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Background. The incidence of sepsis has been increasing in recent years. The molecular mechanism of different pathogenic sepsis
remains elusive, and biomarkers of sepsis against different pathogens are still lacking. Methods. The microarray data of bacterial
sepsis, fungal sepsis, and mock-treated samples were applied to perform differentially expressed gene (DEG) analysis to identify
a bacterial sepsis-specific gene set and a fungal sepsis-specific gene set. Functional enrichment analysis was used to explore the
body’s response to bacterial sepsis and fungal sepsis. Gene set variation analysis (GSVA) was used to score individual samples
against the two pathogen-specific gene sets, and each sample gets a GSVA index. Receiver operating characteristic (ROC) curve
analysis was performed to evaluate the diagnostic value of sepsis. An independent data set was used to validate the bacterial
sepsis-specific GSVA index. Results. The genes differentially expressed only in bacterial sepsis and the genes differentially
expressed only in fungal sepsis were significantly involved in different biological processes (BPs) and pathways. This indicated
that the body’s responses to fungal sepsis and bacterial sepsis are varied. Twenty-two genes were identified as bacterial sepsis-
specific genes and upregulated in bacterial sepsis, and 23 genes were identified as fungal sepsis-specific genes and upregulated in
fungal sepsis. ROC curve analysis showed that both of the two pathogen sepsis-specific GSVA indexes may be a reliable
biomarker for corresponding pathogen-induced sepsis (AUC = 1:000), while the mRNA of CALCA (also known as PCT) have a
poor diagnostic value with AUC = 0:512 in bacterial sepsis and AUC = 0:705 in fungi sepsis. In addition, the AUC of the
bacterial sepsis-specific GSVA index in the independent data set was 0.762. Conclusion. We proposed a bacterial sepsis-specific
gene set and a fungal sepsis-specific gene set; the bacterial sepsis GSVA index may be a reliable biomarker for bacterial sepsis.

1. Introduction

Sepsis is a life-threatening disease characterized by systemic
inflammation caused by infection [1–3]. It usually occurs
after infection with virus, fungi, and bacteria [4]. At present,
sepsis incidence is estimated at 270 cases per 100,000 per-
sons/year followed by an approximately 26% mortality rate,
potentially 5.3 million deaths annually in the world [5, 6].
In recent years, great progress has been made in searching
for biomarkers of sepsis, including CALCA (also known as
PCT) [7], C-reactive protein [8, 9], and interleukin-6 [10]
which have been found to be biomarkers of sepsis. However,
their clinical application is limited [11] due to these bio-
markers that are nonpathogen-specific sepsis. Since the most
common two types of pathogens, bacterial and fungal,

require fundamentally different therapies, the classification
is crucial in the management of sepsis. Sepsis is characterized
as a host reaction to infection involving not only the activa-
tion of pro- and anti-inflammatory responses but also mod-
ifications in nonimmunological pathways (cardiovascular,
autonomic, neurological, hormonal, metabolic, and clotting)
[12]. We hypothesized that the reactions of the host to bacte-
rial and fungal sepsis may be different, and the different reac-
tions may be reflected in the whole blood gene expression
patterns. To explore our hypothesis and provide potential
pathogen-specific biomarkers to help distinguish bacterial
and fungal sepsis. In the present study, the gene expression
profiles of bacterial and fungal sepsis were used for analysis.
Compared to mock-treated blood, the differentially
expressed genes (DEGs) in bacterial and fungal sepsis were,
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respectively, screened. Functional enrichment analysis was
performed to explore the body’s reactions to sepsis induced
by different pathogens. Moreover, we identified and validated
a gene set as biomarkers of bacterial sepsis.

2. Materials and Methods

2.1. Data Collection and Processing. In the present study, the
whole blood gene expression profiles of GSE65088 [13] in the
website of GEO (https://http://www.ncbi.nlm.nih.gov/) were
downloaded, including 20 bacterial sepsis (10 Escherichia
coli and 10 Staphylococcus aureus), 16 fungal sepsis (6
Aspergillus fumigatus and 10 Candida albicans), and 21
mock-treated whole blood samples. The whole blood gene
expression profiles of GSE123730 [14] were downloaded to
validate the gene set, including 10 bacterial sepsis and 35
nonsepsis. The normalizeBetweenArrays function in limma
package [15] was used to normalize the gene expression pro-
file. This gene expression profile of GSE65088 was based on
GPL10558 while GSE123730 was based on GPL19803. If a
gene corresponds to multiple probes, the average expression
value of these probes is the expression value of the gene.
The workflow of the present study is shown in Figure 1.

2.2. DEGs in Bacterial Sepsis and Fungal Sepsis. Compared to
the mock-treated samples, the DEGs in bacterial sepsis and
fungal sepsis samples were, respectively, screened using the
limma package in R. The fold changes (FCs) in the expression
of individual genes were calculated, and genes with ∣logFC ∣
>2 and P < 0:01 adjusted by the false discovery rate (FDR)
were considered significant.

2.3. Functional Enrichment Analysis. To explore the differ-
ence of human response to bacterial sepsis and fungi sepsis.
The ClueGO plugin [16] of Cytoscape [17] software was
applied to create a functionally organized biological process
(BP) term network of DEGs only in bacterial sepsis, fungal
sepsis, and common DEGs. Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses of
DEGs only in bacterial sepsis, fungal sepsis, and common
DEGs were performed, respectively, using the clusterProfiler
package [18].

2.4. Identification of Pathogen-Specific Gene Set in Sepsis. The
DEGs in bacterial sepsis compared with those in fungal sepsis
were also screened using the same method and the same
threshold. Subsequently, the VennDiagram package [19] in
R was performed to identify pathogen-specific DEGs of bac-
terial sepsis and fungal sepsis in DEG bacterial sepsis vs.
mock-treated, DEG fungal sepsis vs. mock-treated, and
DEG bacterial sepsis vs. mock treated. We generated two
gene sets for bacterial sepsis and fungal sepsis, respectively.
Gene set variation analysis (GSVA) [20] was used to score
individual samples against the gene set, and each sample set
gets a bacterial sepsis-specific GSVA index and fungal bacte-
rial sepsis-specific GSVA index. The GSVA package in R was
used in the GSVA.

2.5. Receiver Operating Characteristic (ROC) Curve Analysis.
ROC curve analysis was performed to access the diagnostic

value for sepsis of the two pathogen-specific sepsis GSVA
indexes. ROC curve analysis was performed using pROC
package [21] in R. In addition, although protein of CACLA
has been identified and used in clinic as a biomarker of sepsis
[7, 22], the diagnostic value of mRNA of CACLA was also
evaluated in the present study.

2.6. Validation of Bacterial Sepsis-Specific GSVA Index in an
Independent Data Set. As it was in the GSE65088, the bacte-
rial sepsis-specific GSVA index was calculated for the sam-
ples in GSE123730. ROC curve analysis was performed to
evaluate the value of bacterial sepsis-specific GSVA index
and the mRNA of CALCA for diagnosing bacterial sepsis.

3. Results and Discussion

3.1. The Gene Expression Patterns of Whole Blood Were
Varied in Bacterial Sepsis and Fungal Sepsis. Compared to
mock-treated samples, a total of 95 DEGs were found in bac-
terial sepsis, 90 of which were upregulated and 5 of which
were downregulated (Figure 2(a)). In fungal sepsis, a total
of 56 DEGs were found, 50 of which were upregulated, and
6 of which were downregulated (Figure 2(b)). In bacterial
sepsis versus fungal sepsis, 61 DEGs were found totally, 28
of which were upregulated and 33 of which were downregu-
lated (Figure 2(c)). The expression heat map showed that the
gene expression patterns may distinguish bacterial sepsis and
fungal sepsis (Figure 2(d)) from mock samples.

3.2. Enrichment Analysis of DEGs. Functional enrichment
analysis was used to explore the difference of the host reac-
tion to bacterial sepsis and fungal sepsis. The results of
ClueGO analysis revealed that the genes only differentially
expressed in bacterial sepsis were significantly involved in
defense response to virus, regulation of defense response to
virus, and positive regulation of response to biotic stimulus
and other biological processes (Figure 3(a)), while the genes
only differentially expressed in fungal sepsis were signifi-
cantly enriched in the biological processes such as negative
regulation of transcription from RNA polymerase II pro-
moter in response to stress and positive regulation of
interleukin-8 production and other biological processes
(Figure 3(b)). The common DEGs in bacterial sepsis and fun-
gal sepsis were significantly enriched in BP mononuclear cell
migration and negative regulation of viral process
(Figure 3(c)).

The genes only differentially expressed in bacterial sepsis
are significantly involved in viral protein interaction with
cytokine and cytokine receptor, chemokine signaling path-
way, and necroptosis pathways (Figure 3(d)). The genes only
differentially expressed in fungal sepsis are significantly
involved in antigen processing and presentation and lyso-
some and NF-kappa B signaling pathway (Figure 3(e)). The
genes both differentially expressed in bacterial and fungal
sepsis were significantly involved in MAPK signaling path-
way and antifolate resistance (Figure 3(f)).

3.3. Bacterial Sepsis- and Fungal Sepsis-Specific Gene Sets. A
gene set included 22 bacterial sepsis-specific DEGs, and a
gene set included 23 fungal sepsis-specific DEGs were
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generated, respectively (Figure 4(a)). Compared to the mock-
treated samples, all the 22 bacterial sepsis-specific genes
(HAMP, IL12B, IFNG, CH25H, CXCL10, IFIT3, IFIT2,
IFIT1, TNFSF10, TNIP3, CFB, IL27, IDO1, OASL, USP18,
HERC5, MAP3K8, ACOD1, RIN2, NCOA7, DNAAF1, and
PLAU) were upregulated in bacterial sepsis, and all the 23
fungal sepsis-specific genes (HCAR2, EFR2, OSM,
LINC00936, TNFSF14, FOSB, NRIP3, PPIF, HILPDA,
HSPA1B, HSPA1A, SPINK1, GDF15, GLA, TBC1D7,
PHACTR1, GNPDA1, TBC1D2, VPS18, TGM3, PROK2,
PLIN2, and SPP1) were also upregulated in fungal sepsis.

Subsequently, all samples got a bacterial sepsis-specific
GSVA index and a fungal sepsis-specific sepsis GSVA index.
ROC curve analysis showed that the two pathogen-specific
sepsis GSVA indexes may be powerful biomarkers for bacte-
rial sepsis (Figure 4(b)) and fungal sepsis (Figure 4(c)) with
both AUC = 1:000, while the mRNA of CALCA may not be
a good biomarker of sepsis in bacterial sepsis with an
AUC=0.512 (Figure 4(d)) and fungal sepsis with an AUC
= 0:705 (Figure 4(e)).

3.4. Validation of the Bacterial Sepsis-Specific GSVA Index. In
GSE123730, the ROC curve analysis showed that the bacte-

rial sepsis-specific GSVA index may also be a reliable bio-
marker with AUC = 0:762 (Figure 5(a)), while the mRNA
of CALCA remained to have a poor diagnostic value for bac-
terial sepsis with AUC = 0:588 (Figure 5(b)). This result was
consistent with that in GSE65088.

Sepsis accounts for an estimated 30 million cases and 6
million deaths globally each year. [23] However, the mecha-
nism of sepsis was not fully understood. Though there are
some biomarkers that have been found, a reliable biomarker
of pathogen-specific sepsis remains an unmet medical need.
It is often difficult to distinguish between bacterial and fungal
sepsis early in suspected sepsis, and the difficulty in distin-
guishing between bacterial and nonbacterial aetiologies is
also a cause of the misuse of antibiotics [24] and contributes
to the emergence of antibiotic resistance [25]. In present
study, we found the gene expression patterns of the whole
blood were varied in bacterial sepsis and fungal sepsis; this
opens up the possibility of using whole blood gene expression
profiles to distinguish between types of sepsis caused by dif-
ferent pathogens.

Functional enrichment analysis revealed that the body’s
responses to sepsis induced by different pathogens were also
different. The BPs of negative regulation and mononuclear
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cell migration, the KEGG pathways of MAPK signaling path-
way, and antifolate resistance were enriched in bacterial sep-
sis and fungal sepsis; these body responses were common in
bacterial and fungal sepsis. This may provide potential ther-
apeutic targets for sepsis when the pathogens are not con-
firmed. The BPs enriched in bacterial-sepsis mitochondrial
fission, protein ADP-ribosylation, and chemokine activity
may be the specific reactions of the body to bacterial sepsis,
while the BPs enriched in fungal sepsis of positive regulation
of interleukin-8 production and negative regulation of tran-
scription from RNA polymerase II promoter in response to
stress were the specific response of the body to fungal sepsis.
The pathways of viral protein interaction with cytokine and
cytokine receptor, chemokine signaling pathway [26], and
necroptosis [27, 28] were significantly enriched in bacterial
sepsis, while the pathways of the antigen processing and pre-
sentation [29], lysosome, and NF-kappa B signaling pathway
were significantly enriched in fungal sepsis, and these three
pathways may be the body’s immune response to fungal sepsis

[30–32]. We have preliminarily revealed the response of the
human immune system to sepsis caused by different pathogens.

Furthermore, a bacterial sepsis-specific gene set and a
fungal sepsis-specific gene set were generated in our present
study. In the bacterial sepsis-specific gene set, unsurprisingly,
some of them were reported to be associated with bacterial
sepsis, such as IFNG, CXCL10 [33], HERC5 [34], IFIT2
[35], TNFSF10 [36], CFB [37], IL27 [38], IDO1 [39],
MAP3K8 [40], and PLAU [41]. And OSM [42], HSPA1A
[43], GDF15 [44], GLA [45], and PROK2 [46] in the fungal
sepsis-specific gene set were reported to be associated with
fungal sepsis. Our present study indicated that HAMP,
IL12B, CH25H, IFIT1, TNIP3, ACOD1, RIN2, NCOA7,
and DNAAF1 may also be associated with bacterial sepsis,
while HCAR2, EFR2, LINC00936, TNFSF14, FOSB, NRIP3,
PPIF, HILPDA, HSPA1B, SPINK1, TBC1D7, PHACTR1,
GNPDA1, TBC1D2, VPS18, TGM3, PLIN2, and SPP1 may
also be associated with fungal sepsis. These may be potential
candidate hub molecules for sepsis.
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Figure 2: Differentially expressed gene (DEG) analysis. (a) Volcano plot of the DEGs in bacterial sepsis. (b) Volcano plot of the DEGs in
fungal sepsis. (c) Volcano plot of the DEGs in bacterial versus fungal sepsis. Red indicates upregulated and blue indicates downregulated.
(d) The expression patterns of DEGs that can basically distinguish bacterial sepsis and fungal sepsis.
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Figure 3: Results of functional enrichment. (a) The biological processes in which the DEGs of bacterial sepsis were involved in. (b) The
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Moreover, a bacterial sepsis-specific GSVA index and a
fungal sepsis-specific GSVA were calculated in the present
study. To our best knowledge, it was the first time to use
the method of single sample gene set enrichment analysis
to investigate the underlying mechanism of sepsis. We found
that the two sepsis GSVA score systems may be reliable bio-
markers for sepsis, especially, the bacterial sepsis GSVA
index been validated in another independent data set. In

addition, though PCT emerged as the leading biomarker to
indicate the presence of systemic infection [22], the diagnos-
tic value of mRNA of CALCA was poor. This indicated that
the transcriptional regulation of sepsis is complex.

Although our study may provide new insights for sepsis,
there are several notable limitations. The cost of sequencing
is still high which may limit clinical application now, but
the cost of sequencing is declining. Due to the fact that fungal
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Figure 4: Pathogen sepsis-specific gene set and ROC curve analysis. (a) VennDiagram was used to identify bacterial sepsis-specific genes and
fungal sepsis-specific genes. (b) The ROC curve result of bacterial sepsis-specific GSVA index for bacterial sepsis in GSE65088. (c) The ROC
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6 BioMed Research International



sepsis is relatively rare in clinical practice, it will take a long
time to collect data in a single center. We also failed to find
a suitable validation set in the GEO database; thus, the fungal
sepsis GSVA were not validated in the present study.

4. Conclusions

We proposed a bacterial sepsis-specific gene set and a fungal
sepsis-specific gene set; the bacterial sepsis GSVA index may
be a reliable biomarker for bacterial sepsis.
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