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Abstract

Proper assessment of environmental resistance of animals is critical for the ability of researchers to understand how
variation in environmental conditions influence population and species abundance. This is also the case for studies of upper
thermal limits in insects, where researchers studying animals under laboratory conditions must select appropriate
methodology on which conclusions can be drawn. Ideally these methods should precisely estimate the trait of interest and
also be biological meaningful. In an attempt to develop such tests it has been proposed that thermal ramping assays are
useful assays for small insects because they incorporate an ecologically relevant gradual temperature change. However,
recent model-based papers have suggested that estimates of thermal resistance may be strongly confounded by
simultaneous starvation and dehydration stress. In the present study we empirically test these model predictions using two
sets of independent experiments. We clearly demonstrate that results from ramping assays of small insects (Drosophila
melanogaster) are not compromised by starvation- or dehydration-stress. Firstly we show that the mild disturbance of water
and energy balance of D. melanogaster experienced during the ramping tests does not confound heat tolerance estimates.
Secondly we show that flies pre-exposed to starvation and dehydration have ‘‘normal’’ heat tolerance and that resistance to
heat stress is independent of the energetic and water status of the flies. On the basis of our results we discuss the
assumptions used in recent model papers and present arguments as to why the ramping assay is both a valid and
ecologically relevant way to measure thermal resistance in insects.
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Introduction

Researchers investigating thermal tolerance in ectothermic

animals are often challenged when designing appropriate

laboratory assays. This is partly due to an inherent time by

temperature interaction where thermal stress accumulates over

time but also because particular time-temperature combinations

can elicit or fail to elicit plastic responses. Time therefore impacts

on thermal tolerance measures because loss of function or

mortality may be induced by either short and extreme temper-

atures or through longer and more moderate temperature

exposures [1–6]. Given this interaction it becomes difficult to

define a universal and ‘‘true’’ thermal limit. This problem is

further accentuated by the fact that animals display marked

hardening and acclimation responses where even very short pre-

exposures to heat or cold may alter the inherent thermal tolerance

[7–9]. Instead of addressing these issues directly by measuring a

matrix of thermal resistances using different exposure times and

temperatures, several research groups have chosen to integrate

these ‘‘problems’’ into their tests by exposing test animals to

temperatures that are gradually increased or decreased – so called

ramping assays [4,10–14]. The most important argument for using

ramping assays is that gradual exposures are more ‘‘ecologically

relevant’’, i.e. animals are exposed to gradually changing

temperatures in their natural environment (recently reviewed by

[15]). It has been highlighted how gradual exposure to increasing

or decreasing temperatures allows time for the expression of

physiological coping mechanisms [4,14] and depends on the actual

rate of temperature change [11,12,16]. This might not be possible

in assays where animals are exposed abruptly to extreme

temperatures [15].

The ramping approach was recently criticized by Rezende et al.

[17] and Santos et al. [18] who proposed that the estimate of

thermotolerance obtained from ramping techniques is confounded

by simultaneous and unwanted exposure to starvation and

dehydration stress. Rezende et al. [17] and Santos et al. [18]

especially emphasized that slow ramping of temperature is

problematic since this will inherently increase exposure time. This

issue arises because ramping assays commonly are performed by

placing individual insects in small closed containers that are

submerged in a water bath at a benign temperature after which

the temperature is gradually raised/decreased (Fig. 1). These

containers do typically not contain food or water. The models

presented by Rezende et al. [17] and Santos et al. [18] therefore

predict that water loss and energy expenditure impact (underes-

timate) the ‘‘true’’ thermal tolerance when this is obtained from a

ramping assay. They conclude that the problems associated with

starvation and desiccation are so profound that the ramping

method should generally be avoided (or at least the rate of

temperature change should be high). However these conclusions

were subsequently challenged in a comprehensive review by

Terblanche et al. [15] which summarized the existing literature
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regarding thermal tests of ectothermic animals and tested some of

the assumptions of the models used by Rezende et al. [17]. The

present paper adds to this discussion by specifically testing the

predictions formulated by Rezende et al. [17]. Thus in addition to

focusing on D. melanogaster, the focal species of the Rezende et al.

[17] and Santos et al. [18] papers, we also directly investigates the

putative impact of starvation and dehydration by measuring water

and energy stores of the insects before and after thermal tests and

we discuss some of the assumptions presented in the previous

model papers.

Based on empirical evidence we challenge the conclusions

drawn by Rezende et al. [17] and Santos et al. [18] in two ways.

First we use empirical data to investigate how ramping rate,

starvation and dehydration affect the estimate of heat tolerance in

D. melanogaster. These tests are designed to i) investigate if access to

water and food during gradual heat exposure alleviates the heat

stress experienced during ramping experiments and ii) investigate

if acute measures of heat tolerance are affected by pre-exposure to

starvation and dehydration. Second we discuss the assumptions

used by Rezende et al. [17] and Santos et al. [18] and propose that

different conclusions would have been reached in these studies if

more realistic assumptions were used in their models. Based on

these findings and arguments we conclude that ramping assays are

both valid and ecologically relevant measures to assess thermal

tolerance in D. melanogaster and similar sized arthropods. Although

low environmental humidity is an important stressor for small

insects and although high temperature severely limits desiccation

tolerance our results show that moderate desiccation and

starvation does not limit heat tolerance per se during short term

stress exposures experienced during ramping assays. We believe

this finding is relevant for the interpretation of how multiple

environmental stressors affect the fundamental niche of insects.

Materials and Methods

Experimental protocol for the empirical experiments
To test for the potential confounding role of food and water

deprivation during assessment of maximal thermal tolerance

(CTmax) in a ramping assay we performed two sets of

experiments. The focus on CTmax (and not critical thermal

minimum temperature) was chosen as high temperatures acceler-

ate metabolic rate and water loss and therefore CTmax is more

likely to be influenced by these confounding effects (See Fig. 2 for

an presentation of the major changes expected under these

experimental conditions). In the first experiment we exposed D.

melanogaster to a ramping experiment and compared the CTmax as

well as the level of dehydration and energy depletion in flies with

and without access to food and water during the test. In the second

set of experiments we pre-exposed flies to dehydration and/or

starvation stress prior to a test of the acute CTmax. This was done

to examine if/how water and energy status of the animal affected

acute heat tolerance.

A mass bred laboratory population of D. melanogaster was used in

the experiment. This population was created by mixing flies from

150 isofemale lines. The isofemale lines were started in May 2009

using F1 of flies collected in Coffs Harbour (New South Wales,

Australia) and were maintained for five generations before the

mass bred population was created. In all generations they were

reared on a standard oatmeal-sugar-yeast-agar Drosophila medium

under low to moderately high larval density conditions at 25uC,

relative humidity (RH) of 50% and 12 h light/12 h dark cycles.

Flies used in the experiments also developed at 25uC.

Experimental animals were controlled for density during

development by transferring 50 eggs into each vial (7 ml medium)

resulting in a density of 45 to 50 larvae per vial. Two to three days

after eclosion the flies were briefly anesthetised under CO2 and

mated females were collected for the experiments. The female flies

were then left to recover for 2–3 days before the experiments were

performed.

Measuring CTmax using temperature ramping with and
without access to food and water

It must be assumed that duration and therefore reduced

ramping rate will exacerbate the potential problems associated

with starvation and dehydration [15,17,18]. Thus, to test for the

effects on CTmax of food and/or water deprivation during such

test we performed two separate ramping assays where the flies

were exposed to gradually increasing temperature at a rate of 0.06

and 0.1uC min21, respectively. In each experiment a total of 75

individual female flies were quickly transferred to small screw-top

glass vials (5 ml) without the use of anaesthetics. Flies were

randomly allocated to one of three treatment groups (N = 25 flies)

where controls were placed in empty vials, while the other two

groups had access to either a droplet of agar (providing water) or

fly food (providing water and food) that was placed in the lid. Vials

were marked, and randomly placed in a rack which then was

submerged in a temperature controlled water tank at 25uC. The

water in the tank was continuously stirred by a pump to ensure

Figure 1. Schematic representation of thermal tolerance assays. A) Ramping procedure where temperature is gradually increased and the
critical thermal limit (CTmax) is registered as the temperature at which the animal is knocked out. In this study we employed two ramping rates of 0.1
and 0.06uC min21, respectively. B) Acute thermal tolerance is inferred from the temperature giving 50% acute knock down (flies are knocked down
within 5 min). By exposing groups of flies to a range of temperatures close to that giving 50% knock down, the acute CTmax is estimated from linear
regression.
doi:10.1371/journal.pone.0032758.g001
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homogeneity of the water temperature in the tank and the gradual

change of temperature was initiated immediately after vials were

submerged in the water bath. Flies were continuously monitored

to register the temperature at which they were totally immobilized

(knock down temperature - CTmax) (Fig. 1A).

Measuring acute CTmax after pre-exposure to starvation
and dehydration

To test the effects of starvation and dehydration on acute

temperature tolerance we tested starved, dehydrated and control

flies using a 5 min acute test. Prior to experiments the flies had

been divided randomly into 7 experimental groups. One group

remained under control conditions in food vials. Three groups

received 3, 6 or 9 h of desiccation, respectively. Here flies were

placed in empty vials in a large container with silica gel desiccant

(RH,5%) at a constant temperature of 25uC. The last three

experimental groups were placed in vials containing a water and

agar mixture whereby they had access to water, but no access to

food. Flies from these groups were exposed to starvation for 4, 10

and 16 h before the experiments were performed, respectively.

To measure the acute upper thermal limit, we placed individual

flies in 5 mL glass vials and transferred groups of 5 flies directly to

a water bath preset to a temperature aimed at giving more, less or

approximately 50% knock down after 5 min of exposure. The

proportion of flies knocked down was scored and the procedure

was repeated (5–7 times) over a range of temperatures for each

treatment group to allow for an assessment of the temperature at

which 50% of the flies were knocked down as estimated from

linear regression of the data (Fig. 1B).

Lipid and water content
To determine the effects of temperature ramping on the water

and energy budget of the flies a similar set of ramping assays (using

the same procedure as described above) were run subsequently.

Here we tested 50 female flies in each of the 3 experimental groups

(agar (water), food and empty vials). Flies were exposed to

gradually increasing temperatures until CTmax was reached

where-after they were flash frozen in liquid N2 before they were

weighed to nearest mg using a micro balance. From each

experimental group we obtained 6 samples containing 7–11 flies.

The samples were subsequently dried for 24 h at 60uC for

determination of dry mass. Subsequently the dried flies were

washed repeatedly in petroleum ether, and then re-dried to obtain

lean mass and total lipid content. Finally, the glycogen content was

measured as described below. Measurements of water, lipid and

glycogen content for the 7 experimental groups in the acute

experiment were performed in a similar manner.

Glycogen measurements
Glycogen content was measured as described by Overgaard et

al. [19]. In brief, 0.4 mL of 1 M NaOH was added to the sample

vial and the sample was mechanically homogenised. Hereafter the

samples were heated to 80uC for 3 h, thus extracting glycogen

while degrading free glucose. Glycogen in the sample was

subsequently digested to glucose for 2 h at 25uC in acetate buffer

(0.25 M, pH 4.5) containing 400 mg L21 amyloglucosidase (EC

3.2.1.3). Quantification of the glycogen store was carried out using

a spectrophotometrically based enzymatic test kit for glucose

(Glucose Gluc-DH, Diagnostic systems GmbH, Holzheim,

Germany) and calculated relative to glycogen standards that had

been subjected to the same extraction procedure as tissue samples.

Statistics
Differences in thermotolerance, dry mass and water-, lipid- and

glycogen- content between experimental groups in the ramping

experiment were tested with a two-way ANOVA using the factors

rate (0.06 or 0.1uC min21) and treatment (empty vials, agar

(water) or food). Differences in dry mass and water-, lipid-, and

glycogen content between experimental groups used to assess

acute CTmax were tested using a one-way ANOVA. Data of acute

heat tolerance were fitted to a generalized linear model (glm)

assuming a binomial distribution and using a logit-link function

(logistic regression) using the open source statistical software

package R v. 2.13.1 (http://www.r-project.org). Test for signifi-

cance of temperature and treatment was performed using Wald

‘chi square’ tests. Associated LT50 (with S.E.M) were calculated for

Figure 2. An example of the experimental conditions typically
used during a ramping experiment. A small insect (here
exemplified by a D. melanogaster female with a body-mass of 1 mg)
is placed in a small closed container (5 ml). The amount of oxygen,
carbon dioxide and water vapour are estimated using the assumption
that the fly is loaded into the container under conditions of normal
barometric pressure (760 mmHg), a room temperature of 20uC and a
relative humidity of 50%. The total water, lipid and glycogen content
are calculated on the basis of the empirical observations in this paper.
As highlighted by recent studies [15,17,18] it is important to consider
how thermal testing can potentially affect the energy and water
resources of animals and this is largely determined by the fluxes of
water and energy in the animal and obviously also by the conditions
under which the animals are tested. Immediately after the container is
closed the internal conditions in the container will start to change as a
consequence of the animal’s respiration and transpiration and as a
consequence of the change in temperature. Thus, the animal will
produce CO2 and water and use O2 while catabolizing its metabolic
energy reserves. The animal will also exchange water over the
respiratory and cuticular surfaces in a manner that is proportional to
the product of whole animal ‘‘conductance’’ and the driving force for
this water loss (the difference in partial pressure of water between the
animal and its surroundings).
doi:10.1371/journal.pone.0032758.g002
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each treatment by the dose.p function in R. Unless otherwise

mentioned all values are mean 6 S.E.M. and statistical differences

are inferred from P,0.05.

Results

Measuring CTmax using temperature ramping with and
without access to food and water

CTmax is highly dependent on the methodology used. As seen

in Fig. 3A CTmax was significantly higher (P,0.001) in flies

exposed to the fast (0.1uC min21) compared to the slower

(0.06uC min21) ramping regime. Interestingly, we found that

CTmax was significantly higher (P,0.001) for flies placed in

empty vials compared to flies with access to either food or water

(agar). This difference was found under both ramping regimes

such that the CTmax was 0.2–0.3uC higher for the flies tested in

empty vials. Flies exposed to heat stress in empty vials also lost

significantly more water (Fig. 3B, P,0.001) than flies with access

to food or water. We found no treatment differences between our

3 experimental groups with regard to dry mass, lipid or glycogen

content after the heat exposure (Figs. 3C–E). However, flies

subjected to fast ramping (0.1uC min21) had a glycogen content

that was significantly lower than flies ramped at a slower rate

(0.06uC min21).

Measuring acute CTmax after pre-exposure to starvation
and dehydration

The proportion of flies knocked down by acute heat exposure

was highly dependent on temperature (P,0.0001) for all treatment

groups. However our estimates of CTmax (from the temperature

at which 50% of the flies are knocked down) were independent of

pre-treatment prior to the test (Fig. 4A). Thus all estimates fell

close to 41.2–41.3uC and there were no significant differences

between treatment groups. The pre-treatments significantly

affected the dry mass, water-, lipid- and glycogen content of flies

(Figs. 4B–E). Water content fell significantly after 3 h of

dehydration and was lowest after 6 and 9 h of dehydration, while

the flies with access to agar (i.e. starved but not dehydrated) did

not differ from flies held at control conditions with access to food.

There was a tendency for dry mass to decrease with exposure to

starvation/dehydration and this was also partially manifested in a

reduced lipid content after prolonged starvation. However with

regard to lipid content we also found a lowered proportion in the

un-treated control group. Variable glycogen contents were

detected (Fig. 4E). No decline in glycogen content was observed

in starved flies, while in dehydrated flies there was a tendency

towards lower glycogen content compared to in the control group.

Discussion

As predicted by Rezende et al. [17] and Santos et al. [18] we

found that thermal assays of heat tolerance that involved gradual

heating (ramping assays) in a dry environment caused significant

reductions in water content. This clearly demonstrates that

ramping entails a dehydration event such that without water or

food in the sealed test tube the water content of flies was decreased

from around 0.8 to 0.7 mg H2O fly21 after ramping (Fig. 3B).

This water loss corresponded to 18% of the fly’s initial water store.

Importantly, we did not find empirical evidence for a negative

effect of dehydration on thermal tolerance and this result was

found regardless of the ramping rate employed (0.1 or 0.06uC -

min21). In contrast to the modeled prediction of Rezende et al.

[17] we actually found the flies ramped up in temperature without

water or food had a slightly increased CTmax compared to those

placed in empty vials. This finding is consistent with the results of

Terblanche et al. [15] which also challenged the model predictions

in Rezende et al. [17].

Rezende et al. [17] proposed that CTmax is reduced by the

concurrent water loss such that the ‘‘true’’ CTmax is reduced by

0.05uC per % of total water lost. In our experiment this would

correspond to a 0.9uC reduction in CTmax of flies ramped in

empty vials relative to those that retain their water status in the

food and agar vials. Instead we found that CTmax is actually

increased by 0.2–0.3uC for flies ramped in empty containers. This

seemingly positive effect of ramping in dry air is most likely a

secondary effect of the evaporative cooling that must have

occurred as a consequence of the water loss [20]. Based on these

findings we conclude that this level of dehydration does not reduce

CTmax during ramping.

We also addressed the predictions from the Rezende et al. [17]

and Santos et al. [18] papers by another independent approach

involving a short heat exposure (Fig. 4). Before we performed these

test we exposed some experimental groups to a pretreatment

consisting of either dehydration or starvation to test the predictions

of the Rezende et al. [17] and Santos et al. [18] model. According

to the results from their model dehydrated and/or starved flies

should perform worse in these tests. However, we found no

evidence to support this, suggesting that that the model or its

assumptions are flawed. Our pretreatments did induce water loss

and usage of glycogen/lipid reserves, but there was no difference

in heat tolerance between the experimental groups. Clearly, within

the range of dehydration and starvation stress induced in the

present study there was no confounding effects on heat tolerance

when assessed using acute short exposures to high temperature.

Overall our empirical findings do not agree with the conclusions

of Rezende et al. [17] and Santos et al. [18] and we propose that

this is related to the parameters used in their modeled predictions.

In insects water is lost by respiratory, cuticular or excretion

pathways [20,21] where respiratory and cuticular water loss is

driven by the partial pressure difference between the animal and

its surroundings. In their models Rezende et al. [17] use data on

water loss from Da Lage et al. [22] where flies are dehydration in

completely dry air (silica gel) but as pointed out by Terblanche et

al. [15] the ‘‘normal’’ experimental situation involves a much less

stressful dehydration event since flies are introduced into

experimental vials with a ‘‘normal’’ room humidity of 30–70%

RH (See Fig. 2). Heating will, all else being equal, obviously entail

an increasing partial pressure deficit of water as the drying power

of the air increases with temperature [20]. However, in a closed

system water loss from the insect will increase the surrounding

partial pressure of water thereby dampening the otherwise

increasing driving force for water loss at increasing temperatures.

Because of these countering events it can be hypothesized that the

driving force of water loss will increase, decrease or be constant as

a temperature ramping event takes place. The outcome will

ultimately depend on the size of the vial and on the total water

conductance of the insect. If the thermal test involves exposure to a

constant high temperature, then the driving force for water loss

will actually decrease as time passes (and water is lost) during the

test. In our system (see Fig. 2) the maximal amount of water that

can be lost by evaporative means in our 5 ml experimental

container is ,0.25 mg if the maximal temperature reached is

40uC. This is obviously a worst-case scenario and as seen in our

experiments water loss is actually lower. Furthermore some of this

water will come from the metabolic water released during

respiration, particularly if glycogen stores are used [23].

If dehydration is sufficiently severe then it will likely have a

negative effect on animal performance in general, and on thermal
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tolerance specifically. As discussed in Terblanche et al. [15] such

problems of dehydration are likely to increase as body-size

decreases (see also [20]). Dehydration in a ramping test may

therefore become a problem for smaller species or when using

slower rates of temperature change. However, for D. melanogaster,

the focal species of the Rezende et al. [17] and Santos et al. [18]

papers, this is unlikely to be a problem. A recent study [14]

investigated both acute (i.e. the ‘‘true’’ CTmax) and ramping

CTmax of 10 Drosophila species. If dehydration during the test is a

problem for this size class of insects then we would predict that the

confounding effects of dehydration were larger in small flies (i.e.

these flies would have a larger reduction in ramping CTmax vs.

Figure 3. Temperature of heat knock down (A), water content
relative to dry mass (dm) after thermal test (B), dry mass (dm)
(C), percentage lipid (D) and glycogen content (E) in flies (D.
melanogaster) exposed to gradual heating from 256C using a
rate of 0.16C min21 (black) and 0.066C min21 (grey), respec-
tively. Flies were divided in three experimental groups with access to

food, water (agar) or placed in empty vials (air). Statistical significant
differences in relation to ramping rate are indicated with an asterisk and
differences between treatment groups (food, agar or air) are illustrated
by dissimilar letters.
doi:10.1371/journal.pone.0032758.g003

Figure 4. Temperature of acute heat knock down (A), water
content relative to dry mass (dm) prior to thermal test (B), dry
mass (dm) (C) and percentage lipid (D) and glycogen content
(E) in flies (D. melanogaster) exposed acutely to high temper-
ature. Statistical significant differences between treatment groups are
indicated with dissimilar letters.
doi:10.1371/journal.pone.0032758.g004
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acute CTmax). However, this was not the case as the data actually

show a non-significant trend in the opposite direction.

Rezende et al. [17] and Santos et al. [18] also suggest that

depletion of energy stores can confound heat tolerance estimates

during the course of a ramping test or a long term static test.

However, in contrast to the predictions from these papers we

found little evidence for depletion of energy reserves during

ramping experiments. Thus, dry mass, lipid or glycogen reserves

did not differ between treatment groups (Fig. 3C–E) nor were

levels lower than in un-treated flies. Using a set of assumptions

Rezende et al. [17] estimate an aerobic metabolism of up to

,44 mL O2 for a 1 mg fly tested under conditions much similar to

those used in the present study. This overall metabolism would

correspond to the catabolism of 52 or 22 mg of carbohydrate or

lipid, respectively [24] which should be seen as a detectable

reduction in dry- glycogen- or lipid mass. Again we did not find

support for this prediction. Thus, dry mass, glycogen and lipid

content were not affected by the absence/presence of food, nor

were these values lower than in un-treated control flies. In our

experiment involving pre-exposures to starvation or dehydration

we found reductions in dry, lipid and particularly glycogen

content, but as discussed above neither of these changes were

associated with a decrease in heat tolerance when tested using a

short duration test. In conclusion there is no empirical evidence to

suggest that starvation is a confounding factor in assessment of

CTmax in D. melanogaster in ramping assays when employing rates

of temperature changes $0.06uC min21.

We propose that the discrepancy between the theoretical

prediction and the empirical observation resides largely in the

model assumptions in Rezende et al. [17] and Santos et al. [18].

For their calculations of metabolism during a ramping test

Rezende et al. [17] used an estimate of metabolic rate of 4.2 ul

O2 mg21 h21 at 18uC from Berrigan & Partridge [25]. This

estimate of metabolic rate is in the high end of the literature values

for D. melanogaster. After controlling for temperature using a Q10 of

2 we found that Djawdan et al. [26], Marron et al. [23], Gibbs et

al. [21] and Overgaard et al. [27] all found estimates of metabolic

rate that were 1.5–3 times lower than the estimate used by

Rezende et al.[17]. The potential confounding effects of starvation

are obviously very sensitive to the assumptions of the model and it

is likely that a conclusion closer to the present empirical

observations would have been reached using a different (and

more realistic) set of assumptions. Along the same lines Santos et

al. [18] used a Q10 estimate of 3.5. This estimate is very different

from both the Q10 estimates of Berrigan & Partridge [25] and the

Q10 of 2.1 found in Drosophila in the range between 16 and 36uC in

our lab (Johannes Overgaard, unpublished observations). These

estimates correspond to what is generally found for insects (Q10 of

,2) (reviewed by [28]).

In addition to the proposed confounding factors of starvation

and dehydration, Rezende et al. [17] argue that the ramping assay

are not mimicking natural conditions precisely. Obviously we

agree on this point but argue that this assay constitutes a step in

the right direction for measuring ecologically relevant thermal

tolerance in the laboratory. For some species and questions this

might be an important consideration, whereas for other species

and questions the method used might not be important.

Arthropods undoubtedly experience major shifts in temperature

on a daily and seasonal basis [15]. The gradual temperature

changes that arthropods are exposed to in nature are in sharp

contrast to laboratory test conditions in static thermal assays where

animals are exposed to abrupt temperature changes, e.g.

transferred acutely from rearing temperatures around 20–25uC
to subzero temperatures or temperatures close to their upper

thermal limit [29]. We argue that ramping assays are more

ecologically relevant than static assays as they will better portray

the thermal tolerance of animals in the field, e.g. better reflecting

diurnal variation (see [4,15], for a discussion of this). Several recent

studies have shown that results obtained from traditional assays of

thermal resistance do not reflect ecological relevance. Release-

recapture studies have revealed that performance under natural

conditions can deviate strongly from results obtained based on

traditional laboratory assays [30,31] (but see [32]). These findings

emphasize the importance of developing more ecological relevant

thermal laboratory assays and ramping assays constitute one such

method that is useful for some animals, including drosophilids.

In accordance with earlier studies we found that slower ramping

rates resulted in lower estimates of CTmax [4,11,15,16]. We

propose a simple alternative explanation for these findings.

Imagine that over a given threshold, flies start to accumulate heat

damage. It is for example well established that heat shock proteins

are induced over a given temperature [33]. The further the animal

is above this threshold the faster the accumulation of damage and

similarly the longer duration over the threshold the more damage

accumulates. CTmax will then represent a measure of when a

certain amount of damage is accumulated. This simple model

could be expanded with inductions of protective mechanisms

(hardening) and thresholds for damage may also be changed by

thermal acclimation. This simple model can also explain reduced

CTmax as a function of duration and ramping rate and it can do

so in a manner that is independent of putative confounding effects

of dehydration and starvation.

Although we fully appreciate the potential problems of

dehydration and starvation highlighted by Rezende et al. [17]

and Santos et al. [18] we find no support for the conclusions in

these papers when testing D. melanogaster using ramping rates of

0.06 or 0.1uC min21. We encourage researchers to continue to

consider the general experimental conditions experienced in

laboratory assays of thermal resistance. As exemplified in Fig. 2

this is done most easily by appreciating the starting conditions for

an experiment and then giving some thought to how these

conditions may change over the course of the thermal tolerance

test. Even better, researchers could quantify experimentally the

putative impact of e.g. starvation, dehydration, hypoxia and

hypercapnia to investigate if these factors constitute a problem in

relation to the interpretation of results obtained from thermal

tolerance assays.
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