issue is to determine the angles between
adjacent vertebre on radiographs characterized by 3 patient’s
positions: flexion, neutral, and extension.

In [1], Puglisi et al. describe a protocol for the analysis
of cervical vertebra mobility applied to hospital diagnosis
or to scientific research. They show that for the mobility
analysis, the vertebra contour needs to be defined by a human
operator. This operation can be performed on the original or
the digitized radiograph. One contribution of this paper is to
develop automated methods to provide such data.

One way to extract quantitative data is to segment the
vertebrae by digital image processing. Nowadays, regular
radiography of the spine is the cheapest and the fastest way
for a physician to detect vertebral abnormalities. Further-
more, as far as the patient is concerned, this procedure is sure
and noninvasive. Despite these advantages, the segmentation

of X-ray images is very challenging due to their nature. They
are characterized by very poor contrast, blended contours,
and the human body complexity is responsible for the fact
that some parts of the image could be partially or completely
hidden by other organs. In a medical context, a key variable
has to be taken into account: the time. It is crucial to
develop efficient applications with a reduced execution time,
especially in the case of urgent diagnosis. To do so, one can
imagine to use a parallel-based architecture such as cluster,
grid computing, graphics processing units (GPUs).

The GPUs represent an efficient solution to solve this
problem. However, such a solution does not exploit the CPU
multiple computing units (cores) present in the majority of
computers. Moreover, the solution based on GPU is seriously
hampered by the high costs of data transfer between CPU
and GPU memories. To limit these constraints, we propose
a parallel hybrid implementation which allows exploiting
effectively the full computing power of heterogeneous archi-
tectures. Notice that heterogeneous architectures dispose of
both multiple CPU and multiple GPU cores. The proposed
implementation is applied on the most intensive step of


mailto:fabian.lecron@umons.ac.be
mailto:sidi.mahmoudi@umons.ac.be

vertebra segmentation method. Indeed, we develop a parallel
hybrid implementation of the recursive contour extraction
technique using Canny’s criteria [2]. Our choice to parallelize
this method is due to its noise robustness and its reduced
number of operations. These factors allow applying the
application on large sets of medical images and enable to
have more precise results for vertebra extraction. Our work
is especially dedicated to the use of large images databases.
Therefore, our framework could be used in a medical context
given the growing number of patients. Another application
could be associated to the search and the navigation in large
images and videos databases, such as in [3].

The remainder of the paper is organized as follows:
related works are described in Section 2. Section 3 presents
the CPU implementation of the proposed method based
on active shape model. Section 4 discusses the use of GPU
for image processing algorithms, while Section 5 is devoted
to the parallel hybrid implementation of our approach,
exploiting effectively the full computing power of heteroge-
neous architectures. Section 6 presents the obtained results
of vertebra extraction using a data set of medical images and
compares the performance between CPU, GPU and hybrid
implementations. Finally, Section 7 concludes and proposes
further work.

2. Related Work

One can find two kinds of related work for which vertebra
segmentation and optimal edge detection in medical images
are the fundamental processing steps: the first one is related
to sequential solutions for vertebra extraction using CPUs,
and the second is related to the use of GPU to accelerate
image processing algorithms, which can be exploited for
medical applications.

2.1. Vertebra Segmentation on CPU. If we study the seg-
mentation approaches described in the literature, we can
observe that their effectiveness depends on the related
medical imagery modality. One can distinguish 3 types
of modality: the conventional radiography (X-ray), the
computed tomography (CT) and the magnetic resonance
(MR).

With regard to the MR images, a watershed algorithm has
been used in [4] to segment and reconstruct intervertebral
disks. The idea is to provide preoperative data with an image-
guided surgery system. The method uses a combination of
statistical and spectral texture features to discriminate closed
regions representing intervertebral disks. Recently, Huang
et al. have used a learning-based approach applied to the
vertebra detection and segmentation on MR images [5].
To this end, features such as Harr wavelet are extracted on
images to train an AdaBoost learning algorithm. Finally, a
normalized graph cut algorithm is used to segment the exact
contour of the vertebre. A similar approach has also been
proposed for the vertebra segmentation in the context of
CT images. In [6], lumbar vertebre are segmented by the
minimization of the graph cut associated to a CT image.

International Journal of Biomedical Imaging

Still in this context, the active contour algorithm which
deforms and moves a contour submitted to internal and
external energies is applied in [7]. In this work, Klinder
et al. provides a framework dedicated to the detection,
identification, and segmentation of CT images for the
computer-assisted surgery. Concerning the segmentation
part, they use a constrained deformable model defined in
[8]. In the same idea, the level set method, which makes an
interface evolve in the image, has also been dedicated to the
vertebra segmentation in [9, 10]. The main drawback of these
methods remains the strong influence of an initialization
close to the target.

To deal with X-ray images, methods only based on the
image information are not adapted. The efficient methods
for MR or CT images are not suitable for radiographs because
of the blended contours. An exact segmentation needs
additional details about the object of interest. For this reason,
a template matching algorithm combined with a polar
signature system has been proposed in [11]. Other model-
based methods such as active shape model [12] and active
appearance model [13] showed their effectiveness. Basically,
an active shape model is a statistical model generated from
a set of training samples. A mean shape model is computed
and placed near the vertebre of interest on the radiograph.
ASM search applies deformations on this mean shape so
that it corresponds to the real vertebra contour. An active
appearance model is based on the same principle but intro-
duces a model of the underlying distribution of intensity
around the landmarks. In this paper, since we do not need the
information about the texture, we decided to use active shape
model to characterize and segment the vertebre. ASM and
AAM have been, respectively, used in [14-16] and [17-20]
for the vertebra segmentation. However, the models used are
global ones, that is, defined by several vertebra. The interest
of that model is to provide information about the curvature
and the dependence between two vertebree. Nevertheless,
in the context of the vertebral mobility analysis, the global
models cannot explain all the curvature variability since 3
particular patient’s positions are studied. The only way to
achieve the segmentation is to use a local vertebra model.
However, in order to ensure an exact contour extraction,
we need to precisely initialize the segmentation step by
placing mean shape very close to the vertebra of interest.
In the literature, the generalized Hough transform (GHT) is
often used for that matter. In [21], the authors try to take
advantage of the GHT on radiographs in a fully automatic
way, but they present a segmentation rate equal to 47% for
lumbar vertebra without providing information about the
detection rate. Very recently, Dong and Zheng have proposed
a method combining GHT and the minimal intervention of
a user with only 2 clicks in the image [22].

2.2. GPU for Image Processing. Many image processing and
rendering algorithms are known by their high consumption
of both computing power and memory. Beyond of image
rendering, most of image processing algorithms contain
phases which consist of similar calculations between image
pixels. These facts make these algorithms prime candidates



International Journal of Biomedical Imaging

for acceleration on GPU by exploiting processing units in
parallel. In this category, Yang et al. implemented several
classic image processing algorithms on GPU with CUDA
[23]. OpenVIDIA project [24] has implemented different
computer vision algorithms running on graphics hard-
ware such as single or multiple graphics processing units,
using OpenGL [25], Cg [26], and CUDA [27]. Luo and
Duraiswami proposed a GPU implementation [28] of the
Canny edge detector [29]. There are also some GPU works
in medical imaging for new volumetric rendering algorithms
[30, 31] and magnetic resonance (MR) image reconstruction
on GPU [32]. Otherwise, there are different works for the
exploitation of heterogeneous architectures of multicores
and GPUs. Ayguadé et al. proposed a flexible programming
model for multicores [33]. StarPU [34] provides a unified
runtime system for heterogeneous multicore architectures
(CPUs and GPUs), enabling to develop effective scheduling
strategies.

Actually, our contribution is to propose firstly an original
automated approach to detect the vertebra location in a
radiograph which will be used for the initialization of
the segmentation phase. Next, we develop a model-based
segmentation procedure especially adapted to the vertebral
mobility study. We also contribute with improving perfor-
mance of vertebra segmentation in X-ray medical images,
by implementing the most intensive step of the proposed
approach on heterogeneous architectures composed of both
CPUs and GPUs. Indeed, we propose a parallel hybrid
implementation of edge detection step using Deriche-Canny
method [2] that enables a better noise removing and requires
a less number of operations than Canny method. This hybrid
implementation allows an efficient exploitation of the full
computing power of heterogeneous architectures (multi-
CPU/multi-GPU) and enables to more improve performance
than the GPU implementation described in [35].

3. General Framework

In this paper, we propose an original approach for the ver-
tebra segmentation in the context of the vertebral mobility
analysis. Our method is actually based on the active shape
model. Global statistical models generally used in the liter-
ature are not able to explain the spine curvature variability
induced by the 3 positions: extension, neutral, and flexion.
Therefore, we decided to use a local vertebra model implying
an exact initialization of the ASM-based segmentation, that
is, placing the mean shape close to the vertebre of interest.
For that matter, we need to locate the position of all the
vertebral bodies. To this end, vertebra features are detected
according to an original procedure. Actually, the anterior
corners of each vertebra are located in the radiograph by
an approach based on the edge polygonal approximation.
Once we have extracted the vertebra position, we can start
the segmentation procedure.

3.1. Learning. The learning phase starts with the creation of
a sample of images. In our case, we use X-ray radiographs
focused on the cervical vertebrae C3 to C7 (see Figure 2).

Actually, each item of the sample has to be described by
an information, that is, the coordinates of some landmarks
located on the item contour. These points need to correspond
on the different shapes in the sample. The resulting marked
vertebree are not directly exploitable. Every shape in the
sample has particular position and orientation. Building a
relevant statistical model requires to align the shapes. To this
end, we use an alignment approach based on the Procrustes
analysis and detailed in [36].

3.2. Modelization. As soon as all the vertebra shapes are
aligned, they can be used to build the active shape model. To
do so, the mean shape is first computed and then a group of
other allowable shapes is derived by moving the landmarks
in specific directions, obtained by a principal component
analysis (PCA) of the data. We refer the reader to [12] for
more detail about the modelization.

3.3. Initialization. In order to initialize the segmentation
procedure, the mean shape has to be placed close to a
vertebra of interest. In [37], we proposed an original method
to locate points of interest in a radiograph. Here, we use
part of this work but we also detect the vertebre by their
anterior corners. First, a user is asked to mark out 2 points
in the image to determine a region of interest (ROI) by
the higher anterior corner of the C3 vertebra and the lower
anterior corner of the C7 vertebra. Then, all the vertebral
bodies are detected with a process composed of 4 steps: a
contrast-limited adaptive histogram equalization to improve
the image contrast, an edge detector, an anterior corner
detection, and finally the vertebra localization.

3.3.1. Contrast-Limited Adaptive Histogram Equalization.
The X-ray images we deal with have very poor contrast.
Before any further process, we need to improve the image
quality. A simple histogram equalization has no impact on
the radiographs. Therefore, we propose to use a specific
method: the contrast-limited adaptive histogram equaliza-
tion [38].

The principle is to divide the image in contextual regions.
In each of them, the histogram is equalized. Nevertheless,
this transformation induces visual boundaries around the
contextual regions. To get rid of this effect, a bilinear
interpolation scheme is used. Let A, B, C, and D be the
centers of contextual regions (see Figure 1). For a pixel p;
with an intensity r, we can write

s= (1= y)[(1 = x)Tua(r) +xTp(r)]
+y[(1 = x)Tc(r) + xTp(r)]

(1)

where Ty stands for the equalization transformation of the
region k, and s for the new value of the pixel p;.

Only applying this scheme is still dependent to the
increase of the noise in the radiograph. One way to decrease it
is to reduce the contrast improvement in the homogeneous
areas. A contrast factor is then defined to limit the highest
peaks in the equalized histogram. The pixels above this factor
limit are uniformly redistributed in the histogram.



F1GURE 1: Image sample divided in 4 contextual regions.

3.3.2. Edge Detection. The Canny edge detector, introduced
in [29] allows to detect edges in an image by taking advantage
of the information given by the intensity gradient. Let I be
this image. The first step is to reduce the noise by removing
isolated pixels. To this aim, the image is convolved with the
Gaussian filter defined by (2).

_ —(x*+y2)/20?
Gxy) =5 ¢ : (2)
Next, the Sobel operator is applied on the resulting
image. Let A be this image. The operator is based on a couple
of masks defined by the relation (3). With this information,

the gradient of a pixel can be computed by

101 -1 -2 -1
Ge=|-202|%A G,=|0 0 0[x4 3
101 1 2 1

Additional information about the gradient orientation is
simply given by:

X

0= arctan(?). (5)

Once the gradient has been computed for every pixel,
only maxima have to be retained. High gradient intensity
stands for high probability of edge presence. Finally, the
last phase makes a hysteresis binarization. High and low
thresholds are defined in such a way that, for each pixel, if
the gradient intensity is

(i) lower than the low threshold, the point is rejected,

(ii) greater than the high threshold, the point is part of
the edge,

(iii) between the low and the high thresholds, the point is
accepted only if it is connected to an already accepted
point.

International Journal of Biomedical Imaging

3.3.3. Corner Detection. In this work, we propose to locate
the vertebrae by firstly detecting some features: the anterior
vertebra corners. To this end, we present a method based
on the geometrical definition of a corner; that is, a point is
considered as a corner if it is located at the intersection of
two segment lines. The idea is to perform an edge polygonal
approximation. Usually, works about the polygonal approxi-
mation detect the dominant points in the image and build a
polygonal approximation. Here, we do the opposite by using
the polygonal approximation to detect features in the image.

The Canny algorithm provides the edges on the image
but only acts on the pixel values. In order to carry out
the polygonal approximation algorithm, we need to define
the contours as sets of points. Therefore, a simple contour
tracking approach has been developed.

The algorithm used in this paper is the one proposed
by Douglas and Peucker in [39]. This approach is based
on the principle that a polyline represented by n points
can be reduced in a representation with 2 points if the
distance between the segment line joining the extremities of
the polyline and the farthest point from this line is lower
than a given threshold. The first stage concerns the selection
of the extremities E; and E, of the polyline. Let A be the
farthest point from the segment line ||E;E;|| and d the
distance between the point A and ||E;E;||. Three scenarios
are considered:

(i) if d < €, all the points situated between E; and E, are
removed,

(ii) if d > €, the algorithm is recursively applied on 2 new
polylines: [[E1A|l and |AE, ||,

(iii) if there is no point between E; and E,, the polyline is
no longer reducible.

3.3.4. Vertebra Localization. Now that we have detailed how
to detect corners in a general way, let us explain how to only
detect the vertebra ones. Among all the corners detected by
our approach based on the edge polygonal approximation,
the ones describing a vertebra need to be distinguished.

The first stage of our procedure is to build a statistical
model of the spine curvature in order to extract the mean
shape. The landmarks of the model are the anterior vertebra
corners. An illustration is given at the Figure 2. Notice that
here, the goal is not to explain precisely the curvature but
just to have a way to locate vertebra anterior corners. The
next step brings a user to mark out the higher anterior corner
of the C3 vertebra and the lower anterior corner of the C7
vertebra to define a ROI. Then, we perform an alignment
between these two particular points and the mean shape of
the spine curvature model. Finally, for each landmark, we
search the closest corner detected by the approach based on
the edge polygonal approximation. Note that a specific order
has to be followed: from the top to the bottom of the image
(the opposite could be considered). This order is crucial to
avoid the algorithm swapping lower and higher corners of
two successive vertebrae.



International Journal of Biomedical Imaging

“
-
2

FiGgure 2: Landmarks for the spine curvature modelization.

3.4. Segmentation. The statistical model allowing to identify
acceptable shapes of the object of interest is now defined.
However, we still have to present how the search in the
image is conducted during the segmentation. To this end, the
grey level variation has to be locally evaluated around each
landmark in the sample. Then, a mean profile of the texture
(gradient intensity) can be deduced. After the initialization,
a local analysis of the texture is carried out around each
landmark of the initial shape. The goal is to find the best
match with the mean profile previously determined. The
distance used for the profile comparison is the Mahalanobis
distance. This search implies that the landmarks are moved
during the segmentation. The procedure is repeated until the
convergence, that is, when the match between the current
shape profile and the mean one is no more improved.

4. Image Processing on GPU

Image processing algorithms represent an excellent topic for
acceleration on GPU, since the majority of these algorithms
have sections which consist of a common computation
over many pixels. This fact is due to the exploitation of
the high number of GPU’s computing units in parallel.
As a result, we can say that graphics cards represent an
efficient tool for boosting performance of image processing
techniques. This section describes firstly the key factors of
GPUs and the programming languages used to exploit their
high power and secondly the proposed development scheme
for image processing on GPU, based upon CUDA for parallel
constructs and OpenGL for visualization.

4.1. GPU Programming. Graphics processing units (GPUs)
have dramatically evolved during last years as shown in
Figure 3. This evolution makes them a very high attractive

5
GTX480
2000 /
1500
2
£ 1000
© GTX280
8800 GTX
500
P4 HT3.4 6800Ultra Core quad Core i7 980x
0 A -

2003 2004 2005 2006 2007 2008 2009 2010 2011

—— GPU
—u- CPU

Figure 3: Computational Power: GPU versus CPU. Derived from
[40].

hardware platform for general purpose computation. For a
better exploitation of this high power, the GPUs memory
bandwidth has also significantly increased. Furthermore,
the advent of GPGPU (general purpose graphics processing
unit) languages enabled exploiting GPU for more types of
application and not only for image rendering and video
games. In this context, NVIDIA launched the API CUDA
(compute unified device architecture) [27], a programming
approach which exploits the unified design of the most
current graphics processing units from NVIDIA. Under
CUDA, GPUs consist of many processor cores which can
address directly to GPU memories. This fact allows a more
flexible programming model. As a result, CUDA has rapidly
gained acceptance in domains where GPUs are used to
execute different intensive parallel applications.

4.2. Image Processing Model Based on CUDA and OpenGL.
We propose in this paragraph a model for image processing
on graphics processors, enabling to load, treat, and display
images on GPU. This model is represented by a scheme
development based upon CUDA for parallel constructs
and OpenGL for visualization, which reduces data transfer
between device and host memories. This scheme is based on
four steps (Figure 4):

(i) copy input data,
(ii) threads allocation,
(iii) parallel processing with CUDA,

(iv) output results.

(1) Copy Input Data: The transfer of input data (images)
from host (CPU) to device (GPU) memory enables
to apply GPU treatments on the copied image.

(2) Threads Allocation: After loading the input data
(images) on GPU memory, the threads number in the
grid of GPU has to be selected so that each thread can
perform its processing on one or a group of pixels.
This allows threads to process in parallel on image



International Journal of Biomedical Imaging

CPU
SR

GPU

® ©,

T
l
|
| O
I
Input ‘
image

Output

oZ
g o]
E

5

Threads CUDA parallel
allocation processing

Store

®

Result

images

N images (N>1)

Display | 1 image

OpenGL

visualization

Output video

FIGURE 4: Image Processing on GPU based on CUDA and OpenGL.

pixels. We note that the selection of the number of
threads depends on the number of pixels.

(3) Parallel Processing with CUDA: The CUDA functions
(kernels) are executed N times using the N selected
threads in the previous step.

(4) Output Results: After processing, results can be
presented using two different scenarios.

(1) OpenGL Visualization: The visualization of out-
put images using the graphics library OpenGL
is fast, since it exploits buffers already existing
on GPU. Indeed, the compatibility of OpenGL
with CUDA enables to avoid more data trans-
fer between host and device memories. This
scenario is useful when parallel processing is
applied on one image only since we cannot
display many images using one video output
(one GPU disposes of one video output).

(ii) Transfer of results: the visualization with
OpenGL is impossible in the case of applying
treatments on a set of images using one video
output only. In this case, the transfer of results
(output images) from GPU to CPU memory
is required. This transfer time represents an
additional cost for the application.

5. Hybrid Implementation on
Heterogeneous Architectures

We presented in Section 3 the implementation details and
steps of the proposed method of vertebra extraction on CPU.
One disadvantage of this method is the computing time
which increases significantly with the number of images and
their resolution. Actually, the execution time of the edge
detection is approximately 3 or 4 times greater than the time
for histogram equalization and polygonal approximation.
The ASM search procedure is not adapted for a parallel

implementation due to the number of iterations which are
dependent with each other. We proposed in [35] a solution
based on the exploitation of the high power of GPUs in
parallel. However, this solution does not exploit the CPU
multiple computing units (cores) present in the majority of
computers. Moreover, the solution based on GPU is ham-
pered by the costs of data transfer between CPU and GPU
memories. To reduce these constraints, we propose a parallel
hybrid implementation which allows exploiting effectively
the full computing power of heterogeneous architectures
(multi-CPU/multi-GPU). This implementation is applied
on the most intensive step of the vertebra segmentation
method: edge detection. This section is presented in two
parts: the first part describes our GPU implementation of
edge detection step based on a recursive method. The second
part describes the hybrid implementation of edge detection
step on heterogeneous architectures.

5.1. GPU Implementation. This section describes the GPU
implementation of edge detection step based on a recursive
algorithm using Canny’s design [2]. The noise truncature
immunity and the reduced number of required operations
make this method very efficient. This technique is based on
four principale steps:

(i) recursive gradient computation (Gx, G,).
(ii) gradient magnitude and direction computation.
(iii) non-maxima suppression.

(iv) hysteresis and thresholding.

We note that the recursive gradient computation step
applies a Gaussian smoothing before filtering the image
recursively using two Sobel filters in order to compute the
gradients G, and G,. While the steps of gradient magnitude
and direction computation, nonmaxima suppression, and
hysteresis represent the same steps used for Canny filter
described in Section 3.3.2.



International Journal of Biomedical Imaging

OO WN

}

for (i=0; i<n; ++i) {\\n: number of images
img = cvLoadImage (Input_image};
starpu_data_handle img handle;
starpu_vector_data register (&img_handle) ;
queue = add(queue, img, img handle) ;

LisTING 1: Loading of input images with StarPU.

The proposed GPU implementation of this recursive
method is based on the parallelization of all the steps listed
below on GPU using CUDA.

5.1.1. Recursive Gaussian Smoothing on GPU. The GPU
implementation of the recursive Gaussian smoothing step is
developed using the CUDA SDK individual sample package
[41]. This parallel implementation is applied on Deriche
recursive method [2]. The advantage of this method is that
the execution time is independent of the filter width. The
use of this technique for smoothing allows to have a better
noise truncature immunity which represents an important
requirement for our application.

5.1.2. Sobel Filtering on GPU. The recursive GPU implemen-
tation of this step is provided from the CUDA SDK indi-
vidual sample package [41]. This parallel implementation
exploits both shared and texture memories which allow to
boost performance. This step applies a convolution of the
source image by two Sobel filters of aperture size 3 in order to
compute horizontal and vertical gradients G, and G, at each
pixel. The GPU implementation is based firstly on a parallel
horizontal convolution across the columns for computing Gy
and secondly on a parallel vertical convolution across the
lines for computing G,.

5.1.3. Gradient Magnitude and Direction Computing on GPU.
Once the horizontal and vertical gradients (G, and G,)
have been computed, it is possible to calculate the gradient
magnitude (intensity) using (4) and the gradient direction
using (5). The CUDA implementation of this step is applied
in parallel on image pixels, using a GPU grid computing
containing a number of threads equal to image pixels
number. Thus, each thread calculates the gradient magnitude
and direction of one pixel of the image.

5.1.4. Nonmaxima Suppression on GPU. After computing
the gradient magnitude and direction, we apply a CUDA
function (kernel) which enumerates the local maxima (pixels
with high gradient intensity) and deletes all nonridge pixels
since local maxima are considered as a part of edges. We
proposed to load the values of neighbors pixels (left, right,
top, and bottom) in shared memory, since these values are
required for the search of local maxima. The number of
selected threads for parallelizing this step was also equal to
image pixels number.

5.1.5. Hysteresis on GPU. Hysteresis represents the final step
to product edges. It is based on the use of two thresholds T}
and T,. Any pixel in the image that has a gradient magnitude
greater than T} is presumed to be an edge pixel and is marked
as such immediately. Then, all the pixels connected to this
edge pixel and that have a gradient intensity greater than T
are also selected as edge pixels. The GPU implementation
of this step is achieved using the method described in [28].
Notice that we exploit also the GPU’s shared memory for a
fast loading of connected pixels values.

5.2. Hybrid Implementation. The GPU implementation
described below allowed to improve considerably the per-
formance of edge detection step in the case of processing
one image only, since results can be visualized quickly with
OpenGL [35]. However, if we apply treatments on a set of
medical images (as required in our proposed method of
vertebra detection), the transfer of results (output images)
from GPU to CPU memory will be required. This transfer
time represents an important cost for the application. Thus,
we propose to implement the edge detection step on a
set of medical images, by exploiting the full computing
power of heterogeneous architectures (multi-CPU/multi-
GPU) that enables to have faster solutions, with less transfer
of data between CPU and GPU memories, as the images
processed on CPU do not require any transfer. The proposed
implementation is based on the executive support StarPU
[34] which provides a unified runtime system for het-
erogeneous multicore architectures. Therefore, our hybrid
implementation of the edge detection step applied on a set
of X-ray images can be described in three steps: loading of
input images, hybrid processing with StarPU, and updating
and storing results.

5.2.1. Loading of Input Images. First, we have to load the
input images in queues so that StarPU can apply treatments
on images present on these queues. Listing 1 summarizes this
step.

Line 2 allows loading the image in main memory, lines
3 and 4 enable to allocate a buffer (handle) StarPU which
disposes of the loaded image address. Line 5 is used to add
this image and the buffer StarPU in a queue that will contain
all the images to treat.

5.2.2. Hybrid Processing with StarPU. Once the input images
are loaded, StarPU can launch the CPU and GPU functions
of edge detection (described, respectively, in Section 3.3.2



International Journal of Biomedical Imaging

static starpu.codelet cl = {
.where = STARPU_CPU|STARPU_CUDA,
.cpu_func cpu_impl,
.cuda_func = cuda_impl,
.nbuffers 1

b

OO WN -

// define CPU fct
// define GPU fct
// buffers number

// CPU & GPU cores

LisTiNG 2: The codelet StarPU.

while (queue != NULL) {
task = starpu_task create();
task—cl = &cl;
task — handle = queue — img_handle;
task — handle.mode = STARPU_RW;

//Create task
//Define the codelet

//Define the buffer
//Mode Read/Write

starpu_task_submit (task);
queue = queue — next;

}

00N O WN -

//Submit the task
//Move to next image

LisTING 3: Submission of tasks to the set of images.

and 5.1) on heterogeneous processing units (CPUs and
GPUs). StarPU is based on two main structures: the codelet
and the task. The codelet defines the computing units that
could be exploited (CPUs or/and GPUs), and the related
implementations (Listing 2). The StarPU tasks apply this
codelet on the set of images.

In our case, each task is created and launched to treat
one image in the queue. The scheduler of StarPU distributes
automatically and effectively the tasks on the heterogeneous
processing units. StarPU enables also an automatic transfer
of data from CPU to GPU memory if tasks are executed on
GPU. (Listing 3).

5.2.3. Updating and Storing Results. When all the StarPU
tasks are completed, the results of GPU treatments must
be repatriated in the buffers. This update is provided by a
specific function in StarPU. This function enables also to
transfer data from GPU to CPU memory in the case of
treatments applied on GPU.

6. Experimental Results

6.1. Segmentation. The validation of the cervical mobility
evaluation is made by the validation of the segmentation
approach. If we can be sure to know exactly the contour of
the vertebra, we can efficiently evaluate the angles between
them. In order to do this, we use a sample of 51 radio-
graphs coming from the NHANES II database of the Nation-
al Library of Medicine (http://archive.nlm.nih.gov/proj/dxp-
net/nhanes/nhanes.php). These images are the digitized ver-
sions of X-ray films collected during 1976-1980. Persons
aged 25 through 74 were examined. Interesting data in
this work are radiographs focused on the cervical vertebre.
Actually, we study the 5 vertebral bodies C3 to C7. Note that

ASM contour

Theoretical contour

- — - - Point-to-line distance

FIGURE 5: Point-to-line distance characterizing the error between a
theoretical contour and an ASM-segmented contour.

the resolution is the same for all images, that is, 1763 X 1755
pixels. We then chose randomly 51 X-ray films allowing the
visual presence of the vertebra C3 to C7. This way, we can fix
the test set to validate the segmentation method.

One way to measure the segmentation error is to
compute the distance between the ASM contour and a
theoretical contour defined by a specialist. Therefore, a gold
standard has been defined for the 51 radiographs of the test
set. The chosen distance for measuring the segmentation
error is the point-to-line distance. Used in [15, 16], the
principle is to compute the length of the perpendicular
dropped from each landmark of the theoretical contour to
the spline evaluated between the landmarks of the ASM
contour. A visual representation of the point-to-line distance
is provided at the Figure 5.


http://archive.nlm.nih.gov/proj/dxpnet/nhanes/nhanes.php
http://archive.nlm.nih.gov/proj/dxpnet/nhanes/nhanes.php

International Journal of Biomedical Imaging

Further in this paragraph, we present statistical results on
the segmentation error. The reader will find the mean error
(in px) for the sample of 51 radiographs, the median (in px),
and finally the failure rate. These indicators are computed at
each vertebra level (from C3 to C7). Let us remark that the
segmentation error is given in pixels. However, the scanner
used by the NLM to digitize the radiographs was of 146 dpi.
Therefore, we can consider that 1 px is approximately equal
to 0.2 mm. In order to determine the failure rate, we followed
the example presented in [16]. The segmentation error is
divided in success and failure distribution. Therefore, we
consider as a failure any error greater than 3 standard
deviations from the mean of the success distribution.

Before the analysis of the segmentation results, we need
to measure the quality of the initialization based on the
detection of the vertebra in the radiograph. As we previously
noticed, the goal of detecting corners in cervical spine
radiographs is to initialize the mean shape of the ASM
search. In [37], we showed the benefits of the polygonal
approximation dedicated to the points of interest detection
by comparing it with the Harris detector [42]. The Harris and
Stephen’s definition of a corner uses the information of the
Hessian matrix of grey level intensities. This detector is based
on the local autocorrelation matrix of a signal on a region
defined around each point, which measures the local changes
of the signal in different directions. However, the results show
that in the particular context of cervical spine radiographs,
the intensity gradient information is not useful for detecting
the points of interest. Actually, we demonstrate the interest
of using a geometrical definition of a corner for its detection.
Another advantage of the polygonal approximation is that
once the Canny parameters have been chosen, only one
parameter remains to be fixed: the threshold €. Furthermore,
there is no influence between the Canny parameters and the
one of the polygonal approximation.

In this section, we evaluate the influence of the initial-
ization on the results. Table 1 shows the segmentation results
with an initialization totally accomplished by a user. In fact,
it was asked him to mark out manually all the vertebra
on the radiograph. We used a distinctive model for each
vertebra level. In the literature [17-20], the models used are
global ones. Their advantage is to bring information about
the spine curvature, but they cannot efficiently accomplish
a local segmentation. The only way to do this is to use a
local vertebra model, but it requires a precise initialization
close to the object of interest. The results of the Table 1 show
the advantage to use such a model. The segmentation error
is about 2.90 px and the percentage of failures is more than
acceptable for each vertebra level (compared to the literature,
see, for instance [15, 17-20]).

We could have stopped the experiments here, but it is
not conceivable to ask a user to mark out all the vertebre
on every image he has to segment. For this reason, one
of the contributions of this paper is to propose a semi-
automatization of the ASM initialization. The data related
to the Table 2 present the results based on this automated
initialization. The analysis of the table demonstrates two
particular trends. First, if we consider the mean segmentation
error, we notice that its value is slightly increased in

TABLE 1: Statistical results on the error segmentation: local vertebra
model (manual initialization).

Vert. Mean (px) Median (px) Fail. (%)
C3 2.95 2.30 7.84
C4 2.63 2.43 1.96
C5 2.74 2.20 3.92
C6 2.98 2.65 3.92
C7 3.11 2.54 1.96

TaBLE 2: Statistical results on the error segmentation: local vertebra
model (automated initialization).

Vert. Mean (px) Median (px) Fail. (%)
C3 2.97 2.36 7.84
C4 3.74 2.42 7.84
C5 2.86 2.34 5.88
C6 3.48 2.73 9.80
C7 3.27 2.50 5.88

comparison with the Table 1. A meticulous analysis permits
to target the step of the procedure responsible for this
phenomenon. In fact, the results degradation is due to the
points of interest detection by the polygonal approximation.
Nevertheless, this effect is minimal if we look at the results of
the Table 2.

A particular limitation of our approach could arise in a
specific case. If two vertebre are merged, the corner detection
could confuse a higher corner of a vertebra with the lower
corner and the adjacent vertebra. Finally, we give the user
a visual illustration of the whole framework to perform the
vertebra segmentation at the Figure 6.

6.2. Performance. On the one hand, we can say that the
quality of the vertebra segmentation remains identical since
the procedure has not changed. Only the architecture and
the implementation did. On the other hand, the exploitation
of heterogeneous architectures (multi-CPU/multi-GPU) in
parallel for vertebra extraction enabled to accelerate the
computation time. This acceleration is due to the hybrid
implementation for edge detection step based on a recursive
method using Deriche-Canny method. This fact allowed to
apply our proposed method on large sets of X-ray medical
images in order to have more precision for vertebra detection
results.

Figure 7(a) presents the comparison of the comput-
ing times between sequential (CPU), parallel (GPU), and
hybrid (multi-CPU/multi-GPU) implementations of the
edge detection step, applied on a set of 200 images using dif-
ferent resolutions. Figure 7(b) shows the speedups obtained
with these implementations. The accelerations presented at
Figure 7 are due to two level of parallelism: a low-level and a
high-level parallelization.

(i) A low-level parallelization by porting the edge detec-
tion step on GPU (parallel processing between pixels
in image: intraimage parallel processing).



10

‘N

/7

(a) Original image (b) Edge detection

(c) Edge polygonal approxi-
mation

International Journal of Biomedical Imaging

)

(d) Points of interest detection

(e) Vertebra detection

(f) Segmentation result

FiGurek 6: Illustration of the whole framework for the segmentation.

(ii) A high-level parallelization (interimages parallel pro-
cessing) enabling to exploit simultaneously both
CPUs and GPUs cores so that each core treats a subset
of images.

Experimentations have been conducted on several plat-
forms, that is, GPU Tesla C1060 and CPU Dual core:

(i) CPU: Dual Core 6600, 2.40 GHz, 2GB RAM of
Memory.

(ii) GPU: NVIDIA Tesla C1060, 240 CUDA cores, 4 GB of
Memory.

7. Conclusion

In this paper, we proposed a framework for vertebra
segmentation based on a local statistical model. An original
process in order to locate vertebrz in a radiograph has been
developed. The principle is to detect features characterizing
the vertebrz: the anterior corners. The extraction procedure
is composed of 4 steps: a contrast-limited adaptive histogram

equalization to improve the image contrast, an edge detec-
tion, an anterior corner detection, and finally the vertebra
localization.

Generally, the computation time and noise immunity
truncature represent the most important requirements in
medical image processing and specifically for our applica-
tion. The graphics processors provided a solution by exploit-
ing the GPU’s computing units in parallel. However, this
solution is hampered by the costs of data transfers between
CPU and GPU memories. Thus, we proposed a parallel
hybrid implementation of the recursive edge method using
Deriche-Canny approach. This implementation allowed to
exploit the full computing power of heterogeneous architec-
tures. Moreover, this solution requires a less transfer of data
between CPU and GPU memories, as the treatments on CPU
do not require any transfer.

As future work, we plan to develop a fully automatic
segmentation approach based on a learning method such as
support vector machine (SVM). The main issue is to find
an efficient descriptor to train the supervised model. We
also aim to provide an automatic parallel implementation



International Journal of Biomedical Imaging

70
7
60 %
Images number = 200 /
- 50 7‘
: %
E 40 /
E 7
2 30 7
z
2 2
10 ] A
% 7l
0 _ﬂ]]]x- . 4 LA [
512 x 512 1024 x 1024 1472 x 1760
Image resolution
Fl 1CPU E 2GPU-4CPU
M 1GPU B 4GPU-8CPU
[ 1GPU-2CPU

(a) Computing time of edge detection step using hybrid platforms

11

25

20

Images number = 200

Speedup

512 x 512 1024 x 1024 1472 x 1760 3936 X 3936
Image resolution
o 1GPU @ 2GPU-4CPU
B 1GPU-2CPU B 4GPU-8CPU

(b) Speedup obtained for edge detection step using hybrid platforms

FIGURE 7: Performance of recurive edge detection using heterogeneous architectures.

exploiting the full computing power of hybrid architec-
tures. This implementation could choose automatically the
processing units for each step of our medical application.
Thus, the most intensive steps (initialization: edge detection)
would be implemented on heterogeneous platforms (multi-
CPU/multi-GPU), and the less intensive or not parallelizable
steps (learning, modelization, and segmentation) would
exploit the CPU multiple cores (multi-CPU).

Acknowledgments

The authors would like to thank the Communauté Francaise
de Belgique for supporting this work under the ARC-OLIMP
Research Project, Grant no. AUWB-2008-13-FPMs11. They
aknowledge also the support of the European COST action
IC0805 “Open European Network for High Performance
Computing on Complex Environment”.

References

[1] E Puglisi, R. Ridi, F Cecchi, A. Bonelli, and R. Ferrari,
“Segmental vertebral motion in the assessment of neck range
of motion in whiplash patients,” International Journal of Legal
Medicine, vol. 118, no. 4, pp. 235-239, 2004.

[2] R. Deriche, “Using Canny’s criteria to derive a recursively
implemented optimal edge detector,” International Journal of
Computer Vision, vol. 1, no. 2, pp. 167-187, 1987.

[3] X. Siebert, S. Dupont, P. Fortemps, and D. Tardieu, “Mediacy-
cle: browsing and performing with sound and image libraries,”
in QPSR of the Numediart Research Program, T. Dutoit and B.
Macq, Eds., vol. 2, pp. 19-22, 2009.

[4] C. Chevrefils, F. Chériet, C.-E. Aubin, and G. Grimard,
“Texture analysis for automatic segmentation of intervertebral
disks of scoliotic spines from MR images,” IEEE Transactions

on Information Technology in Biomedicine, vol. 13, no. 4, pp.
608-620, 2009.

[5] S.-H. Huang, Y.-H. Chu, S.-H. Lai, and C. L. Novak,
“Learning-bBased vertebra detection and iterative nor-
malized-cut segmentation for spinal MRI,” IEEE Transactions
on Medical Imaging, vol. 28, no. 10, Article ID 4967966, pp.
1595-1605, 2009.

[6] M. Aslan, A. Ali, H. Rara et al., “A novel 3d segmentation of
vertebral bones from volumetric ct images using graph cuts,”
in Advances in Visual Computing, vol. 5876 of Lecture Notes
in Computer Science, pp. 519-528, Springer, Berlin, Germany,
2009.

[7] T. Klinder, J. Ostermann, M. Ehm, A. Franz, R. Kneser,
and C. Lorenz, “Automated model-based vertebra detection,
identification, and segmentation in CT images,” Medical Image
Analysis, vol. 13, no. 3, pp. 471-482, 2009.

[8] J. Weese, M. Kaus, C. Lorenz, S. Lobregt, R. Truyen, and V.
Pekar, “Shape constrained deformable models for 3D medical
image segmentation,” in Information Processing in Medical
Imaging, vol. 2082 of Lecture Notes in Computer Science,
Springer, Berlin, Germany, 2001.

[9] H. Shen, A. Litvin, and C. Alvino, “Localized priors for the

precise segmentation of individual vertebras from ct volume

data,” in Medical Image Computing and Computer-Assisted

Intervention MICCAI 2008, vol. 5241 of Lecture Notes in

Computer Science, pp. 367-375, Springer, Berlin, Germany,

2008.

S. Tan, J. Yao, M. M. Ward, L. Yao, and R. M. Summers,

“Level set based vertebra segmentation for the evaluation of

ankylosing spondylitis,” in Medical Imaging: Image Processing,

vol. 6144 of Proceedings of SPIE, pp. 58-67, San Diego, Calif,

USA, February 2006.

M. Benjelloun and S. Mahmoudi, “X-ray image segmentation

for vertebral mobility analysis,” International Journal of Com-

puter Assisted Radiology and Surgery, vol. 2, no. 6, pp. 371-383,

2008.

[10]

(11]



12

(12]

(15]

(16]

(21]

T. E Cootes and C. J. Taylor, “Active shape models—
‘smart snakes)” in Proceedings of the British Machine Vision

Conference, pp. 266—275, Springer, Berlin, Germany, 1992.

T. E Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance
models,” in 5th European Conference on Computer Vision, pp.
484-498, Springer, Berlin, Germany, 1998.

L. R. Long and G. R. Thoma, “Use of shape models to search
digitized spine X-rays,” in 13th IEEE Symposium on Computer-
Based Medical Systems, pp. 46-50, IEEE Computer Society,
2000.

P. P. Smyth, C. J. Taylor, and J. E. Adams, “Automatic
measurement of vertebral shape using active shape models,”
Image and Vision Computing, vol. 15, no. 8, pp. 575-581, 1997.
P. P. Smyth, C. J. Taylor, and J. E. Adams, “Vertebral shape:
Automatic measurement with active shape models,” Radiology,
vol. 211, no. 2, pp. 571-578, 1999.

M. G. Roberts, T. FE. Cootes, and J. E. Adams, “Linking
sequences of active appearance sub-models via constraints:
an application in automated vertebral morphometry,” in
Proceedings of the 14th British Machine Vision Conference, pp.
349-358, Norwich, UK, 2003.

M. G. Roberts, T. F. Cootes, and J. E. Adams, “Vertebral
shape: automatic measurement with dynamically sequenced
active appearance models,” in Medical Image Computing and
Computer-Assisted Intervention-MICCAI 2005, vol. 3750 of
Lecture Notes in Computer Science, pp. 733—744, Springer,
Berlin, Germany, 2005.

M. G. Roberts, T. E Cootes, and J. E. Adams, “Automatic
segmentation of lumbar vertebrae on digitised radiographs
using linked active appearance models,” in Proceedings of the
Medical Image Understanding and Analysis Conference, pp.
120-124, Manchester, UK, July 2006.

M. G. Roberts, T. F. Cootes, E. Pacheco, T. Oh, and J. E.
Adams, “Segmentation of lumbar vertebrae using part-based
graphs and active appearance models,” in Proceedings of the
12th International Conference on Medical Image Computing
and Computer-Assisted Intervention, pp. 1017-1024, Springer,
2009.

G. Zamora, H. Sari-Sarraf, and L. R. Long, “Hierarchical
segmentation of vertebrae from x-ray images,” in Proceedings
of the Medical Imaging 2003: Image Processing, vol. 5032 of
Proceedings of SPIE, pp. 631-642, San Diego, Calif, USA,
February 2003.

X. Dong and G. Zheng, “Automated vertebra identification
from X-ray images,” in Image Analysis and Recognition, vol.
6112 of Lecture Notes in Computer Science, pp. 1-9, 2010.

Z. Yang, Y. Zhu, and Y. pu, “Parallel image processing based
on CUDA,” in Proceedings of the International Conference
on Computer Science and Software Engineering, pp. 198-201,
Wuhan, China, December 2008.

J. Fung, S. Mann, and C. Aimone, “OpenVIDIA : parallel gpu
computer vision,” in Proceedings of the ACM Multimedia, pp.
849-852, Hilton, Singapore, November 2005.

OpenGL, “OpenGL Architecture Review Board: ARB vertex
program. Revision 45,” 2004, http://oss.sgi.com/projects/ogl-
sample/registry.

W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard,
“Cg: A system for programming graphics hardware in a C-
like language,” ACM Transactions on Graphics, vol. 22, pp. 896—
907, 2003.

NVIDIA, “NVIDIA CUDA,” 2007, http://www.nvidia.com/
cuda.

(28]

[34]

(37]

(38]

(41

(42]

International Journal of Biomedical Imaging

Y. M. Luo and R. Duraiswami, “Canny edge detection
on NVIDIA CUDA;” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
Workshops, Anchorage, Alaska, USA, June 2008.

J. Canny, “A computational approach to edge detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
8, no. 6, pp. 679698, 1986.

Y. Heng and L. Gu, “GPU-based volume rendering for medical
image visualization,” in Proceedings of the 27th Annual Inter-
national Conference of the IEEE Engineering in Medicine and
Biology Society, pp. 5145-5148, Shanghai, China, September
2005.

M. Smelyanskiy, D. Holmes, J. Chhugani et al., “Mapping
high-fidelity volume rendering for medical imaging to CPU,
GPU and many-core architectures,” IEEE Transactions on
Visualization and Computer Graphics, vol. 15, no. 6, pp. 1563—
1570, 2009.

T. Schiwietz, T. Chang, P. Speier, and R. Westermann, “MR
image reconstruction using the GPU,” in Proceedings of the
Medical Imaging: Visualization, Image-Guided Procedures, and
Display, Proceedings of SPIE, pp. 646—655, San Diego, Calif,
USA, March 2006.

E. Ayguadé, R. M. Badia, E D. Igual, J. Labarta, R. Mayo, and
E. S. Quintana-Orti, “An extension of the starSs programming
model for platforms with multiple GPUs,” in Proceedings of the
15th International Euro-Par Conference on Parallel Processing
(Euro-Par’09), pp. 851-862, 2009.

C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacre-
nier, “StarPU: a unified platform for task scheduling on
heterogeneous multicore architectures,” in Concurrency and
Computation: Practice and Experience, Euro-Par 2009, pp. 863—
874, 2009.

S. A. Mahmoudi, F. Lecron, P. Manneback, M. Benjelloun, and
S. Mahmoudi, “GPU-based segmentation of cervical vertebra
in X-ray images,” in Proceedings of the High-Performance
Computing on Complex Environments Workshop, in conjunction
with the IEEE International Conference on Cluster Computing,
pp. 1-8, 2010.

C. Goodall, “Procrustes methods in the statistical analysis of
shape,” Journal of the Royal Statistical Society. Series B, vol. 53,
no. 2, pp. 285-339, 1991.

E Lecron, M. Benjelloun, and S. Mahmoudi, “Points of
interest detection in cervical spine radiographs by polygonal
approximation,” in Proceedings of the 2nd International Con-
ference on Image Processing Theory, Tools and Applications, pp.
81-86, IEEE Computer Society, 2010.

S. M. Pizer, E. P. Amburn, J. D. Austin et al., “Adaptive
histogram equalization and its variations,” Computer Vision,
Graphics, and Image Processing, vol. 39, no. 3, pp. 355-368,
1987.

D. H. Douglas and T. K. Peucker, “Algorithms for the
reduction of the number of points required to represent a
digitized line or its caricature,” Cartographica, vol. 10, no. 2,
pp. 112-122, 1973.

GPU4VISION, “GPU4VISION,” 2010, http://www.gpudvi-
sion.org.

NVIDIA, “NVIDIA CUDA SDK code samples,” http://devel-
oper.download.nvidia.com/compute/cuda/sdk/website/
samples.html.

C. Harris and M. Stephens, “A combined corner and edge
detector,” in Proceedings of the 4th Alvey vision conference, vol.
15, pp. 147-151, Manchester, UK, 1988.


http://oss.sgi.com/projects/ogl-sample/registry
http://oss.sgi.com/projects/ogl-sample/registry
http://www.nvidia.com/cuda
http://www.nvidia.com/cuda
http://www.gpu4vision.org
http://www.gpu4vision.org
http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html
http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html
http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html

	Introduction
	Related Work
	Vertebra Segmentation on CPU
	GPU for Image Processing

	General Framework
	Learning
	Modelization
	Initialization
	Contrast-Limited Adaptive Histogram Equalization
	Edge Detection
	Corner Detection
	Vertebra Localization

	Segmentation

	Image Processing on GPU
	GPU Programming
	Image Processing Model Based on CUDA and OpenGL

	Hybrid Implementation on Heterogeneous Architectures
	GPU Implementation
	Recursive Gaussian Smoothing on GPU
	Sobel Filtering on GPU
	Gradient Magnitude and Direction Computing on GPU
	Nonmaxima Suppression on GPU
	Hysteresis on GPU

	Hybrid Implementation
	Loading of Input Images
	Hybrid Processing with StarPU
	Updating and Storing Results


	Experimental Results
	Segmentation
	Performance

	Conclusion
	Acknowledgments
	References

