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Lipidomic Profiling of Lung 
Pleural Effusion Identifies Unique 
Metabotype for EGFR Mutants in 
Non-Small Cell Lung Cancer
Ying Swan Ho1,*, Lian Yee Yip1,*, Nurhidayah Basri1, Vivian Su Hui Chong1, Chin Chye Teo1, 
Eddy Tan1, Kah Ling Lim2, Gek San Tan2, Xulei Yang3, Si Yong Yeo3, Mariko Si Yue Koh4, 
Anantham Devanand4, Angela Takano4, Eng Huat Tan5, Daniel Shao Weng Tan5,6 & 
Tony Kiat Hon Lim2,6

Cytology and histology forms the cornerstone for the diagnosis of non-small cell lung cancer (NSCLC) 
but obtaining sufficient tumour cells or tissue biopsies for these tests remains a challenge. We 
investigate the lipidome of lung pleural effusion (PE) for unique metabolic signatures to discriminate 
benign versus malignant PE and EGFR versus non-EGFR malignant subgroups to identify novel 
diagnostic markers that is independent of tumour cell availability. Using liquid chromatography mass 
spectrometry, we profiled the lipidomes of the PE of 30 benign and 41 malignant cases with or without 
EGFR mutation. Unsupervised principal component analysis revealed distinctive differences between 
the lipidomes of benign and malignant PE as well as between EGFR mutants and non-EGFR mutants. 
Docosapentaenoic acid and Docosahexaenoic acid gave superior sensitivity and specificity for detecting 
NSCLC when used singly. Additionally, several 20- and 22- carbon polyunsaturated fatty acids and 
phospholipid species were significantly elevated in the EGFR mutants compared to non-EGFR mutants. 
A 7-lipid panel showed great promise in the stratification of EGFR from non-EGFR malignant PE. Our 
data revealed novel lipid candidate markers in the non-cellular fraction of PE that holds potential to aid 
the diagnosis of benign, EGFR mutation positive and negative NSCLC.

Lung cancer is the leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) 
being the predominant form of the disease, accounting for ~85–90% of all cases1,2. Currently, small biopsy and 
cytological examination of malignant cells forms a cornerstone in the diagnosis of lung cancer3. Beyond estab-
lishing a definitive diagnosis of NSCLC, the American College of Chest Physicians recommends such diagnostic 
workup to classify the subtypes of lung cancer (e.g. adenocarcinoma versus squamous) and the molecular status 
based on specific gene mutations as that would facilitate the prescription of personalized therapy for individual 
patients by clinicians3,4. In particular, specific mutations in the epidermal growth factor receptor (EGFR) have 
been reported to be one of the top driver oncogenes in NSCLC, with a prevalence of 9–23%5. NSCLC patients har-
bouring EGFR mutations are known to be more responsive to tyrosine kinase inhibitors (TKIs) such as gefitinib 
and erlotinib, making such medications the first-line therapy instead of standard chemotherapy6.

Adequate tumour cell and tissue acquisition is paramount for diagnosis, histologic and molecular characteri-
zation of NSCLC. However, the limited availability of cells and tissues for these diagnostic workups is an on-going 
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challenge for pathologists. The presence of pleural effusion (PE) is commonly observed in the initial diagnosis of 
lung cancer with an occurrence of 7 to 30% of all lung cancer cases7. Cytology of malignant cells from PE facil-
itates diagnosis of NSCLC. Lung PE, however, can also be a manifestation of benign inflammatory conditions 
including pneumonia, tuberculosis and pulmonary disorders. While cytological examination of PE aids in diag-
nosis of NSCLC, it is noteworthy that the diagnostic performances of cytology is dependent on the tumour type, 
tumour burden in the pleural space and the cytologist’s expertise8. In PE samples with low cell yields, diagnostic 
accuracy can be compromised, resulting in false-negative rates of more than 30%9,10. Consequently, the identifica-
tion of molecular biomarkers independent of tumour cell and tissue is pertinent to complement and circumvent 
the challenge in the diagnosis of NSCLC.

To date, several efforts to identify alternative strategies using PE supernatant to complement the diagnostic 
workup for NSCLC have been reported. Several of these studies examine the diagnostic potential of protein-based 
molecules (e.g. carcinoembryonic antigen (CEA) and α -fetoprotein) and carbohydrate antigens (e.g. CA125 and 
CA 9-9), which are commonly present in other cancer types11–13. However, the outcomes of using abovemen-
tioned protein molecules as candidate malignancy markers are mixed as studies revealed large variations in their 
sensitivities for diagnosis. At present, molecular characterization of EGFR mutations is performed using DNA 
extracts from tumour tissue specimens. While DNA extracted from malignant PE supernatant has been sug-
gested as an alternative, the large variation in the quantity and quality of the DNA present in such samples can 
compromise the sensitivity of this approach. As observed in a recent study performed by Liu and co-workers, 
the malignant PE supernatant was reported to have a low sensitivity of 63.6% in comparison to the tumour tis-
sue14. Henceforth, the authors recommended that DNA extracted from malignant PE supernatant should not be 
used for mutation testing if tumour tissue is available. Nevertheless, it is noteworthy that other studies reported 
favourable clinical usefulness of cell-free DNA from blood for the detection of EGFR mutations as supported by 
promising diagnostic performance (sensitivity up to ~80% and specificity of 100%)15,16. Collectively, these studies 
demonstrated some of the efforts to identify surrogate markers in liquid biopsy that are indicative of the mutation 
subtype so as to overcome the issue of limited availability of tumour tissue for genotyping.

More recently, metabolic reprogramming involving deregulated cellular energetics of tumour is enshrined as 
one of the hallmarks of cancer17,18. In the context of NSCLC, metabolic profiling using NMR detected elevated lev-
els of branched chain amino acids, lactate and alanine and suppressed levels of glucose, trimethylamine-N-oxide 
and creatinine in malignant PE19. Using an untargeted LC-MS approach, Lam et al. observed significant ele-
vation of fatty acids FA(16:0), FA(18:0), FA(18:1) and (FA18:2), as well as a decrease in a ceramide species 
Cer(d18:1/16:0) in malignant PE20. Oleic acid (FA(18:1)) was found to be the best individual differentiator 
between benign tuberculosis PE samples and malignant lung adenocarcinoma PE, with an area-under-curve 
(AUC) value of 0.962 from receiver operating characteristic (ROC) analysis.

While these metabolic studies illuminated the potential of using PE-derived metabolites as markers for malig-
nancy in NSCLC, the alterations in the metabolic phenotype (metabotype) in PE and their utility in the diagnosis 
of NSCLC is not well studied. The identification of fatty acid marker metabolites in the study by Lam et al. coin-
cide with the lipid reprogramming phenomenon in cancer biology that is gaining increasing recognition in recent 
years20,21. Collectively, this underscored the value in scrutinizing the lipidome of PE in NSCLC diagnosis. It is 
noteworthy that while interesting lipid candidate markers were identified in the Lam et al. study, their extraction 
method (using 1:1:1 v/v/v of acetone/ethanol/methanol) is not well optimized to interrogate the PE lipidome. 
Additionally, there has been no other follow up studies to evaluate the validity of the key findings in additional 
patient cohorts. Therefore, the primary objective of this study is to compare the lipidomes of the non-cellular 
fraction of lung PE derived from benign and malignant patients. To our knowledge, there is no study to date 
that investigates the utility of small molecules in biofluid as potential surrogate markers for the stratification of 
mutational subtypes in lung cancer. Hence, our secondary objective aims to identify lipid species with the ability 
to distinguish malignant PE from NSCLC patients with and without EGFR mutations.

Results
Pleural effusion lipidomes. We undertook an in-depth LC-MS based lipidomic analysis of 71 PE samples 
(30 benign, 41 malignant–19 EGFR mutant, 17 non-EGFR mutant and 5 with unknown EGFR status) (Table 1). 
The enrolled subjects comprising of 61 Chinese, 5 Malay, 4 Indian and 1 other ethnicity, generally reflecting the 
predominant distribution of the major ethnic group in Singapore. No statistically significant differences were 
identified in terms of age (p-value =  0.09), gender (p-value =  0.15), smoking status (p-value =  0.46) and ethnicity 
(p-value =  0.25) between the benign and malignant patients.

From the lipidomic analysis of benign and malignant PE samples, we detected a diverse range of lipid species 
in the human PE (Table S1, Figure S1). These species were identified based on authentic standards or by compar-
ing the characteristic MS2 spectra of the respective lipid classes with online mass spectral databases22. The list of 
identified lipids includes long chain fatty acids, sphingolipids, phospholipids and triacylglycerols.

Lipidomic analysis highlighted key differences in benign and malignant PE. To compare the com-
position of the lipidomes between the benign and malignant patients, we performed PCA analysis to identify 
any intrinsic clustering pattern of the PE samples. The PCA analysis of the PE lipidomes revealed distinctive 
clustering of the benign and malignant cases, indicating the existence of metabolic differences between these 
two groups (Fig. 1A). Interestingly, closer scrutiny of the PCA scores plot for the malignant PE revealed further 
compositional differences in the lipidomes between the EGFR mutant and non-EGFR mutant groups within the 
malignant class (Fig. 1B).

In view of the heterogeneity in the malignant lipidomes between non-EGFR and EGFR mutants, we per-
formed two separate pairwise supervised multivariate analyses using OPLS-DA subsequently to build models 
to identify potential lipid differentiators with VIP >  1 between: (i) benign vs EGFR mutant and (ii) benign vs 
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non-EGFR mutant cases. Additionally, each pairwise multivariate analysis was supplemented by the use of uni-
variate statistical tools (Mann-Whitney U test, fold change analysis). From these analysis, we identified 45 lipid 
species satisfying the following criteria: VIP >  123, p-value <  0.05 and an average ratio ≥ 1.5, in at least one of the 
pair-wise comparison analysis (Fig. 1C).

Unsaturated fatty acids, phospholipids and sphingolipids constituted some of the major lipid classes dis-
criminating between the malignant from benign PE samples (Figs 1C, and S2). Within the benign patients, we 
observed no clear differentiation in the abundance of these lipid markers between the benign infective (pneumo-
nia and tuberculosis) and benign non-infective (cardiopulmonary congestion) PE samples for markers indicated 
in the heat map. These lipid species, however, were significantly elevated in the malignant PE of NSCLC patients 
compared with benign PE. Consistent with the earlier observation of a heterogeneous malignant lipidomic pro-
file, the heat map analysis further illustrated the metabolic differences present in malignant lung PE associated 
with their genotype (presence/absence of EGFR mutation) (Fig. 1C). For instance, ether-linked phospholipids 
such as PC(P-36:5) and PEtn(P-38:5) were found to be statistically different between benign and EGFR mutant 
PE samples but not between benign and non-EGFR mutant cases. Conversely, glycosylated ceramide species 
including Gb3(42:2) and Gb3(34:1) were found to be significantly elevated in non-EGFR mutant cases, but not in 
PE cases with EGFR mutation.

To account for the unique metabotype dependent on the driver mutation for NSCLC, we screened for only 
lipid species satisfying both the abovementioned criteria for “benign vs EGFR mutant” and “benign vs non-EGFR 
mutants” comparisons as candidate malignancy markers (Table 2). These identified candidates include a large 
number of unsaturated fatty acids, in addition to specific ceramide and sphingomyelin species. Subsequently, 
we assessed the diagnostic performance of this panel of 12 malignancy lipid species using ROC curve analysis 
(Fig. 2A,B, Table 2). Each of these lipid malignancy markers was able to discriminate between the malignant 
and benign groups with AUC values ranging from 0.66–0.87, sensitivity (SN) of 63.3–82.9%, specificity (SP) of 
60.0–83.3% and accuracy (ACC) of 64.8–83.1%. Individual ROC analysis performed on each candidate indicated 
that the polyunsaturated fatty acids (PUFAs) (e.g. FA(22:5), FA(22:6)) gave the best performance as malignancy 
markers and should be further evaluated in larger scale studies. Combining an optimal number of four malig-
nancy markers comprising of FA(22:6), FA(22:5), FA(23:0) and Gb3(42:2) derived from SVM modelling into a 

Characteristic All Patients (n = 71) Benign (n = 30) Malignant (n = 41)

Gender

 Male, % 35 (49.3) 18 (60.0) 17 (41.5)

 Female, % 36 (50.7) 12 (40.0) 24 (58.5)

Age at sample collection, years

 Mean ±  standard deviation 67 ±  14 63 ±  16 69 ±  12

Smoking status

 Smoker (Current/Ex) 25 9 16

 Non smoker 46 21 25

Ethnic group

 Chinese, % 61 (86.0) 25 (83.3) 36 (87.8)

 Malay, % 5 (7.0) 1 (3.3) 4 (9.8)

 Indian, % 4 (5.6) 3 (10.0) 1 (2.4)

 Others, % 1 (1.4) 1 (3.3) 0 (0.0)

Histology

 Non-small cell lung adenocarcinoma 39 (54.9)

 Squamous-cell carcinoma 1 (1.4)

 Lymphoepithelioma-like lung carcinoma 1 (1.4)

 Non-malignant 30 (42.3)

Cytology assessment

 Positive for malignancy 32 (45.0)

 Negative for malignancy 30 (42.3)

 Suspicious/atypical confirmed as malignant based on histology 9 (12.7)

Mutation subtypes for malignant cases

 EGFR + 19 (46.3)

 EGFR − N.A. 17 (41.5)

 Unknown 5 (12.2)

Subtypes for non-malignant cases

 Pneumonia 22 (73.3)

 Cardiopulmonary congestion 5 (16.7) N.A.

 Tuberculosis 3 (10.0)

Table 1.  Clinical characteristics of benign subjects (n = 30) and malignant non-small cell lung cancer 
patients (n = 41). n, Number of cases; EGFR, Epidermal growth factor receptor.
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single panel gave a comparable performance than when using the biomarkers alone (AUC =  0.94; SN =  82.9%; 
SP =  90.0%; ACC =  85.9%) (Fig. 2C).

EGFR mutants exhibited greater metabolic derangement compared to non-EGFR mutants.  
From the earlier analyses, we noticed that the candidate malignancy markers were predominantly in higher 
abundance in the PE of the EGFR mutants compared to the non-EGFR mutants (Fig. 1C). The most prominent 
observations were the increase in levels of PUFAs comprising of 20 and 22 carbons, as well as ether-linked phos-
phatidylethanolamine (PEtn) and its corresponding lysoPEtn species in EGFR mutants. These trends are exem-
plified in Fig. 3A,B for FA(22:6) and FA(20:5), illustrating that the EGFR mutants exhibit greater derangement 
in lipid metabolism compared to non-EGFR mutants. To further understand the influence of NSCLC driver 
mutations (EGFR/non-EGFR) on the lipidomic profile, we performed a combination of Mann-Whitney U test, 
OPLS-DA analysis and ROC analyses to identify lipid species that discriminated the EGFR mutants from the 
non-EGFR mutants (Table 3). Interestingly, we observed that PUFAs comprising of 20 and 22 carbons and PEtn 
species were significantly elevated in EGFR mutants by 1.6 to 2.6-fold compared to non-EGFR mutant cases 
(Table 3). Each of these lipid species was able to discriminate between the EGFR mutants and non-EGFR mutants 
with AUC ranging from 0.67–0.78, SN of 63.2–89.5%, SP of 58.8–82.4% and ACC of 66.7–77.8% (Table 3, 
Figs 3C,D). A combination of an optimal number of 7 lipid species comprising of FA(20:5), FA(22:4), FA(22:5), 

Figure 1. Principal component analysis scores plots for (A) benign (n =  30) and malignant lung PE (n =  36), 
and the PE of (B) EGFR mutant (n =  19) and non-EGFR mutant (n =  17) collected from the malignant patients. 
Green, blue and red circles represent the benign, malignant non-EGFR mutant and malignant EGFR mutant 
PE respectively. (C) Heat map of differential lipid metabolites derived from individual pairwise comparisons 
between benign, non-EGFR mutant and EGFR mutant PE samples. All represented species are statistically 
significant (VIP >  1, p-value <  0.05, fold change (FC) ≥  1.5) for at least one of the pairwise comparisons. 
Metabolites are grouped according to their lipid classes.
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FA(23:0), PC(41:6), PEtn(38:4), Gb3(42.2) based on SVM modelling, resulted in a more superior performance 
compared to using the biomarkers alone (AUC =  0.86; SN =  84.2%; SP =  82.4%; ACC =  83.3%) (Fig. 3E).

Discussion
The motivation for this study stemmed from challenges in the diagnosis of NSCLC, which is highly depend-
ent on the availability of tissue biopsy or cells for the standard testing of malignancy and mutation status (e.g. 
EGFR, ALK mutations). The limited tumour tissue and cell availability, the low and variable sensitivity of cytology 
(ranging from 43–91%) and the significant false-negative rate in the event of insufficient cell numbers from PE 
provided the impetus to investigate novel, complementary diagnostic markers4,10,24–26. The utilisation of cell-free 
DNA from blood samples as a surrogate for tumour biopsy to determine EGFR mutation status represents one 
such promising alternative that is currently evaluated clinically to assist the diagnosis of NSCLC15,16. Here, we 
adopted a lipidomic-based approach to screen the PE profile so as to identify lipid differentiators suggestive of 
malignancy.

The combination of multivariate and univariate analyses revealed clear differences in the lipidomes between 
benign and malignant PE (Fig. 1). More importantly, malignant PE cases with a known EGFR mutation exhibited 
a more distinctive metabolic phenotype in comparison to non-EGFR mutant cases, with higher abundance of 
several lipid classes relative to benign PE. This observation has important implications in the identification of 
reliable malignancy markers that will apply to both EGFR and non-EGFR mutant cases; the commonly used 
strategy of biomarker identification does not take into consideration the potential heterogeneity of metabolic 
phenotypes between malignant cases harbouring different driver mutations (e.g. EGFR mutant vs non-EGFR 
mutant). As such, to account for such heterogeneity and to ensure that reliable indicators of malignancy can be 
selected, separate pair-wise comparisons (benign vs EGFR mutants, benign vs non-EGFR mutants) were per-
formed. Subsequently, only lipid species which satisfied the statistical selection criteria for both sets of pair-wise 
comparisons were identified as candidate markers for malignancy. This strategy appears to be effective - as shown 
in Table 2, individual ROC analysis yielded AUC values of 0.70 and above for the majority of these lipid species, 
indicating that each feature had good diagnostic performance in distinguishing between benign and malignant 
PE samples regardless of molecular subtypes.

A large group of unsaturated or hydroxylated fatty acids were found to be elevated in our malignant PE sam-
ples. In particular, these elevations of FA(18:1) and FA(18:2) in malignancy recapitulated Lam et al.20 observa-
tions. Although our AUC values (ROC analysis) were comparatively lower to theirs (0.76–0.81 as compared to 
0.96220), we suggest that this may be due to the different underlying medical conditions of the benign controls. In 
our study, benign PE samples were attributed to multiple non-malignant causes (pneumonia, tuberculosis, car-
diopulmonary etc.), whereas Lam et al. recruited solely tuberculosis subjects as benign controls. We believe that 
the selection of a diversified benign patient cohort (control) would render a more robust selection of PE-derived 
malignancy markers as PE can be attributed to various benign causes.

Lipid namea

Benign vs non-
EGFR mutants

Benign vs 
EGFR mutants Diagnostic performance as malignancy marker

Ratiob Ratiob AUCc SN (%) SP (%) ACC (%)

Unsaturated/hydroxylated fatty acids

  Hydroxyl FA(16:0) [(R)-2-
Hydroxyhexadecanoic acid] 1.56 1.83 0.74 (0.62–0.85) 73.17 63.33 69.01

 FA(14:2) [5,8-Tetradecadienoic acid] 1.64 2.54 0.77 (0.65–0.88) 78.05 70.00 74.65

 FA(18:1) [Oleic acid] 1.80 1.71 0.76 (0.65–0.88) 70.73 73.33 71.83

 FA(18:2) [Linoleic acid] 1.65 1.95 0.81 (0.70–0.91) 80.49 76.67 78.87

 FA(18:3) [Linolenic acid] 1.53 1.81 0.74 (0.63–0.86) 70.73 70.00 70.42

 FA(20:5) [Eicosapentaenoic acid] 1.82 4.43 0.79 (0.68–0.90) 75.61 73.33 74.65

 FA(22:4) [Adrenic acid] 2.20 2.33 0.80 (0.69–0.90) 75.61 73.33 74.65

 FA(22:5) [Docosapentaenoic acid] 2.46 6.11 0.87 (0.79–0.96) 82.93 83.33 83.10

 FA(22:6) [Docosahexaenoic acid] 1.89 3.17 0.87 (0.79–0.95) 82.93 83.33 83.10

Sphingolipids

 GalCer(d40:1)/GlcCer(d40:1) 1.82 1.51 0.72 (0.60–0.85) 80.49 60.00 71.83

 SM(d44:1) 1.53 1.53 0.73 (0.62–0.85) 63.33 69.01 64.79

 SM(d42:2) 1.64 1.74 0.66 (0.54–0.79) 63.33 64.79 69.01

Table 2.  Potential lipid malignancy markers for differentiating the PE of benign and malignant patients 
with NSCLC and their diagnostic performance. aIndividual abbreviated lipid names are provided based 
on the following convention: Lipid class (total number of carbons: total number of double bonds). bRatio 
calculated relative to benign. cAUC value obtained based on receiver operating characteristic (ROC) analysis 
with 95% confidence interval range provided in parentheses. VIP, variable importance for projection value; 
AUC, area under curve for ROC analysis; SN, sensitivity; SP, specificity; ACC, accuracy; FA, fatty acid; GalCer/
GlcCer, galactosylceramide/glucosylceramide; SM, sphingomyelin. Listed markers satisfy statistical threshold 
(ratio >  1.5, p-value <  0.05, VIP >  1) in both pair-wise comparisons between EGFR (n =  19) and non-EGFR 
mutant (n =  17) cases with benign PE (n =  30).
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In the biological context of cancer metabolism, the phenomenon of increased fatty acids and phospholipids in 
malignant samples may be attributed to the induction of the key lipogenic enzymes, their nuclear receptors and 
transcriptional regulators. Elevated abundance of fatty acids is consistent with previous reports on prostate and 
breast cancers27,28, and has been associated with the overexpression of fatty acid synthase (FAS). FAS overexpres-
sion is known to facilitate the de novo synthesis of fatty acids for the production of membrane phospholipids and 
energy production via beta-oxidation, and FAS is increasing being recognised as a key trait which confers tumour 
growth and survival advantages29,30. More specifically, the elevation of unsaturated fatty acids in our study also 
suggested an association with stearoyl-CoA desaturase (SCD) overexpression, which converts saturated fatty acids 
into unsaturated fatty acids. The observation corroborates with the reported increases in SCD-1 overexpression for 
both lung carcinoma cell lines31 and lung tumour-initiating cells32 in recent studies. In addition, liver X receptors 
(LXR) are a set of oxysterol-activated nuclear receptors involved in regulating cholesterol, fatty acid and glucose 
homeostasis33–38. Sterol regulatory element binding protein 1 (SREBP-1) belongs to a family of membrane-bound 
transcription factors that can directly activate expression of genes implicated in fatty acids, triglycerides and phos-
pholipid metabolism39,40. Both LXR and SREBP-1 expression have been reported in human lung tissues and cell 
lines41–43. LXRs can regulate lipogenesis through regulating SREBP-1 or by directly targeting genes such as FAS 
and SCD-1 downstream of SREBP-1C pathway33,34,38. At the functional level, upregulation and activation of LXRs 
may explain the elevations of fatty acids and phospholipids. However, it is to be noted that there have been other 
reports of some PUFAs such as eicosapentaenoic acid (FA20:5) and docosahexaenoic acid (FA22:6) functioning 
as LXR antagonists39,44. As such, further mechanistic studies will likely be required to determine the detailed 
associations between LXR and PUFAs in NSCLC. In a recent study, Dai et al.45 found massive lung lipid accumu-
lation, M1 macrophage-predominant lung inflammation that eventually proceed to lesions resembling peripheral 
squamous cell lung cancer when both LXRα  and LXRβ  were inactivated in LXRα ; LXRβ  double null mutant mice 
models. Together with studies illustrating the anti-proliferative effect of LXR agonists in NSCLC45–47, the findings 
underpin the importance of LXR signalling in lung cancer. Emerging evidence also suggest SREBP-1 is a critical 
link between oncogenic signalling and tumour metabolism48. Aberrant activation of SREBP and induction of 
expression of its target genes has been found in several cancer types (e.g. breast, ovarian, prostate cancer), pro-
moting cancer proliferation, migration and invasion49. In certain subtypes of glioblastoma multiforme that express 
an activated mutant form of EGFR, high levels of nuclear SREBP-1 was observed50. Considering the regulatory 

Figure 2. Diagnostic performance of lipid markers in discriminating pleural effusion from malignant 
NSCLC patients (n = 41) from benign subjects (n = 30). ROC curves of malignant versus benign subjects for 
individual PE lipid markers in the class of (A) fatty acids (B) sphingolipids. (C) ROC curves of malignant versus 
benign subjects for an optimal combination of 4 lipid malignancy markers from SVM modelling.
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role of EGFR-PI3K-Akt signalling to activate SREBP-148,50 and the inherent function of SREBP-1 to regulate lipid 
metabolism39,40, it will be interesting to examine its association with the increase of PUFAs and phospholipids in 
NSCLC patients, particularly those observed in EGFR mutants in subsequent studies.

Dysregulation of sphingolipid metabolism also has important implications to cancer pathogenesis owing to 
their diverse structural and signalling roles in regulating cell proliferations, differentiation and apoptosis51. In 
this study, we observed elevated glycosylated ceramide and sphingomyelin species in malignancy. Ceramide, a 
central molecule in sphingolipid biosynthesis, is generally regarded as a powerful tumour suppressor for its ability 
to induce apoptosis and anti-proliferative response51. Conversely, glycosylation of ceramide by glucosylceramide 
synthase (GCS) into glucosylceramide and glycosphingolipids is known to stimulate tumour cell proliferation, 
inhibit apoptosis and promotes tumour cell survival51. Further, increase GCS activities have been implicated in 
the development of chemotherapy resistance in several types of cancer52,53. Additionally, ceramide levels can also 
be attenuated through the activity of sphingomyelin synthase (SMS) that transfers phosphocholine headgroup 

Figure 3. Dot plots describing the relative levels of (A) FA(22:6), (B) FA(20:5) in benign (green), non-EGFR 
mutant (blue) and EGFR mutant (red) PE samples. p-value calculated based on Mann-Whitney U test, where 
*denotes p <  0.05, **denotes p <  0.01, ***denotes p <  0.001. ROC curves of non-EGFR mutant versus EGFR 
mutant subjects for individual PE lipid markers in the class of (C) fatty acids and (D) phospholipids. (E) ROC 
curves of non-EGFR mutant versus EGFR mutant subjects for an optimal combination of 7 lipid malignancy 
markers from SVM modelling.
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to ceramide forming sphingomyelin. The functions of SMS may however go beyond the regulation of ceramide 
levels. For instance, sphingomyelin isolated from shed membrane vesicles of tumour cells has been demonstrated 
to promote tumour growth, metastases, invasiveness, endothelial cell migration and angiogenesis54. Interestingly, 
a comparison of human lung tumour tissues compared to their matched non-tumour tissues revealed lower 
SMS-1 expression55 and sphingomyelin abundance in lung tumour tissues56. SMS activation by anti-tumour 
2-hydroxyoleic acid to A549 human lung adenocarcinoma cells has been found to increase SM at plasma mem-
brane, modify lipid raft properties, enhance localization of protein involved in cell apoptosis or differentiation 
and trigger tumour cell death57. On the other hand, ceramide-enriched rafts, generated from the displacement 
of cholesterol from the raft by membrane ceramide released from sphingomyelin, has been proposed to lead to 
re-localization of EGFR in the ceramide-enriched rafts, thereby stabilizing aberrant EGFR signalling58–63. As such, 
the intricate balance between these sphingolipids is crucial in determining the fate of cancer cells due to their 
biologically active roles. Our identification of elevated glycosylated ceramide and sphingomyelin species in the 
malignant PE may hence reflect the lung cancer cells’ attempt to regulate sphingolipid metabolism to neutralize 
the downstream cell death signals initiated by ceramide.

In our study, we observed a more distinctive metabolic phenotype for the EGFR mutants, characterised by 
trends of higher relative fold change and higher AUC values for the pair-wise comparison between benign and 
EGFR mutant cases in comparison to non-EGFR mutants. As such, we further scrutinize for differential lipids 
between EGFR mutants and non-EGFR mutants [satisfying the selection criteria for both pairwise compari-
sons (EGFR mutant vs benign cases, EGFR mutant vs non-EGFR mutant cases)] (Table 3). These lipid species 
belonged to two major lipid classes, including PUFAs and phospholipids. PUFAs have been previously implicated 
in the activation and phosphorylation of EGFR in human endothelial cells64. More significantly, the same study 
reported that the EGFR-phosphorylating activity of fatty acids was associated with chain length and degree of 
saturation. PUFAs with longer chain lengths such as FA(20:5) and FA(22:6) were more effective in activating 
EGFR, while short chain, saturated fatty acids had no effect on the receptor. These results corroborated with the 
fatty acid species we have identified, which were comprised solely of 20 and 22 chain length PUFAs. Currently, the 
protective roles of PUFAs in cancer development remain controversial65–67. Our observation revealed a positive 
association of higher PUFAs levels in PE of EGFR mutants. As it is possible that PUFAs in EGFR mutant cells 
might play a role in sustaining the higher EGFR activation rate, the mechanistic function of PUFAs in EGFR 
and non-EGFR driven NSCLC should be further elucidated to determine its effect on the growth inhibition or 
promotion of EGFR mutant tumours64,68. Nonetheless, the biological relevance of these fatty acids substantiated 
their roles as biomarkers for diagnosis and patient stratification as illustrated by their diagnostic performance 
(e.g. AUC and ACC).

Long chain and ether-linked PEtn species, including lysoPEtn(P-16:0), were another lipid class in differential 
abundance between EGFR mutants and non-EGFR mutants. Ether-linked species, also known as plasmalogens, 
are reported to play pertinent physiological roles in intracellular signalling and confer protective roles during 
oxidant-induced stress69. Elevated levels of plasmalogens have previously been found in various cancer tumours70, 
as well as breast and melanoma cancer cell line models71. In the same study, the authors reported the heightened 
expression of alkylglyceronephosphate synthase (AGPS), a critical enzyme for the synthesis of ether-linked lipids, 
in both the cell lines and primary breast tumours. Subsequent knockdown of AGPS resulted in the impairment 
of migration, invasion, cell proliferation and survival in both cell lines. In our study, plasmalogen species appear 
to be generally higher in EGFR mutants when compared to both non-EGFR mutants and benign PE samples 
(Fig. 1C). This lipid signature suggests that a more active ether-linked lipid synthesis pathway might be present 

Non-EGFR vs EGFR mutants

Lipid namea Ratio (relative to non-EGFR) AUCb SN (%) SP (%) ACC (%)

Polyunsaturated fatty acids

 FA(20:3) [Eicosatrienoic acid] 1.67 0.68 (0.50–0.87) 68.42 70.59 69.44

 FA(20:5) [Eicosapentaenoic acid] 2.43 0.68 (0.50–0.87) 89.47 58.82 75.00

 FA(22:5) [Docosapentaenoic acid] 2.49 0.78 (0.62–0.94) 73.68 70.59 72.22

 FA(22:6) [Docosahexaenoic acid] 1.68 0.75 (0.58–0.93) 89.47 64.71 77.78

Phospholipids

 LysoPEtn(P-16:0) 1.57 0.70 (0.52–0.88) 73.68 70.59 72.22

 PC(41:6) 2.60 0.70 (0.51–0.88) 63.16 82.35 72.22

 PEtn(P-36:5) 2.30 0.67 (0.48–0.85) 63.16 70.59 66.67

Table 3.  Lipid candidates capable of distinguishing EGFR mutation status in the PE of NSCLC patients 
and their diagnostic performance. aIndividual abbreviated lipid names are provided based on the following 
convention: Lipid class (total number of carbons: total number of double bonds). bAUC value obtained based on 
receiver operating characteristic (ROC) analysis with 95% confidence interval range provided in parentheses. 
VIP, variable importance for projection value; AUC, area under curve for ROC analysis; SN, sensitivity; SP, 
specificity; ACC, accuracy; FA, fatty acid; LysoPEtn(P-), ether-linked lysophosphatidylethanolamine; PC, 
phosphatidylcholine; PEtn(P-), ether-linked phosphatidylethanolamine. Listed markers satisfy statistical 
threshold (ratio >  1.5, p-value <  0.05, VIP >  1) in both pair-wise comparisons of EGFR mutant cases with 
benign PE and non-EGFR mutant cases.
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in EGFR mutants and the plausible role of AGPS in the pathogenesis of EGFR mutation-driven NSCLC remains 
to be determined.

Based on our ROC analysis of the lipid markers identified in Tables 2 and 3, the lipid species displayed good 
performance diagnostics (e.g. AUC, SN, SP and ACC) when used singly. Using SVM, we selected an optimal 
number of lipid markers for use in combination from the list of 45 candidate malignancy markers in the heat 
map in Fig. 1C. By combining the lipid markers, we were able to achieve improvement in the diagnostic perfor-
mance to stratify patients based on their PE lipid composition into the following groups: (i) benign vs malignant 
and (ii) EGFR vs non-EGFR mutants. Some of the lipid species such as FA(22:5), FA(22:6), FA(20:5) were iden-
tified as candidate diagnostic markers by both the pairwise comparison strategy and the SVM strategy, to be 
used either singly or in combination. This underscored their importance in NSCLC and/or the underlying driver 
mutation. Interesting, the SVM modelling also unveiled other lipids species (Figs 2C and 3E) that contributed 
towards the stratification of the patients not identified using our criteria (Tables 2 and 3) which deserves further 
investigations.

There are specific strengths and limitations that have to be considered for this study. Using a global lipidomics 
approach, we were able to detect a broad range of structurally diverse lipid species and elucidate interesting and 
important biomarkers for the diagnosis of NSCLC that is currently unexplored. As PE can occur due to a variety 
of non-malignant causes, we recruited subjects admitted due to a wide range of underlying pathology (e.g. pneu-
monia, tuberculosis and cardiopulmonary congestion) as “benign” controls so as to identify biomarkers that can 
be used in a wide clinical context. In consideration of the unique metabotype of NSCLC patients with different 
molecular subtypes (EGFR- and non-EGFR mutants), we adopted a pairwise comparison approach to screen for 
lipid malignancy markers with good diagnostic performance instead of treating them as a homogenous group. 
A limitation, however, was that the small sample size for other driver mutations did not allow for the deriva-
tion of additional unique lipidomic signatures which correlated to their respective genotypes to be performed. 
The semi-quantitative nature associated with such untargeted studies also calls for follow-up targeted studies 
involving an independent validation cohort comprising of a larger number of patients, to verify the predictive 
accuracy of these novel candidate markers and their ability to complement cytological assessment of PE samples. 
Additionally, mechanistic validation studies may also be performed on EGFR mutant and non-EGFR mutant cell 
lines to elucidate the biological roles of these candidate malignancy lipids, as this will provide interesting mecha-
nistic insights to substantiate their relevance in NSCLC.

In conclusion, the study yielded a series of lipid molecules, many of which are novel, that show promise as 
potential malignancy and/or EGFR mutant specific markers. In particular, 20 and 22 carbon chain length PUFAs 
had the highest potential in distinguishing between benign, EGFR mutant and non-EGFR mutant PE samples. 
Such biomarkers will not only facilitate diagnosis, but also assist in patient stratification for personalised therapy 
(e.g. administration of TKIs to patients with EGFR mutation). The use of SVM modelling was found to facilitate 
the selection of an optimal combination of biomarkers that showed improved diagnostic performance compared 
to using single biomarkers. Additionally, our work highlights the importance of taking different phenotypic behav-
iour of different genotypes into consideration in the selection of suitable malignancy candidate markers. Finally, 
information on the perturbation of lipid pathways in NSCLC gleaned from lipidomic profiling has shed new and 
established insights that further substantiate the importance of lipid metabolic reprogramming in cancer biology.

Patients and Methods
Study Patient and Sample Collection. Lung PE samples were obtained from 71 patients admitted to 
Singapore General Hospital and National Cancer Centre Singapore between December 2012 and December 2014. 
These PE samples collected via thoracocentesis were centrifuged at 805 g at 4 °C for 10 mins upon collection. The 
NSCLC malignant cases were assessed based on clinical diagnosis, cytology of the cells isolated from PE and his-
tology of tumour tissues. Patients whose histological examinations did not show any malignancy were classified as 
benign subjects. The patient demographics and characteristics, including age, gender, cytology and histology are 
provided in Table 1. In our study, there were 30 benign and 41 malignant cases. Of the malignant cases, 19 cases 
were confirmed to harbour EGFR mutations (EGFR mutant), 17 cases did not possess EGFR mutations (non-
EGFR mutant), while the molecular status of the remaining 5 malignant cases were unknown due to insufficient 
samples for mutation testing following cytology and histology examination. All the PE supernatants were stored 
at − 80 °C prior to LC-MS-based lipidomic analysis. All patients recruited gave informed consent and this study 
was approved by and carried out in accordance with the guidelines of the Singapore Health Services centralized 
institutional review board (CIRB 2010/516/B).

Reagents and Materials. Reagents were obtained as follows: Optima grade methanol, isopropanol: Fisher 
Scientific (Loughborough, UK); tricine: Sigma-Aldrich (St Louis, MO); ammonia solution “AnalaR” 25%: VWR 
(Poole, UK); acetonitrile, chloroform, acetic acid, formic acid, 13C-labelled isotopic fatty acid standards (palmit-
oleic acid-13C16, palmitic acid-1,2,3,4-13C4, linoleic acid-13C18, stearic acid-13C18): Merck (Whitehouse Station, NJ);  
odd-chain lipid standards: phosphatidylcholine, PC(9:0/9:0); PC(17:0/17:0); PC(21:0/21:0); phosphatidyletha-
nolamine, PEtn(15:0/15:0); PEtn(17:0/17:0): Avanti Polar Lipids (Alabaster, AL). The 13C-labelled isotopic and 
odd-chain lipid standards constitute the lipid reference standard mixture.

Lipid Extraction. 50 μ L of each PE sample was aliquoted and 10 μ L of lipid reference standard mixture was 
added to the sample as retention time reference prior to a two-phase modified Bligh and Dyer72 lipid extrac-
tion protocol. Each sample was extracted by sequential addition of methanol, chloroform and 3.8 mM tricine 
(1:1:0.5 v/v/v, total 2 mL), with sample vortexed for 1 min following each addition. The samples were then centri-
fuged at 12,000 g at 4 °C for 20 min, following which each sample separated into two fractions–the top methanolic 
layer contained the polar metabolites while the bottom chloroform layer contained the lipid species. The bottom 
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chloroform fraction enriched with lipid species was collected and stored at − 80 °C prior to analysis. Quality 
control (QC) samples were prepared by mixing equal amount of all the PE samples and each QC sample was 
extracted as described above. All samples were randomized for extraction.

Lipidomic Profiling using LC-MS. An ultra-high performance liquid chromatography (UHPLC) system 
(Ultimate 3000, ThermoFisher Scientific, MA) interfaced with a Q-Exactive mass spectrometer (ThermoFisher 
Scientific, MA) was utilized for lipidomic analysis. Prior to each analytical batch, instrument maintenance (source 
cleaning and mass calibration) was performed. A reversed phase LC column (Acquity CSH, 1.0 ×  50 mm, 1.7 μ m  
particle size, Waters Corp) was used for separation with two solvents: ‘A’ comprising of acetonitrile, metha-
nol and water (2:2:1) with 0.1% acetic acid and 0.1% ammonia solution, and ‘B’ comprising of isopropanol with 
0.1% acetic acid and 0.1% ammonia solution. All samples were dried using a sample concentrator (Bio-techne, 
Minneapolis, MN), reconstituted in a 50:50 (v/v) mixture of solvents A and B. The UHPLC autosampler tem-
perature was set at 4 °C and the injection volume for each sample was 2 μ L. All samples were processed in techni-
cal triplicates on the LC-MS system. The LC program is as follows: the column was first equilibrated for 1 min at 
1% B with a flow rate of 0.1 ml min−1. The gradient was increased from 1% B to 82.5% B over 9 min before B was 
increased to 99% for a 5 min wash at a flow rate of 0.15 ml min−1. The column was re-equilibrated for 2.2 min 
at 1% B. Column temperature was maintained at 45 °C. The eluent from the LC system was directed into the MS. 
Electrospray ionization (ESI) in the MS was conducted in both positive and negative modes in full scan with 
a mass range of 120 to 1800 m/z, resolution of 70,000, automatic gain control (AGC) target of 1 ×  106 ions (ESI+ )  
or 3 ×  106 ions (ESI− ) and maximum injection time (IT) of 100 ms (ESI+ ) or 200 ms (ESI− ). The heated electrospray 
ionization (HESI) source used a spray voltage of 3.7 kV (ESI+ ) and 3.2 kV (ESI− ), capillary temperature of 350 °C 
(ESI+  and ESI− ), sheath gas flow of 25 (ESI+  and ESI− ) and auxiliary gas flow of 10 arbitrary units (ESI+  and ESI− ).

QC samples were analysed at regular intervals throughout each batch analysis to monitor the reproducibility 
of the LC-MS. The extracted samples were re-randomized for LC-MS analysis such that the injection order was 
independent from the order of sample preparation to minimise systematic bias.

Data Pre-processing and Statistical Analysis. The raw LC-MS data obtained was then pre-processed 
and analysed using the XCMS peak finding algorithm73. The spiked lipid reference standards had relative stand-
ard deviations of less than 20% across all samples, demonstrating the high reproducibility of our extraction and 
LC-MS method. The QC mixture was used for signal correction between and within each batch analysis. Mass 
peaks with poor repeatability within the QC samples (coefficient of variation more than 30%) were removed. 
Total area normalisation (based on ratio of area of each mass peak against sum of peak areas within each sample) 
was applied to the remaining features in the dataset to correct for minor variations in sample preparation and 
analysis. The normalised data were exported to SIMCA-P+  (version 13.0.3, Umetrics, Umea, Sweden) for multi-
variate data analysis to identify potential PE biomarkers.

Data were mean-centred and Pareto scaled in SIMCA-P+ . Subsequently, an unsupervised principal compo-
nent analysis (PCA) was utilised to determine the quality of LC-MS data obtained based on the tight clustering 
of the QC samples and to derive an overview of similarities and differences between individual PE samples. 
This was followed by supervised orthogonal projection to latent structures-discriminant analysis (OPLS-DA) 
where a model was built to identify individual lipid components that were distinctly different between (1) benign, 
(2) EGFR mutant and (3) non-EGFG mutant malignant cases in a pair-wise manner. These lipid components 
are identified based on their variable importance for projection (VIP) values. Lipid species with higher VIP 
(VIP >  1) made a greater contribution towards distinguishing the comparator groups in the OPLS-DA model 
and were considered as potential biomarkers. Univariate analysis was performed using the Mann-Whitney U test 
at p-value <  0.05 to verify the statistical significance of these potential biomarkers. Fold change was calculated by 
taking the ratio of the peak areas contributed by the lipid species of the two comparator groups.

Support Vector Machines Modelling. The support vector machines (SVMs) model, first proposed by 
Vapnik and his colleagues74, is a widely used machine learning technique for pattern recognition. The SVMs 
construct a boundary that maximizes the distance between the designated class of each sample (e.g. whether 
the sample is “benign” or “malignant”). An optimal boundary separating the sample class is then defined. In this 
study, we used the popular libSVM package75 with linear kernel function to perform the classification, where 
involved parameters are automatically selected by Bayesian Optimization76. The recursive feature elimination 
(RFE) method, based on backward sequential selection strategy77, was used to select the best features of the SVM 
classifier. Starting with a full candidate set of malignancy lipid markers, features (lipid markers) were removed 
sequentially such that the variation of separating boundary was minimized and until the desired number of 
features was reached. Different desired number of features was evaluated to determine the performance of the 
various feature combinations.

In the construction of a real pattern classification system, the data available are generally limited, such that 
there is a need for a validation technique to estimate how a classification system will perform in practice. In our 
study, the k-fold cross-validation78 is used to estimate the classification performance. In a single round of k-fold 
cross-validation, the dataset is first randomly portioned into k subsets (folds), which are of approximately equal 
size and are mutually exclusive. A SVM classifier is then trained and tested k times, and at each time, one of the 
subsets is set aside as the testing data while the remaining k −  1 subsets set as the training data. In our study, 
leave-one-out cross validation (i.e. k =  71) was used.

ROC analyses were then performed for the two optimal combinations of lipid markers capable of differentiating the 
PE between (i) the benign and malignant patients and (ii) non-EGFR and EGFR mutants. ROC analyses were also per-
formed for the identified lipid species (VIP >  1, p-value <  0.05, fold change ≥ 1.5). The ROC is plotted using Stata/MP 
14.0 statistical package (Stata Corp, LP) based on the predicted real value of each sample from the trained SVM model.
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Metabolite Identification. Mass peaks were first putatively identified based on mass comparison (less than 
5 ppm error) with entries from the Kyoto Encyclopedia of Genes and Genome (www.genome.jp/kegg) and the 
Human Metabolome Database (www.hmdb.ca). Subsequently, the identities of lipid species of interest were veri-
fied by MS2 spectral comparison with commercially available standards where possible, or by comparison to mass 
spectral databases available online.
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