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A B S T R A C T   

Immune checkpoint blockade (ICB) therapy is a revolutionary approach to treat cancers, but still have limited 
clinical applications. Accumulating evidence pinpoints the immunosuppressive characteristics of the tumor 
microenvironment (TME) as one major obstacle. The TME, characterized by acidity, hypoxia and elevated ROS 
levels, exerts its detrimental effects on infiltrating anti-tumor immune cells. Here, we developed a TME- 
responsive and immunotherapeutic catalase-loaded calcium carbonate nanoparticles (termed as CAT@CaCO3 
NPs) as the simple yet versatile multi-modulator for TME remodeling. CaCO3 NPs can consume protons in the 
acidic TME to normalize the TME pH. CAT catalyzed the decomposition of ROS and thus generated O2. The 
released Ca2+ led to Ca2+ overload in the tumor cells which then triggered the release of damage-associated 
molecular patterns (DAMP) signals to initiate anti-tumor immune responses, including tumor antigen presen-
tation by dendritic cells. Meanwhile, CAT@CaCO3 NPs-induced immunosupportive TME also promoted the 
polarization of the M2 tumor-associated macrophages to the M1 phenotype, further enhancing tumor antigen 
presentation. Consequently, T cell-mediated anti-tumor responses were activated, the efficacy of which was 
further boosted by aPD-1 immune checkpoint blockade. Our study demonstrated that local treatment of 
CAT@CaCO3 NPs and aPD-1 combination can effectively evoke local and systemic anti-tumor immune responses, 
inhibiting the growth of treated tumors and distant diseases.   

1. Introduction 

Immunotherapy has undeniably revolutionized cancer treatment by 
harnessing the inherent capabilities of the immune system to combat 
malignancies [1,2]. Particularly, immune checkpoint blockade (ICB) 
therapy, has achieved promising clinical progress in many malignancies, 
including triple-negative breast cancer, melanoma, non-small cell lung, 
renal cell carcinoma, urothelial carcinoma, bladder, and head and neck 
cancers [3]. However, despite these achievements of ICB in the clinic, 
many challenges remain to be overcome, particularly the low objective 
response rate of ICB therapy. The tumor microenvironment (TME) has 
been ascertained as one of the major obstacles in ICB therapy due to its 
detrimental impacts on tumor-infiltrating immune cells and the 
following anti-immune activities [4]. 

TME is characteristically immunosuppressive, which significantly 
suppresses the efficacy of effector immune cells against cancer cells [5, 
6]. The TME comprises an intricate web of tumor cells and the 

surrounding extracellular matrix (ECM), tumor vasculature, stromal 
cells, immune cells, and various chemokines and cytokines [7–10]. The 
immunosuppressive TME includes many physicochemical abnormal-
ities, such as tumor acidity, hypoxia, and high levels of reactive oxygen 
species (ROS), which is mainly attributed to abnormal metabolism in 
tumor tissues [11–15]. These physicochemical abnormalities play an 
important role in inducing an immunosuppressive microenvironment in 
tumors by activating the immunosuppressive cells and defunctionalizing 
the immune-active cells, especially tumor-infiltrating lymphocytes (TIL) 
[16–20]. Specifically, the acidic, oxidative and hypoxic environment in 
tumor inhibits the differentiation, maturation and cell-presenting ability 
of dendritic cells (DC), as well as the infiltration, survival, and cytotoxic 
activity of T cells, and promotes the skewing of tumor-associated mac-
rophages (TAM) to the immunosuppressive M2 phenotype, and the 
accumulation of immunosuppressive regulatory T cells (Treg) and 
myeloid-derived suppressor cells (MDSC) [21–23]. Hence, strategies for 
normalizing pH, reducing ROS levels, and relieving hypoxia within TME 
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to foster an immunosupportive TME are needed. While there are ap-
proaches to tackle one individual abnormality, a simple strategy that can 
simultaneously target all three environmental abnormalities within TME 
is lacking. 

In this study, we reported a TME-responsive nanomaterials, namely 
catalase-loaded calcium carbonate nanoparticles (termed as CAT@-
CaCO3 NPs), as a simple yet versatile multi-modulator to reverse 
immunosuppressive TME and enhance the activities of anti-tumor im-
mune cells, thus amplifying efficacy of ICB (Fig. 1). To overcome hyp-
oxia in TME, producing oxygen in situ in tumor tissues could be more 
effective than delivering oxygen gas into the tumors [24–26]. ROS, 
abundant within the TME can be an excellent source of oxygen when 
catalytically degraded by natural antioxidants, such as catalase (CAT) 
[27–33]. Hence, CAT not only relieves hypoxia but also mitigates the 
high ROS levels in the TME. In the meantime, to normalize TME acidity, 
pH-responsive calcium carbonate nanoparticles (CaCO3 NPs), a widely 
used drug delivery vehicle with excellent biocompatibility and biode-
gradability [34–36], were employed, which can consume the excessive 
protons. Additionally, by encapsulating CAT in CaCO3 NPs, the enzy-
matic activity of CAT can be prolonged by preventing CAT from rapid 
degradation in vivo. Therefore, CAT@CaCO3 NPs serve as a simple 
multi-modulator capable of reprogramming the immunosuppressive 
TME into an immunosupportive environment. Moreover, over-
accumulation of Ca2+ released from CaCO3 NPs can effectively induce 
the release of damage-associated molecular patterns (DAMP) signals 
from tumor cells through mitochondrial damaging [37–40]. DAMPs, 
hallmarks of immunogenic cell death (ICD), then promote presentation 
of tumor associated antigens (TAAs) by the antigen-presenting cells, 
such as DC, which further facilitate T cell priming and activation 
[41–43]. CAT@CaCO3 NPs treatment can also promote the polarization 
of TAMs from M2 phenotype to M1 phenotype, further enhancing the 
tumor-antigen presenting abilities. Taken together, CAT@CaCO3 NPs 
treatment can remodel the TME, fostering an immunosupportive milieu 
conducive to activating T-cell-mediated anti-tumor immunity, the effi-
cacy of which can be further potentiated by anti-programmed death 1 
antibody (aPD-1)-mediated ICB therapy. Our results indicated that the 

local treatment of combined CAT@CaCO3 NPs and aPD-1 awakened 
both local and anti-tumor immunity, exhibiting robust immunothera-
peutic efficiencies in primary and distant diseases. 

2. Materials and methods 

2.1. Materials, cells and animals 

4-benzyl L-aspartate acid (BLA) was purchased from Thermo Scien-
tific. Methoxypolyethylene glycol amine and sodium carbonate 
(Na2CO3) were bought from Fisher Scientific. Calcium chloride (CaCl2) 
was obtained from Alfa Aesar. Catalase was purchased from Sigma- 
Aldrich. aPD-1 was obtained from BioLegend (Cat no. 135235). The 
murine 4T1 cells were obtained from Peter Siegel’s Lab at McGill Uni-
versity. 4T1 cells were cultured in Dulbecco’s modified Eagle medium 
(DMEM) (Gibco) with 10 % fetal bovine serum (FBS) (Gibco), 1 % 
penicillin/streptomycin (Gibco), 2 % sodium bicarbonate (Gibco), 1 % 1 
M N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid (HEPES) 
(Gibco), 1 % sodium pyruvate (Gibco). BALB/c mice (6–7 weeks) were 
purchased from Charles River Laboratories. All animal-related experi-
ments were carried out following the animal protocol approved by 
McGill University. 

2.2. Synthesis and characterization of poly (4-benzyl L-aspartate acid)- 
polyethylene glycol block copolymer 

15 mmol of triphosgene in 10 mL anhydrous tetrahydrofuran (THF) 
was added over a 30 min period to 30 mmol BLA in 50 mL anhydrous 
THF. The mixture was stirred at 55 ◦C for 3 h until a clear solution was 
observed. The solution was poured into 100 mL hexane and the sus-
pension was stored overnight at − 20 ◦C to for crystallization. White 
precipitates were collected and dried under vacuum at room tempera-
ture to obtain BLA-N-carboxy anhydride (NCA) (Fig. S1). 

600 mg of prepared BLA-NCA was dissolved with 200 mg of 
methoxypolyethylene glycol amine in 10 mL of dimethylformamide 
(DMF). The reaction was continued at 55 ◦C for 72 h while stirring. The 

Fig. 1. CAT@CaCO3 NPs remodels immunosuppressive TME to immunosupportive TME for enhanced ICB therapy. In the acidic TME, CAT@CaCO3 NPs 
consumed protons to normalize the pH. CAT catalyzed the decomposition of hydrogen peroxide and produce oxygen, so as to lower the high ROS level and relieve the 
hypoxia in the TME. The remodeled TME promoted the polarization of M2 tumor-associated macrophages to M1 macrophages. The accumulated Ca2+ induced the 
release of DAMPs from tumor cells and initiated tumor antigen presentation, DC maturation and T-cell-mediated immune activation. aPD-1 further potentiated the 
anti-tumor effect of T cells. CAT: catalase; ROS: reactive oxygen species; TAAs: tumor-associated antigens; DAMPs: damage-associated molecular patterns; DC: 
dendritic cells; TAM: tumor-associated macrophages; PD-1: programmed cell death 1; PD-L1: programmed cell death 1 ligand 1; aPD-1: programmed cell death 1 
antibody; TME: tumor microenvironment. 
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product was precipitated in 80 mL cold diethyl ether for 24 h before 
centrifuging at 5000 rpm for 5 min. The supernatant was discarded, and 
the precipitation was dried for 10 min before redissolving in 3 mL DMF. 
The product was hydrolyzed for 2 h with 10 mL of 1 M NaOH. DMF was 
removed by dialysis for 48 h using the dialysis bag (MWCO 3.5 kD). The 
dialyzed solution was lyophilized to obtain poly (4-benzyl L-aspartate 
acid)-polyethylene glycol (PBLA-PEG) block copolymer (Fig. S1). 

2.3. Preparation and characterizations of catalase-loaded calcium 
carbonate nanoparticles 

1 mL of tris(hydroxymethyl)aminomethane (Tris)-HCl buffer (1 mM, 
pH 7.6) containing 100 mM CaCl2 was mixed with 1 mL HEPES saline 
buffer (50 mM, pH 7.1, NaCl 140 mM) containing 1 mg catalase and 10 
mg PBLA-PEG block copolymers. 1 mL of HEPES saline buffer containing 
10 mM Na2CO3 was added dropwise while the solution was stirring. The 
reaction was left to run overnight at 4 ◦C, and the solution was collected 
for lyophilization to obtain the catalase-loaded calcium carbonate 
nanoparticles (termed as CAT@CaCO3 NPs) after dialysis with the 
dialysis bag (molecular weight cutoff (MWCO) 3.5 kD). The blank cal-
cium carbonate nanoparticles without loading catalase (termed as 
CaCO3 NPs) were prepared with the similar process. The average par-
ticle size and zeta-potential of prepared CAT@CaCO3 NPs were 
measured by a size analyzer. The morphology of CAT@CaCO3 NPs was 
observed using transmission electron microscopy (TEM). To detect the 
loading efficiency of CAT, the supernatant with free CAT was collected 
after centrifuging CAT@CaCO3 NPs at 12000 rpm. The CAT loading 
efficiency was calculated according to the equation below: Loading ef-
ficiency (%) = (Wtotal - Wfree)/WNPs × 100 %, where Wtotal and Wfree 
were the amount of catalase used for CAT@CaCO3 NPs preparation and 
unloaded in nanoparticles, respectively. WNPs represented the total 
weight of nanoparticles sediment. The concentration of CAT was 
measured by the Bradford protein assay. 

2.4. pH normalization, H2O2 scavenging, and oxygen generation in 
solutions 

Catalase, CaCO3 NPs (catalase 100 μg/mL, the concentration of 
CaCO3 NPs was calculated based on the loading efficiency of catalase), 
or CAT@CaCO3 NPs (catalase 10–200 μg/mL) was added in pH 6.5 
phosphate buffered saline (PBS), and the pH of the solution was detected 
by a pH meter (pH 700, OAKTON). 

Catalase, CaCO3 NPs (catalase 100 μg/mL, the concentration of 
CaCO3 NPs was calculated based on the loading efficiency of catalase), 
or CAT@CaCO3 NPs (catalase 10–200 μg/mL) was added in 300 mM 
H2O2 solution, and the H2O2 concentration was measured using the 
hydrogen peroxide assay kit (Abcam). 

Catalase, CaCO3 NPs (catalase 100 μg/mL, the concentration of 
CaCO3 NPs was calculated based on the loading efficiency of catalase), 
or CAT@CaCO3 NPs (catalase 10–200 μg/mL) was added in 300 mM 
H2O2 solution containing tris(4,7-diphenyl-1,10-phenanthroline) 
ruthenium (II) dichloride (Ru (dpp)). Ru (dpp) is an oxygen sensor 
which quenches its fluorescence (λex = 488 nm, λem = 610 nm) when 
exposed to oxygen [44–46], based on which the oxygen generation ef-
ficiencies were calculated. 

2.5. Intracellular O2 levels 

4T1 cells were seeded in 24-well plates for 24 h and incubated with 
catalase, CaCO3 NPs, or CAT@CaCO3 NPs (catalase 100 μg/mL, the 
concentration of CaCO3 NPs was calculated based on the loading effi-
ciency of catalase) for 24 h. The cells were dyed Ru (dpp) for 1 h and 
examined with flow cytometry. 

2.6. In vitro HIF-1α expression 

4T1 cells were seeded in 6-well plates with glass slides for 24 h and 
incubated with catalase, CaCO3 NPs, or CAT@CaCO3 NPs (catalase 100 
μg/mL, the concentration of CaCO3 NPs was calculated based on the 
loading efficiency of catalase) for 24 h. All cells were cultured in the pH 
6.5 culture media containing 50 μM H2O2 in a hypoxic atmosphere (5 % 
CO2, 94 % N2, 1 % O2) [47–49]. The treated 4T1 cells were stained with 
hypoxia-inducible factor 1-α (HIF-1α) primary antibody (NOVUS, Cat 
no. NB100-654) and the corresponding secondary antibody (Invitrogen, 
fluorescein-labeled, Cat no. F2765). The fluorescent images were 
captured using laser scanning confocal microscopy (LSCM) (Observer. 
Z1, Zeiss). The fluorescent intensities of HIF-1α were quantified using 
ImageJ software. The protein samples in the treated cells were collected 
and separated using sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE). HIF-1α and β-tubulin were stained with cor-
responding primary antibodies (HIF-1α: NOVUS, Cat no. NB100-654; 
β-tubulin: Invitrogen, Cat no. PA5-16863) and the secondary antibody 
(Invitrogen, horseradish peroxidase (HRP)-labeled, Cat no. 65–1620) 
and shown on the films. 

2.7. In vitro release of catalase 

CAT@CaCO3 NPs or 20 % Pluronic F127 hydrogels containing 
CAT@CaCO3 NPs (CAT@CaCO3 NPs-gel) was incubated in 8 mL of pH 
7.4 or 6.5 PBS, the releasing media, at 37 ◦C and 100 rpm shaking. 500 
μL of releasing media was collected for detection and substituted with 
the same amount of new releasing media. The extracted samples were 
centrifuged at 12000 rpm, 4 ◦C to collect the supernatant. The released 
catalase in the supernatant was detected using the Bradford protein 
assay. 

2.8. Catalytic ability 

The catalytic ability of catalase was detected using standard Goth’s 
method [49–51]. Catalase or CAT@CaCO3 NPs (catalase 100 μg/mL, 
with or without pre-treatment with 0.5 mg/mL protease K for 30 min at 
37 ◦C) was added into pH 7.4 or 6.5 PBS containing H2O2. 32.4 mM 
ammonium molybdate was added to terminate the catalytic reaction. 
The remained H2O2 reacted with ammonium molybdate to generate 
stable primrose yellow complex (characteristic absorption at 400 nm). 
The absorbance of the complex was compared with the free catalase 
without protease K pre-treatment in pH 7.4 solution as the control to 
calculate the catalytic ability. 

2.9. Cellular uptake 

4T1 cells were seeded in 24-well plates and cultured for 24 h. Then, 
the cells were incubated with fluorescein isothiocyanate (FITC)-labeled 
catalase (termed as FITC-CAT) or FITC-CAT-loaded calcium carbonate 
nanoparticles (termed as FITC-CAT@CaCO3 NPs) for 4 h with the 
catalase concentration of 100 μg/mL. The cells were collected and 
analyzed using flow cytometry (LSRFortessa, BD). 

2.10. Intracellular calcium ion level and mitochondrial damage 

4T1 cells were seeded in 24-well plates for 24 h and incubated with 
catalase, CaCO3 NPs, or CAT@CaCO3 NPs (catalase 100 μg/mL, the 
concentration of CaCO3 NPs was calculated based on the loading effi-
ciency of catalase) for 24 h. Calcium chloride with the same amount of 
Ca ions as CaCO3 NPs was also used for comparison. The cells were 
stained with Fluo-3 AM, the intracellular calcium indicator [52,53], or 
JC-1, the mitochondrial membrane potential assay kit [54,55], for 1 h 
and analyzed using flow cytometry. 
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2.11. Cytotoxicity and release of DAMP signals 

4T1 cells were seeded in the 96-well plates (lower chamber) for 24 h 
and then incubated with 20 % Pluronic hydrogel (termed as blank gel), 
CAT@CaCO3 NPs or CAT@CaCO3 NPs-gel in transwells (upper cham-
ber) for 24 h. The concentration of CAT ranged from 0 to 100 μg/mL, 
and the amount of Pluronic hydrogel was calculated by the ratio of 1 mg 
of CAT per 400 μL 20 % Pluronic hydrogel. The cell viabilities were 
detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazo-
lium bromide (MTT) assay. 

4T1 cells were seeded in 24-well plates for 24 h and then incubated 
with catalase, CaCO3 NPs, or CAT@CaCO3 NPs (catalase 100 μg/mL, the 
concentration of CaCO3 NPs was calculated based on the loading effi-
ciency of catalase) for 24 h, and collected for staining with calreticulin 
(CRT) primary antibody (Invitrogen, Cat no. PA3-900) and an Alexa 
Fluor 555-labeled secondary antibody (Invitrogen, Cat no. A21428). The 
expression of CRT was measured using flow cytometry. The adenosine 
triphosphate (ATP) concentrations in the lysed tumor cells and released 
in the culture media were measured by the ATP determination kit 
(Invitrogen). 4T1 cells growing on the glass slides were stained with 
high mobility group box 1 (HMGB1) primary antibody (Invitrogen, Cat 
no. PA5-27378) and a fluorescein-labeled secondary antibody (Invi-
trogen, Cat no. F2765). The fluorescent images were captured using 
LSCM(Observer. Z1, Zeiss). The fluorescent intensities of HMGB1 were 
quantified using ImageJ software. 

2.12. In vitro DC maturation 

4T1 cells were seeded in the transwells (upper chamber), and incu-
bated with catalase, CaCO3 NPs, or CAT@CaCO3 NPs (catalase 100 μg/ 
mL, the concentration of CaCO3 NPs was calculated based on the loading 
efficiency of catalase) for 24 h. DCs were seeded in the 24-well plates 
(lower chamber) and cocultured with the treated cells in the transwells 
for another 24 h. All cells were cultured in the pH 6.5 culture media 
containing 100 μM H2O2 in a hypoxic atmosphere (5 % CO2, 94 % N2, 1 
% O2). DCs were then harvested for staining with the APC-labeled CD11c 
(BioLegend, Cat no. 117310), the Pacific Blue-labeled CD80 (BioLegend, 
Cat no. 104724) and the phycoerythrin (PE)-labeled CD86 antibodies 
(BioLegend, Cat no. 105008), and analyzed by flow cytometry. 

2.13. In vitro macrophage polarization 

Tumor cells were seeded in the transwells (upper chamber) and 
incubated with catalase, CaCO3 NPs, or CAT@CaCO3 NPs (catalase 100 
μg/mL, the concentration of CaCO3 NPs was calculated based on the 
loading efficiency of catalase) for 24 h. Macrophages were seeded in the 
24-well plates (lower chamber) and cultured with the treated cells in the 
transwells for another 24 h. All cells were cultured in the pH 6.5 culture 
media containing 100 μM H2O2 in a hypoxic atmosphere (5 % CO2, 94 % 
N2, 1 % O2). The macrophages were harvested for staining with the PE- 
labeled CD11b (BioLegend, Cat no. 101208) and the Pacific Blue-labeled 
CD80 (BioLegend, Cat no. 104724) for M1 macrophages, or the PE- 
labeled CD11b (BioLegend, Cat no. 101208) and the Brilliant Violet 
421-labeled CD206 antibodies (BioLegend, Cat no.141717) for M2 
macrophages, and analyzed by flow cytometry. 

2.14. In vivo biodistribution 

To prove the gelling of Pluronic hydrogel after injection into mice, 
the 20 % Pluronic solution (loaded with Rhodamine B, a red dye for 
visualization) was injected to the mammary pat of a mouse. The mouse 
was then euthanized, and the injection site was exposed to show 
whether the Pluronic solution gelled. 

To establish a breast cancer model, 4T1 cells were inoculated under 
the second left nipple of female BALB/c mice (1 × 106 cells/mouse). 
When the tumor volumes reached 50–100 mm3, 100 μL of aqueous 

solution or 20 % Pluronic F127 hydrogels containing FITC-CAT@CaCO3 
NPs were intratumorally injected. The in vivo imaging system (IVIS) 
spectrum (PerkinElmer) was used to capture the fluorescent images. 
Images of mice was taken at 2, 4, 8 and 12 h after the injection. 

2.15. Intratumoral pH 

The 4T1 triple-negative breast cancer (TNBC) mouse model was 
established as described above. When the tumor volumes reached 
50–100 mm3, 100 μL of PBS or 20 % Pluronic F127 hydrogels containing 
catalase, CaCO3 NPs, or CAT@CaCO3 NPs (10 mg/kg mouse, the con-
centration of CaCO3 NPs was calculated based on the loading efficiency 
of catalase, termed as CAT-gel, CaCO3 NPs-gel, and CAT@CaCO3 NPs- 
gel, respectively) was intratumorally injected. The injections were per-
formed twice with a 48-h interval. 24 h after the second injections, 1 
nmol of SNARF-4F in 200 μL of PBS was intratumorally injected. Mice 
were euthanized 20 min after the intratumoral injections to harvest the 
tumors. All the tumors were cut in half and imaged with IVIS Spectrum. 

2.16. Intratumoral ROS level and HIF-1α expression 

The 4T1 TNBC mouse model was established as described above. 
When the tumor volumes reached 50–100 mm3, 100 μL of PBS, CAT-gel, 
CaCO3 NPs-gel, or CAT@CaCO3 NPs-gel (catalase 10 mg/kg mouse, the 
concentration of CaCO3 NPs was calculated based on the loading effi-
ciency of catalase) was intratumorally injected. The injections were 
performed twice with a 48-h interval. Tumors were extracted 24 h after 
the second injections and the frozen sections were prepared. The sec-
tions were stained with H2DCFDA for ROS level evaluation or stained 
with HIF-1α primary antibody (NOVUS, Cat no. NB100-654) and the 
corresponding fluorescent secondary antibody (Invitrogen, fluorescein- 
labeled, Cat no. F2765) for HIF-1α detection. 

Tumor tissues were also shredded and homogenized. The tissue ho-
mogenate was lysed and centrifugated at 12000 g for 10 min to obtain 
the supernatant containing the proteins. The protein samples from the 
tumor tissues were separated using SDS-PAGE. HIF-1α and β-tubulin 
were stained with corresponding primary antibodies (HIF-1α: NOVUS, 
Cat no. NB100-654; β-tubulin: Invitrogen, Cat no. PA5-16863) and the 
secondary antibody (Invitrogen, HRP-labeled, Cat no. 65–1620) and 
shown on the films. 

2.17. Anti-tumor effect in orthotopic models 

The 4T1 TNBC mouse model was established as described above. 
When the tumor volumes reached 50–100 mm3, mice were randomly 
divided into 5 groups. 100 μL of PBS, CAT-gel, CaCO3 NPs-gel, CAT@-
CaCO3 NPs-gel, 20 % Pluronic F127 hydrogels containing aPD-1 (termed 
as aPD-1-gel), or CAT@CaCO3 NPs with aPD-1 (termed as CAT@CaCO3 
NPs& aPD-1-gel) (catalase 10 mg/kg mouse, the concentration of CaCO3 
NPs was calculated based on the loading efficiency of catalase, aPD-1 
150 μg/mouse) was intratumorally injected. Six injections per mouse 
were given every two days. Tumor volumes and body weights of the 
mice were recorded. Two days after the last injections, blood was 
collected from mice and then the mice were euthanized. After eutha-
nasia, the tumors were extracted and weighed and used for immuno-
logical analyses. The livers, spleens, kidneys, lungs, and hearts were 
collected for paraffin sections and hematoxylin and eosin (H&E) 
staining. 

2.18. Anti-tumor effect in distant models 

To establish the distant 4T1 TNBC mouse models, 4T1 cells were 
inoculated under both the second left and right nipples of female BALB/c 
mice (1 × 106 cells/site) [56]. When the tumor volumes reached 50–100 
mm3, mice were randomly divided into 2 groups. 100 μL of PBS or 
CAT@CaCO3 NPs& aPD-1-gel (catalase 10 mg/kg mouse, aPD-1 150 
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μg/mouse) was intratumorally injected into the left-side tumors 
(designated as the “primary tumors”). The right-side tumors remained 
untreated (designated as the “distant tumors”). Six injections per mouse 
were given every two days. Tumor volumes and body weights of the 
mice were recorded. Two days after the last injections, blood was 
collected from mice and then the mice were euthanized. After eutha-
nasia, the tumors were extracted and weighed and used for immuno-
logical analyses. 

2.19. Immunological analyses 

The collected tumors were shredded and ground on the cell strainers 
to harvest cells from the tumors after digestion in the enzyme solution 
(collagenase IV 2 mg/mL and deoxyribonuclease (DNase) I 0.2 mg/mL). 
In the case of distant tumor models, the cells in the blood were also 
isolated after lysis of red blood cells. The cells from blood and tumors 
were incubated with antibodies for various cell analyses using flow 
cytometry. The applied antibodies were listed below. 

CRT exposure: CRT primary antibody (Invitrogen, Cat no. PA3-900) 
and the corresponding fluorescent secondary antibody (Invitrogen, 
Alexa Fluor 555-labeled, Cat no. A21428); All immune cells: CD45 
(BioLegend, fluorescein isothiocyanate (FITC)-labeled, Cat no. 103108); 
DC maturation: CD11c (BioLegend, APC-labeled, Cat no. 117310), CD80 
(BioLegend, Pacific Blue-labeled, Cat no. 104724), CD86 (BioLegend, 
PE-labeled, Cat no. 105008); T cells activation and infiltration: CD3 
(BioLegend, Pacific Blue-labeled, Cat no.100214), CD4 (BioLegend, 
APC-labeled, Cat no.100412), CD8 (BioLegend, PE-labeled, Cat no. 
140408); M2 macrophages: F4/80 (BioLegend, APC-labeled, Cat no. 
123116), CD11b (BioLegend, PE-labeled, Cat no. 101208), CD206 
(BioLegend, Brilliant Violet 421-labeled, Cat no. 141717); M1 macro-
phages: F4/80 (BioLegend, APC-labeled, Cat no. 123116), CD11b (Bio-
Legend, PE-labeled, Cat no. 101208), CD80 (BioLegend, Pacific Blue- 
labeled, Cat no. 104724); Treg: CD3 (BioLegend, Pacific Blue-labeled, 
Cat no. 100214), CD4 (BioLegend, APC-labeled, Cat no.100412), 
Foxp3 (BioLegend, PE-labeled, Cat no.126404); MDSC: CD11b (Bio-
Legend, PE-labeled, Cat no. 101208), Gr-1 (BioLegend, APC-labeled, Cat 
no. 108412). 

The frozen sections of the tumor tissues were prepared. The sections 
were stained with CRT (Invitrogen, Cat no. PA3-900) or HMGB1 primary 
antibody (Invitrogen, Cat no. PA5-27378) and the fluorescent secondary 
antibody (Invitrogen, Alexa Fluor 555-labeled, Cat no. A21428). The 
fluorescent images were captured using LSCM(Observer. Z1, Zeiss). The 
fluorescent intensities of CRT and HMGB1 were quantified using ImageJ 
software. 

The levels of cytokines were also analyzed. 0.3 g of tumor tissues 
were shredded and homogenized. The tissue homogenate was lysed and 
centrifugated at 12000 g for 10 min to obtain the supernatant. Similarly, 
serum from the blood in mice was also collected. The supernatant and 
serum were used to detect the levels of interferon (IFN)-γ, tumor necrosis 
factor (TNF)-α, IL-6, IL-10, and IL-12 using enzyme-linked immunosor-
bent assay (ELISA) kits: IFN-γ (BioLegend, Cat no. 430801), TNF-α 
(BioLegend, Cat no. 430901), IL-6 (BioLegend, Cat no. 431301), IL-10 
(BioLegend, Cat no. 431411), and IL-12 (BioLegend, Cat no. 433604). 

2.20. Statistical analysis 

All results were presented as mean values ± standard error of the 
mean. Tukey post-hoc tests and one-way analysis of variance (ANOVA) 
were used for multiple comparisons. Student’s t-test was used for two- 
group comparisons. All statistical analyses were carried out with 
Prism software package. The threshold for statistical significance was p 
< 0.05. 

3. Results 

3.1. Characterizations of CAT@CaCO3 NPs and TME remodeling in vitro 

CAT@CaCO3 NPs was prepared via co-precipitation method and 
stabilized with PBLA-PEG [57,58]. L-aspartate acid in PBLA can provide 
the complexing sites to Ca2+ for nucleation and growth and offer steric 
hindrance to improve the colloidal stability and dispersibility of the 
nanoparticles [59–63]. The size of CAT@CaCO3 NPs was 187 ± 26 nm at 
pH 7.4 with and without H2O2 by dynamic light scattering (DLS; 
Fig. 2A), while it decreased to ~40 nm at pH 6.5, a pH miming TME 
acidity [20,64,65], suggesting that CaCO3 NPs remained stable in H2O2 
solution but can be degraded gradually in the acidic tumor microenvi-
ronment. The response to acidic and/or ROS environment of CAT@-
CaCO3 NPs was also implied by the changes of zeta-potentials of NPs, 
which were negative in either pH 7.4 or in H2O2 solutions but was 
reversed to the positive charge in acidic environment (Fig. 2B). This pH 
responsiveness was also confirmed by morphological changes of 
CAT@CaCO3 NPs. As shown in Fig. 2C, illustrating the size of CAT@-
CaCO3 NPs and the breaking apart of CAT@CaCO3 NPs in acidic envi-
ronment. However, NP size remained unchanged in H2O2 solution, 
indicating that H2O2 did not influence the structure of CAT@CaCO3 NPs. 
The catalase loading level in CaCO3 NPs was ~4.0 %. 

Taking advantage of pH responsiveness of CaCO3 NPs, we studied 
whether CaCO3 NPs can effectively consume protons and elevate or 
normalize pH to 7.4. Encouraging, it was observed that in the acidic 
solution (pH 6.5), both CaCO3 NPs and CAT@CaCO3 NPs neutralized the 
pH of the solutions (Fig. 2D). We then investigate the enzymatic activity 
of CAT in CAT@CaCO3 NPs. In the H2O2 solution, catalase and CAT@-
CaCO3 NPs effectively scavenged the H2O2 (Fig. 2E) and generated O2 
(Fig. 2F). The relief of hypoxia by CAT@CaCO3 NPs was further 
confirmed by the decreased expression of the HIF-1α in cells treated with 
CAT@CaCO3 NPs (Fig. 2G and H, S2 and S3), as HIF-1α is stable under 
hypoxic conditions while degraded in normoxic environments [66]. 
Hence, CAT@CaCO3 NPs possessed excellent abilities to normalize pH, 
degrade ROS and relieve hypoxia, and these abilities were in a positive 
relation with the concentration of CAT@CaCO3 NPs (Fig. S4). 

CAT@CaCO3 NPs exhibited a pH dependent release profile, where 
CAT was released faster in acidic conditions (Fig. 2I and S5), which also 
indicated pH-responsiveness of CaCO3 NPs. It was also speculated 
CaCO3 NPs can prevent CAT from rapid degradation in vivo, thus 
maximizing the catalytic activity of CAT. As shown in Fig. 2J, it was 
found that CAT in CAT@CaCO3 NPs maintained robust catalytic ability 
in degrading H2O2 in the presence of protease K, while CAT alone was 
quickly degraded. Although the catalytic ability of CAT decreased due to 
the gradual release of CAT from CAT@CaCO3 NPs in acidic condition, it 
was still significantly higher than of CAT alone, emphasizing the 
importance of CaCO3 NPs as the vehicle to deliver catalase. 

3.2. CAT@CaCO3 NPs-mediated cytotoxicity and DAMPs release and 
induction of anti-tumor immune response in vitro 

As shown in Fig. 3A, 4T1 cells incubated with FITC-tagged CAT@-
CaCO3 NPs exhibited efficient uptake of CaCO3 NPs. CaCO3 NPs with or 
without CAT after degradation either in the acidic TME or in endo- 
lysosomes released Ca2+ and induced Ca2+ accumulation (Fig. 3B). 
Ca2+ overload impaired the mitochondria function, which was reflected 
by the decreased ratio of JC-1 aggregate to monomer in the mitochon-
dria (Fig. 3C) [38,67]. It has been reported that Ca2+ overload can 
induce cell deaths (Fig. S6) and the release of DAMPs from tumor cells, 
thereby initiating anti-tumor immune response, which was detailed later 
[39,68,69]. It was worth noting that 4T1 cells incubated with Ca2+ so-
lution did not show the intracellular Ca2+ accumulation and mito-
chondrial damage, emphasizing the necessity of employing CaCO3 NPs 
to lead to calcium overload in cells. 

After incubated with CAT@CaCO3 NPs or blank CaCO3 NPs, 4T1 cells 
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exhibited increased exposure of CRT on the surface of cell membrane 
(Fig. 3D), the secretion of ATP (Fig. 3E), and the release of HMGB1 from 
nuclear to cytosol (Fig. 3F and S7). These DAMP signals and the 
simultaneously released TAAs can maturate DC and can be processed to 
T cells by the maturated DC to elicit the immune responses [70–74]. 

As demonstrated earlier that CAT@CaCO3 NPs can normalizing pH, 
ROS level, and O2 levels in TME, we studied whether these changes 
would influence the activity or phenotypes of immune cells. CAT@-
CaCO3 NPs-treated 4T1 cells significantly elevated the percentage of 
mature DCs (CD80+CD86+ in CD11c+; Fig. 3G) compared with control, 
free catalase. Furthermore, CAT@CaCO3 NPs treatment led to the po-
larization of macrophages from the anti-inflammatory M2 phenotype to 
the pro-inflammatory M1 (Fig. 3H). M1 macrophages can express major 
histocompatibility complex class II for antigen presentation [75–77]. 

3.3. CAT@CaCO3 NPs for TME remodeling in vivo 

Biodistribution of intratumorally injected CAT@CaCO3 NPs was 
evaluated. To prolong the retention of NPs in tumor tissues, we exploited 
the injectable Pluronic hydrogel. Pluronic hydrogel possesses the ad-
vantages including the excellent biocompatibility, injectability, and 
thermos-sensitivity (remaining the liquid state at room temperature but 
gelling at body temperature, Fig. S8A), which has been applied in many 
studies including for intratumoral injections [78–82]. FITC-CAT@-
CaCO3 NPs in Pluronic hydrogel were injected into 4T1 TNBC tumors. 
CAT@CaCO3 NPs in hydrogels showed significant longer tumor reten-
tion (Fig. S8B). 

SNARF-4F, the indicator of the intratumoral pH change, undergoes a 
pH-dependent fluorescence emission swift [83–85]. Thus, the elevated 
ratio of fluorescent intensities at 640 nm–580 nm indicates the pH 
elevation. As illustrated in Fig. 4A and B, tumors treated with CaCO3 
NPs-gel and CAT@ CaCO3 NPs-gel exhibited higher ratios than control 
and CAT-gel groups, indicating that the intratumorally injected CaCO3 
NPs elevated the pH in tumor tissues. ROS levels in TME were shown in 
Fig. 4C and D. Lower ROS levels were found in CAT-gel and CAT@-
CaCO3 NPs-gel groups. Furthermore, HIF-1α expression in tumor tissues 
were investigated (Fig. 4E–G and S9). Lower expression of HIF-1α was 
also detected in both CAT-gel and CAT@CaCO3 NPs-gel groups, indi-
cating that CAT effectively relieved the hypoxic microenvironment in 
tumor tissues. All these results supported that CAT@CaCO3 NPs treat-
ment can successfully remodel the TME, providing an advantageous 
environment for the activation of anti-tumor immunity. 

3.4. CAT@CaCO3 NPs treatment for inhibition of tumor growth 

The anti-tumor efficacy of CAT@CaCO3 NPs was evaluated on the 
orthotopic 4T1 TNBC mouse model. Saline (as the control), CAT-gel, 
CaCO3 NPs-gel, or CAT@CaCO3 NPs-gel was intratumorally injected 
(Fig. S10A). CAT@CaCO3 NPs-gel exhibited the best control of tumor 
growth compared with control, CAT-gel, and CaCO3 NPs-gel groups 
(Fig. 5A and B and S10B). No change in body weights was observed in 
treatment groups (Figs. S10C and S10D), and the H&E analyses of 
hearts, livers, spleens, lungs and kidneys showed no obvious toxicity to 
the major organs (Fig. 5C), which confirmed the excellent 

Fig. 2. Characterizations of CAT@CaCO3 NPs and TME remodeling. (A) Particle sizes of CAT@CaCO3 NPs at pH 7.4, pH 6.5, H2O2 solution (50 mM) or pH 6.5 
with H2O2 (50 mM). (B) Zeta-potentials of CAT@CaCO3 NPs at pH 7.4, pH 6.5, H2O2 solution (50 mM) or pH 6.5 with H2O2 (50 mM). (C) TEM images of 
CAT@CaCO3 NPs at pH 7.4 or pH 6.5. (D) pH elevation, (E) H2O2 scavenging, and (F) oxygen generation by different formula of NPs in solution. (G) Intracellular 
hypoxia levels in 4T1 cells. The fluorescent intensity of Ru (dpp) is negatively correlated with oxygen levels. (H) Semi-quantitative analyses of Western blot analyses 
of HIF-1α and β-tubulin in 4T1 cells. (I) In vitro CAT releasing profiles from CAT@CaCO3 NPs at pH 7.4 or pH 6.5. (J) Catalytic abilities of CAT and CAT@CaCO3 NPs 
with or without the presence of protease at pH 7.4 or pH 6.5. *p < 0.05, **p < 0.01, ***p < 0.005. n = 3. Data are presented as mean ± standard error of the mean. 
Statistical significance was calculated via ANOVA with a Tukey post hoc test for multiple comparisons. a.u., arbitrary unit. 
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biocompatibility of CAT@CaCO3 NPs. 
Tumor tissues were collected for immunological analyses. The 

increased CRT exposure on tumor cells and the release of HMGB1 from 
nucleus to cytosol were observed in CaCO3 NPs-treated groups (Figs. S11 
and S12A). An elevated level of DC maturation (CD80+CD86+ in 
CD11c+; Fig. 5D) and anti-tumor immune activation (CD45+; Fig. 5E 
and S12K) were shown in the CAT@CaCO3 group. CAT@CaCO3 NPs 

treatment also led to efficient polarization of tumor-associated macro-
phages from the immune-suppressive M2 phenotype (F4/80+CD206+; 
Figs. S12B and S12N) to the immune-supportive M1 phenotype (F4/ 
80+CD80+; Fig. 5I, S12C and S12M). Furthermore, the number of tumor- 
infiltrating lymphocytes (TIL; CD3+; Fig. 5F) increased in CAT@CaCO3 
NPs-treated tumors, where the highest percentages of helper T lym-
phocytes (CD3+CD4+; Fig. 5G and S12L) and cytotoxic T lymphocytes 

Fig. 3. CAT@CaCO3 NPs-mediated DAMPs release and induction of anti-tumor immune response in vitro. (A) Cellular uptake of CAT and CAT@CaCO3 NPs by 
4T1 cells. (B) Intracellular Ca2+ levels and (C) mitochondrial damage in 4T1 cells. (D) Intensity of surface-exposed CRT, (E) relative ATP content, and (F) relative 
HMGB1 intensity in 4T1 cells. (G) Flow cytometry analyses of matured DCs (CD80+CD86+ in CD11c+) after NP treatment. (H) Flow cytometry analyses of M2 
macrophages (CD11b+CD206+) and M1 macrophages (CD11b+CD80+). *p < 0.05, **p < 0.01, ***p < 0.005. n = 3. Data are presented as mean ± standard error of 
the mean. Statistical significance was calculated via ANOVA with a Tukey post hoc test for multiple comparisons. a.u., arbitrary unit. 

Fig. 4. CAT@CaCO3 NPs for TME remodeling in vivo. (A) IVIS images of tumors and (B) the ratio of fluorescent intensities at Em 640 nm–580 nm indicating pH in 
TME after receiving intratumoral injections. The elevated ratio of fluorescent intensities at 640 nm–580 nm indicates the pH elevation. (C) LSCM images and (D) 
semi-quantitative analyses of ROS levels in tumor tissue after different treatments. (E) LSCM images and (F) semi-quantitative analyses of HIF-1α expression in frozen 
sections of tumors after different treatments. (G) Semi-quantitative analyses of the Western blot analysis of HIF-1α and β-tubulin in tumors after different treatments. 
Scale bar, 50 μm *p < 0.05, **p < 0.01, ***p < 0.005. n = 3. Data are presented as mean ± standard error of the mean. Statistical significance was calculated via one- 
way ANOVA with a Tukey post hoc test for multiple comparisons. a.u., arbitrary unit. 
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(CD3+CD8+; Fig. 5H) were also observed. Meanwhile, Tregs 
(CD3+CD4+Foxp3+; Figs. S12D–F and S12O), the immunosuppressive T 
cells in the TME, significantly decreased after in the CAT@CaCO3 NPs 
group. In addition, the number of immunosuppressive MDSCs 
(CD11b+Gr-1+; Figs. S12G and S12P) was also significantly decreased 
induced by CAT@CaCO3 NPs. The intratumoral levels of cytokines were 
detected by ELISA. The highest levels of IFN-γ (Fig. 5J), TNF-α (Fig. 5K), 
IL-6 (Fig. 5L), and IL-12 (Fig. 5M), the pro-inflammatory cytokines, and 
the lowest concentration of IL-10 (Fig. 5N), an anti-inflammatory 
cytokine, were all detected in CAT@CaCO3 NPs-treated tumor tissues. 
Besides, T cells in blood were also analyzed. CAT@CaCO3 NPs displayed 
the highest percentages of CD3+ T cells TIL (Fig. S12H), including both 
helper T lymphocytes and cytotoxic T lymphocytes (Figs. S12I and S12J 
and S12Q), suggesting that local CAT@CaCO3 NPs treatment can 
awaken the systemic anti-immune immunity for treating potential 
metastatic disease. These immunological analysis results revealed that 
CAT@CaCO3 NPs can effectively activate the anti-tumor immunity by 
increasing and activating immune-supportive cells (i.e., mature DC, T 
lymphocytes, and M1 TAM) and decreasing the immunosuppressive 
cells (i.e., M2 TAM, Treg, MDSC), thereby providing clear rationale to 
combine CAT@CaCO3 NPs with immune checkpoint inhibitors, such as 
aPD-1, to further enhance T-cell mediated anti-tumor efficacy. 

Therefore, the anti-tumor efficacy of combining CAT@CaCO3 NPs 
and aPD-1 antibody was investigated. Saline (as the control), CAT@-
CaCO3 NPs-gel, aPD-1-gel, or CAT@CaCO3 NPs&aPD-1-gel was intra-
tumorally injected (Fig. S13A). Expectedly, this combination treatment 
further inhibited the tumor growth compared to CAT@CaCO3 NPs 

(Fig. 6A and B and Fig. S13B). No obvious toxicity of the injections was 
reflected by the constant body weight (Figs. S13C and S13D) and healthy 
tissues in major organs (hearts, livers, spleens, lungs and kidneys) in the 
H&E-stained sections (Fig. S13E). Immunological analysis was also 
conducted (Fig. 6C–K and S14). The percentages of TIL (Fig. 6C), 
including helper T lymphocytes (Fig. 6D and S14O) and cytotoxic T 
lymphocytes (Fig. 6E), were significantly elevated in the combination 
groups. Similar trends were also found in T cells in blood (Fig. S14J-L 
and S14T). It was also observed that the combination treatment further 
promoted the polarization of TAMs from M2 phenotype to M1 pheno-
type (Fig. 6F, S14D, S14E, S14P and S14Q) and the decrease of Treg cells 
(Figs. S14F–H and S14R) and MDSC (Figs. S14I and S14S) in tumor 
tissues. In terms of cytokines, the combination group further promoted 
the secretion of IFN-γ (Fig. 6G), TNF-α (Fig. 6H), IL-6 (Fig. 6I), and IL-12 
(Fig. 6J, the pro-inflammatory cytokines, and declined the level of IL-10 
(Fig. 6K), the anti-inflammatory cytokine, compared with CAT@CaCO3 
NPs. 

3.5. The combination of CAT@CaCO3 NPs and aPD-1 for treating distant 
tumors 

After confirming that the combination of CAT@CaCO3 NPs and aPD- 
1 can effectively activate the local anti-tumor immunity, we investigated 
whether this local treatment can activate the systemic immunity to 
combat distant tumors. Mice were inoculated with two separated 4T1 
tumors as described as a simplified distant tumor model for experiments 
[86,87]. The left-side tumors received CAT@CaCO3 NPs&aPD-1 

Fig. 5. In vivo antitumoral effect of CAT@CaCO3 NPs on the orthotopic tumor model. (A) Average and (B) individual tumor growth kinetics in different groups 
(n = 7–10). (C) H&E-stained sections of hearts, kidneys, livers, lungs, and spleens from TNBC-bearing mice after treatment. Scale bar, 500 μm. (D) Flow cytometry 
analysis of matured DCs (CD80+CD86+ in CD11c+). Percentages of (E) all immune cells (CD45+), (F) TIL (CD3+) and (G) CD4+ T cells (CD4+CD3+) in tumors. (H) 
Flow cytometry analysis of CD8+ T cells (CD8+ in CD3+) in tumors. (I) Percentages of M1 macrophages (F4/80+CD80+) in tumors. Levels of (J) IFN-γ and (K) TNF-α, 
(L) IL-6, (M) IL-12, and (N) IL-10 in 50 mg tumor tissues. *p < 0.05, **p < 0.01, ***p < 0.005. n = 4. Data are presented as mean ± standard error of the mean. 
Statistical significance was calculated via one-way ANOVA with a Tukey post hoc test for multiple comparisons. 
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treatment while the right-side tumors remained untreated (Fig. S15A). 
local CAT@CaCO3 NPs&aPD-1 treatment on one tumor exhibited robust 
efficacy in inhibiting tumor growth of untreated tumors (Fig. 7A and B 
and Fig. S15B). The immunological profiling on primary and distant 
tumors as well as blood was evaluated (Fig. 7C-Q and S16). The numbers 
of immune cells in both primary and distant tumors significantly 
increased in the treated group (Fig. 7C and S16F). The numbers of the 
immune-supportive cells, including TIL (Fig. 7D), CD4+ T cells (Fig. 7F 
and S16F), CD8+ T cells (Fig. 7E), and M1 macrophages (Fig. 7G and 
S16H) were elevated, while the percentages of immunosuppressive cells 
like M2 macrophages (Fig. 7H, S16A and S16I), Tregs (Figs. S16B-D and 
S16J), and MDSC (Figs. S16E and S16K) decreased in both primary and 
distant tumors in the treated group, indicating that the anti-tumor im-
munity was also effectively activated in distant tumor areas after the 
local treatment of primary tumors. The evident elevation of TIL, CD4+ T 
cells and CD8+ T cells was observed in the blood in the treated group 
(Fig. 7I-L), demonstrating that the systemic anti-tumor immunity was 
successfully activated. Additionally, the obvious increase in the levels of 
pro-inflammatory cytokines, including IFN-γ (Fig. 7M and S16L), TNF-α 
(Fig. 7N and S16M), IL-6 (Fig. 7O and S16N) and IL-12 (Fig. 7P and 
S16O), and the decline of anti-inflammatory IL-10 (Fig. 7Q and S16P) 
were detected in the treated animals. 

4. Discussion 

In this article, we reported a TME-responsive and immunothera-
peutic CAT@CaCO3 NP as a simple and versatile multi-modulator to 
remodel TME for enhanced ICB therapy. Specifically, CaCO3 NPs effec-
tively consumed the excessive protons in the acidic TME to normalize 
the TEM pH. CAT catalyzed the decomposition of ROS rich in the TME 
and generated oxygen, thereby simultaneously decreasing ROS levels 
and relieving hypoxia in the TME. Meanwhile, Ca2+ released from 
CaCO3 NPs caused Ca2+-mediated DAMP release, thereby initiating 
effective antigen presentation by DCs. Moreover, the immunosupportive 
TME shaped by CAT@CaCO3 NPs promoted the polarization of TAMs to 
the M1 phenotype, further facilitating tumor antigen presentation. 
Consequently, T-cell-mediated anti-tumor immune responses were then 
activated and further augmented by aPD-1 therapy. The local treatment 
of the combined CAT@CaCO3 NPs and aPD-1 exhibited significant 
control of tumor growth of both treated (or primary) and untreated (or 
‘distant’) tumors, proving that this is a promising therapeutic method for 
enhancing cancer immunotherapy. 

While these results underscore clinical potential of this strategy, 
several considerations warrant exploration in future investigations. 
Firstly, the intratumoral delivery of the treatment, while feasible for 

Fig. 6. In vivo antitumoral effect of CAT@CaCO3 NPs combined with aPD-1. (A) Average and (B) individual tumor growth kinetics in different groups (n =
7–10). (C) Percentages of TIL (CD3+) and (D) CD4+ T cells (CD4+CD3+) in tumors. (E) Flow cytometry analysis of CD8+ T cells (CD8+ in CD3+) in tumors. (F) Ratio 
of M1 (F4/80+CD80+) to M2 macrophages (F4/80+CD206+). Levels of (G) IFN-γ, (H) TNF-α, (I) IL-6, (J) IL-12, and (K) IL-10 in 50 mg tumor tissues. *p < 0.05, **p 
< 0.01, ***p < 0.005. n = 4. Data are presented as mean ± standard error of the mean. Statistical significance was calculated via one-way ANOVA with a Tukey post 
hoc test for multiple comparisons. 
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superficial tumors like TNBC or melanoma, may require optimization for 
deeper tissue and organ tumors (e.g., liver, brain, and colon) that are not 
as easily amenable to intratumoral injections, although image-guided 
intratumoral approaches are possible [88–90]. Secondly, the effective-
ness of this combination strategy should be further assessed in more 
advanced preclinical models, such as patient-derived xenograft hu-
manized mouse models and/or larger animal models, necessitating po-
tential adjustments to the treatment regimen. Thirdly, given the 
variability in immune cell profiling within TME across different tumor 
models, exploring the combination of CAT@CaCO3 NPs with appropri-
ately selected immune checkpoint inhibitors becomes imperative. 
Lastly, the integration of strategies to overcome other physical barriers 
within the TME, such as the dense extracellular matrix [15,91–93], 
presents a promising avenue for further enhancement. 
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