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Abstract: Chronic lung allograft dysfunction (CLAD) remains the leading cause of morbidity and
mortality after lung transplantation. The term encompasses both obstructive and restrictive pheno-
types, as well as mixed and undefined phenotypes. Imaging, in addition to pulmonary function
tests, plays a major role in identifying the CLAD phenotype and is essential for follow-up after
lung transplantation. Quantitative imaging allows for the performing of reader-independent precise
evaluation of CT examinations. In this review article, we will discuss the role of quantitative imaging
methods for evaluating the airways and the lung parenchyma on computed tomography (CT) images,
for an early identification of CLAD and for prognostic estimation. We will also discuss their limits
and the need for novel approaches to predict, understand, and identify CLAD in its early stages.

Keywords: lung transplantation; image processing; computer-assisted; pulmonary disease; chronic
obstructive; bronchiolitis obliterans

1. Introduction

Compared to other organ transplantation, lung transplantation remains associated
with a poorer prognosis, with a median survival of only six years after transplantation [1].
The main cause of death beyond the first year is chronic lung allograft dysfunction (CLAD).
This term refers to the deterioration of lung function as a result of chronic rejection and is
not limited to an exclusively obstructive phenotype, referred to as bronchiolitis obstructive
syndrome (BOS), but also includes a restrictive phenotype of chronic allograft dysfunc-
tion, termed restrictive allograft syndrome (RAS). The classification of CLAD phenotypes
updated in 2019 by the International Society of Heart and Lung Transplantation (ISHLT)
included BOS, accounting for 70% of allograft dysfunctions, and three other entities, RAS,
mixed, and undefined phenotypes, representing the other 30% of phenotypes [2]. Their
respective definitions are summarized in Table 1.

Hota et al. provided a comprehensive description of the different CLAD phenotypes
on high-resolution CT [3]. RAS is associated with persistent parenchymal opacities and
pleural thickening showing upper lung predominance, with pleuro parenchymal fibroelas-
tosis on pathological examination, explaining the restrictive pattern [2,3]. Complementing
pulmonary function tests (PFTs) with CT is thus mandatory not only to exclude other
causes of lung function degradation but also to classify CLAD phenotypes. This clas-
sification is important for prognosis, with patients with a restrictive pattern of CLAD
having worse survival [4]. Furthermore, Levy et al. [5] demonstrated that patients with
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undefined/unclassified CLAD phenotypes who had RAS-like opacities on chest imag-
ing had significantly worse allograft survival than patients with the BOS phenotype.
Suhling et al. [6] performed visual scoring of reticulations and consolidations in lung
transplanted (LTx) patients and found poorer survival in patients with severe reticular
changes. Imaging follow-up is especially important to detect CLAD in patients with single
lung transplantation, because native lung disease may confound the interpretation of
physiology [7].

Table 1. Definition of different CLAD phenotypes.

Phenotypes Physiological Changes Radiological Changes

CLAD (Chronic lung allograft
dysfunction)

Persistent ≥ 20% decline in FEV1 (on the basis
of 2 FEV1 values at least 3 weeks apart)
compared with the baseline value, defined as
the mean of the best 2 post-operative FEV1
measurement values, in the absence of other
etiologies such as infection or acute rejection

BOS (Bronchiolitis obliterans syndrome)

Persistent ≥ 20% decline in FEV1 compared
with the baseline value (=CLAD definition)
AND obstructive ventilatory defect
(FEV1/forced vital capacity [FVC] < 0.7)

RAS (Restrictive allograft syndrome)
Persistent ≥ 20% decline in FEV1 compared
with the baseline value (=CLAD definition)
AND ≥10% decline in TLC relative to baseline

Persistent opacities on chest imaging

Mixed phenotype

Persistent ≥ 20% decline in FEV1 compared
with the baseline value (=CLAD definition)
AND combination of obstructive and
restrictive ventilatory defect (FEV1/FVC < 0.7
and a TLC ≤ 90% of baseline)

Persistent opacities on chest imaging

Undefined phenotype (1)

Persistent ≥ 20% decline in FEV1 compared
with the baseline value (=CLAD definition)
AND combination of obstructive and
restrictive ventilatory defect (FEV1/FVC < 0.7
and a TLC ≤ 90% of baseline)

Undefined phenotype (2)

Persistent ≥ 20% decline in FEV1 compared
with the baseline value (=CLAD definition)
AND obstructive ventilatory defect
(FEV1/FVC < 0.7) and no decline in TLC

Persistent opacities on chest imaging

A switch from visual descriptive evaluation to quantitative automatic measurements
has recently emerged in the field of medical imaging. Quantitative imaging has been mainly
used for the evaluation of BOS, the obstructive phenotype of CLAD. The implementation
of such imaging analysis tools for CLAD evaluation in LTx patients either directly confirms
airway thickening and vascular remodeling in the allograft lung [8,9] or indirectly suggests
their occurrence through air-trapping quantification [10,11]. Applying machine learning to
imaging data analysis may further improve the management of CLAD [12]. In this review
article, we will provide an overview of the CT quantification methods used to investigate
CLAD of various phenotypes (see Figure 1 and Table 2), and discuss novel approaches to
identify CLAD in its early stage. As sub-clinical chronic rejection compromises allograft
integrity, there is a need to develop physiological and imaging tests allowing early detection
of CLAD, with a potential role for quantitative imaging to serve as a biomarker, allowing
early identification of CLAD [13].
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Table 2. Overview of CT quantification methods for CLAD.

Author Year Year Study Design/Number
of Patients Time of CT Evaluation Software Main Quantification Parameters Main Results

Airway measurement methods

Dettmer [9] 2014 Prospective study 141
patients (25 BOS+)

6, 12, 24 months after
LTx MeVis Airway Examiner

WT, WA%, WTdiff between
inspiration and expiration on two
selected bronchi B01 and B10

Greater WA% on inspiration in
BOS+

Doellinger [8] 2016 Retrospective study 26
patients (12 BOS+)

All available CT scans
after LTx

YACTA module
v.1.0.7.16

∆WT and ∆WA%: temporal change
of WT and WA%;

Temporal changes of WT and WA%
showed significant differences
between BOS+ and BOS−

Gazourian [14] 2017

Retrospective study 66
patients (20 controls, 22

BOS non progressors
and 24 BOS progressors)

non-volumetric CT
closest to baseline FEV1

and 2 follow-up CT
scans

Airway Inspector (www.
airwayinspector.org)

Internal lumen perimeter
Lumen airway
Airway vessel (A/V) ratio

Increase in the A/V ratio on
follow-up CT scans for BOS
progressors

Barbosa [12] 2018 Retrospective study 71
patients (41 BOS+)

2 CT scans (>3 months
apart)

Mimics, TGrid 14.0 and
Fluent 14.0

Airway volumes
Airway resistances

Increase in central airway volume
on expiratory CT in BOS+
Smaller airway volumes and airway
surfaces and higher airway
resistances at baseline in BOS
developers

Vascular measurement method

Gazourian [14] 2017 Retrospective study 22
patients (13 BOS+)

2 volumetric CT
angiographies after LTx

Bronchi: Airway
Inspector

Vessels: Upper
thresholding (cut-off

level of −500 HU) and
use of a connected

components technique

Vessel cross sectional area (CSA)
Airway lumen area
Airway/Vascular ratio (A/V ratio)

Overtime decrease in CSA in BOS+
Overtime Increase in A/V ratio in
BOS+

Parenchyma-based methods: quantification of air trapping

Belloli [11] 2017

Retrospective study (22
BOS+ and controls

matched by time from
LTx; 52 BOS+)

Date of BOS

Lung segmentation:
In-house algorithm

Insp/Expiratory
registration algorithm:

Elastix

Parametric response mapping
(PRM):
Density-based quantification of air
trapping (PRMfSAD) and
parenchymal disease (PRMPD)

FEV1 decline associated with higher
PRMfSAD

FEV1 and FVC decline associated
with higher PRMPD

PRMfSAD ≥ 30% strongest predictor
of death

www.airwayinspector.org
www.airwayinspector.org
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Table 2. Cont.

Author Year Year Study Design/Number
of Patients Time of CT Evaluation Software Main Quantification Parameters Main Results

Verleden [10] 2016 Retrospective study 40
patients (20 BOS+)

CT scans before, at the
time of and after of the

diagnostic of BOS

Lung segmentation:
In-house algorithm

Insp/Expiratory
registration algorithm:

Elastix

Density-based quantification of air
trapping (PRMfSAD), parenchymal
disease (PRMPD) and normal lung
(PRMNormal)

Increase in PRMfSAD and decrease
in PRMNormal in BOS+
No difference in PRMfSAD between
BOS- and BOS+ before the
diagnosis of BOS

Solyanik [15] 2015
Prospective study 147

patients (34 with
air-trapping)

CT at 6 months after LTx Not mentioned

Density-based quantification of air
trapping (EXP-790 HU to -950 HU,
E/I-MLD)
Density mapping: voxel-to-voxel
insp/expiration mapping

DM has the highest correlation to
RV/TLC (r = 0.663, p < 0.001)
DM and E/I-ratio MLD showed
better correlation with RV/TLC
than EXP-790HU to -950HU

Barbosa [16] 2017 Retrospective study 174
patients (98 BOS+)

CTs within 9 years after
LTx ANTs package

- Lung volume in inspiration and
expiration
- Lung volume difference between
insp and expiration
- Density-based quantification of air
trapping (EXP<-856 HU, voxel
volume with <75 HU increase on
expiration)

Only 59% of qCT parameters
associated with BOS+
BOS prediction model combining
qCT and PFT parameters
outperforms model based on PFTs
alone in the unilateral LTx group

Dettmer [17] 2018 Prospective study 51
patients (17 BOS+)

Last CT within 1 year
before BOS diagnostic
First CT within 1 year
after BOS diagnostic

Mevis Pulmo
Density-based quantification of air
trapping (E/I-MLD ratio, E/I
Volumes, density percentiles)

Significant increase in E/I-Volumes
and decrease in E/I-MLD in BOS+
Changes more pronounced in the
lower lobes
Highest AUC for 10th percentile on
expiration (0.903) and E/I-MLD
ratio (AUC: 0.886)

Horie [18] 2018
Retrospective study 74

patients (23 RAS, 51
BOS)

CT performed ±4
months from CLAD

and/or RAS/BOS onset.

Lung segmentation on
Vitrea workstation

Lung volume and MLD on
inspiration
Quantitative density metrics (QDM)
defined as ratios of the right and left
quantile weights of the density
histogram on inspiratory CT

Significant difference of Lung
volume and MLD in BOS and RAS
patients
Hazard ratio for death 3.2 times
higher at the 75th percentile of
QDM1compared to the 25th
percentile
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Table 2. Cont.

Author Year Year Study Design/Number
of Patients Time of CT Evaluation Software Main Quantification Parameters Main Results

Saito [20] 2016
Retrospective study 63

patients (19 RAS, 44
BOS)

CT performed at
baseline and time of

CLAD onset

Lung segmentation on
Vitrea workstation Lung volume on inspiration

Decrease in CT lung volume in RAS
patients
CT volumetry < 90% baseline had
an accuracy of 0.937 for
differentiating RAS from BOS

Saito [21] 2018 Retrospective study 58
patients, 14 CLAD

CT performed 3, 6, and
12 months after LTx and

once yearly thereafter

Lung segmentation on
Synapse Vincent

workstation

Lung volume on inspiration and
expiration
Evaluation of ∆lung volume over
time (difference between inspiration
and expiration)

∆lung volume onset/baseline
significantly decreased in the CLAD
group 0.80 cutoff had an AUC of
0.87

LTx: lung transplantation; WT: wall thickness; WA%: wall area percentage = ratio bronchial wall/total area (bronchial wall+ bronchial lumen); WTdiff: difference of wall thickness between expiration and
inspiration; A/V ratio: airway vessel ratio; ∆WT and ∆WA%: temporal changes of WT and WA%; PRMfSAD: Parametric Response Mapping representing functional small airways disease; PRMPD: Parametric
Response Mapping representing parenchymal disease; PRMNormal: Parametric Response Mapping representing normal pulmonary parenchyma; EXP-790 HU to -950 HU: percentage of voxels with attenuation
values from -790 HU to -950 HU on expiration; DM: density mapping; E/I-MLD: expiratory-to-inspiratory mean lung density ratio; E/I- Volumes: expiratory-to-inspiratory volume ratio; RV/TLC: residual
volume/total lung capacity qCT: quantitative CT.
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2. Airway Measurement Methods: Computer-Assisted Airway Morphometry

Since the most common phenotype of CLAD is that of BOS, quantitative methods
allowing the direct assessment of the airways have been developed. BOS primarily affects
the small airways, with diameters of less than 2 mm. Due to the limited spatial resolution
of clinical CT scanners, new measurement methods had to be developed to allow the
measurement of the density and wall thickness of the small airways [22]. Such a method
made it possible to obtain values of the wall thickness of the small airways correlated
with FEV1 in COPD patients [23]. Several software now available commercially make it
possible to obtain an automatic segmentation of the bronchial tree and sections strictly
perpendicular to the bronchial axis considered at different levels, as well as an automatic
measurement of the bronchial wall thickness (WT) and the wall area ratio (WA%), the ratio
of the airway wall area to the whole airway area.

Using the YACTA software [24], Doellinger et al. retrospectively examined a total of
2190 airway cross sections on CT scans performed within 11 years of follow-up of 26 LTx
patients with at least one measurement in every lobe of the transplanted lung [8]. They
showed significant differences between patients with and without BOS in term of changes
over time of WA% and WT and concluded that bronchial wall thickening and luminal
dilatation observed in lung transplant allograft rejection can be detected and quantified
using computer-assisted airway morphometry. Gazourian et al., in a retrospective analysis
of 22 patients, observed and increase in the air airway internal lumen perimeter (PI), and
airway lumen area (AI) in the 13 patients developing BOS [14]. They used Airway Inspector
(now renamed Chest Imaging Platform) for evaluating the third and fourth generation B1
and B10 airways. They also evaluated the pulmonary vessels cross-sectional areas (CSA)
after upper thresholding (cut-off level of −500 HU) and use of a connected components
technique on volumetric CT pulmonary angiogram to isolate the vessel cross sections.
These authors also measured the airway/vessel ratios (A/V ratio) on non-volumetric CT
scans. They found a statistically significant decrease in the vessel CSA in BOS patients and
a significant increase in the airway/vessel ratio in BOS progressors. This observation is
in line with known physiology, namely vasoconstriction in poorly ventilated areas due to
small airways disease. These two studies (Doellinger [8] and Gazourian [14]), although both
based on a limited number, showed differences between BOS and controls, but automated
quantification of airway dimension was limited by the need for manual adjustments. In
addition, the methods used do not translate into early identification or prognostic tools
for CLAD.

Dettmer [9] evaluated 25 patients with BOS and 116 controls using MeVis Airway
Examiner. WA% on inspiration was significantly greater in patients with BOS, but the
variability of bronchial wall measurements was high and the values for the WA% on
inspiration in patients with and without BOS overlapped considerably, due to variable
underlying lung volumes. Even though this limitation could be overcome by performing
spirometry-controlled CT acquisitions, the authors concluded to a limited value of WA%
for establishing a diagnosis of BOS in individual patients.

Barbosa et al. [12] conducted a retrospective analysis of LTx patients who had paired
inspiratory and expiratory CTs, with an objective to detect BOS 0-p stage, as indicator of
early disease (≥10% decline in FEV1 or ≥25% decline in forced expiratory flow 25–75%).
Baseline prediction of BOS was performed in a cohort of 41 patients, of which 15 developed
BOS. They measured the airway volumes and airway resistances after 3D analysis of the
airways and lung lobes using three different commercially available software, Mimics,
TGrid 14.0 and Fluent 14.0, for computational fluid dynamics simulations. The authors
found that BOS patients experienced an increase in central airway volume on expiratory
CT, whereas patients with other cause of FEV1 decline had a decrease in the central airway
volume on inspiratory CT. According to the authors, these findings reflected an increase
in the extent of air trapping and peribronchiolar fibrosis which characterizes the BOS
phenotype of CLAD. Image post-processing included segmentation of the tracheobronchial
tree down to the level of airways with a diameter of 1–2 mm which required manual
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correction and took 2 to 6 h per scan, which is the main limitation to consider the clinical
use of this approach.

3. Lung Parenchyma Methods: Assessment of Lung Volume and Attenuation, and
Their Variations between Inspiration and Expiration

Barbosa et al. [16], using the Advanced Normalization Tools (ANTs) software package,
calculated the aerated lung volume in inspiration and expiration via exclusion of any voxel
>−50 HU and then evaluated the volume change between inspiration and expiration as the
difference between these two values, in a retrospective patient cohort excluding the RAS
phenotype. In addition to volume change, two other quantitative parameters reflecting air
trapping were evaluated: the volume of voxels with attenuation <−856 HU on expiration
and the volume of voxels with an increase in attenuation <75 HU from inspiration to
expiration following non-rigid registration between the inspiratory and expiratory imaging
datasets. Only 59% of quantitative CT metrics were significantly correlated with BOS
status in this study including 176 LTx patients, and none of the variables alone was a
good predictor of BOS. However, a support vector machine (SVM) model based on the
quantitative CT variables outperformed models using visual scoring of CT anomalies or
PFT for BOS prediction after unilateral LTx.

Dettmer et al. [17] conducted a prospective evaluation with the objective to detect the
BOS phenotype of CLAD in a cohort of 122 LTx patients. They performed CT acquisition
with a spirometry-controlled technique at full inspiration and end of expiration and used
Mevis Pulmo software, allowing volume measurement and histogram analysis (mean lung
density/MLD, peak, percentiles) for the whole lung and separately for each lobe. They
demonstrated that in patients with early-stage BOS, the lower lobe volume increased and
the MLD decreased between the baseline and follow-up examinations, whereas the volume
and MLD in the upper lobes remained nearly constant. The histogram parameters showing
the highest accuracies for early BOS detection were the 10th percentile on expiration (AUC:
0.903) and the expiratory-to-inspiratory (E/I) MLD ratio (AUC: 0.886).

E/I MLD ratio is one of the multiple quantitative parameters used to evaluate the
volume of air trapping in BOS. Solyanik et al. [15] evaluated two other automated methods
to quantify air trapping, which had only slight differences with those previously mentioned
in the study by Barbosa [16]: the lung volume having attenuation values ranging from −950
to −790 HU on expiratory CT scans (attenuation < −856 HU for Barbosa) and the lung
volume with less than 80 HU change (<75 HU change for Barbosa) between inspiration
and expiration. The latter requires non-rigid registration of inspiration-expiration CT-data
and voxel-to-voxel mapping, which Solyanik described as “density mapping”. Among the
three evaluated methods, density mapping showed the best correlation with the ratio of
residual volume to total lung capacity (RV/TLC).

Parametric response mapping, similar to density mapping, involves assessing the
attenuation of each voxel on inspiration and expiration after applying an elastic registration
algorithm. Voxels with attenuation ≥950 HU and <−810 HU at inspiration and <−856 at
expiration are considered to represent functional small airways disease (PRMfSAD). Belloli
et al. [11] evaluating a retrospective cohort of 52 LTx patients reported that PRMfSAD
values ≥ 30% were the strongest predictor of survival in a multivariable model including
BOS grade and baseline FEV1% predicted. Verleden et al. [10] used PRM to monitor BOS
progression in a retrospective study including 20 BOS and 20 controls (no restrictive CLAD
phenotype). They observed an increase at time of BOS diagnosis. They also reported
that patients who died from BOS had significantly higher PRMfSAD than living patients.
Galban et al. investigated the use of PRM as an imaging biomarker in the diagnosis of
BOS. They found that PRMfSAD > 28% was highly indicative of BOS occurrence, whether
a concurrent infection was present or not [19].

Other authors have developed quantitative methods only requiring inspiratory CT
data. This was the case for Horie et al. [18], who evaluated CT lung density histograms on
a single inspiratory CT in CLAD patients after lung segmentation. Indeed, lung fibrosis
associated with the RAS phenotype of CLAD is likely to increase lung density, whereas
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mosaic perfusion secondary to BOS has an invert effect, both being detectable when
analyzing the lung density histogram: the right-sided tail reflects processes increasing lung
density whereas the left-sided tail reflects processes decreasing lung density, such as mosaic
attenuation in areas of BOS. Their objective was threefold, to evaluate prognosis after CLAD
onset, distinguish between BOS and RAS phenotypes, and evaluate the prognosis within
BOS and RAS patient groups separately. They evaluated the quantitative density metrics
(QDM) defined as ratios of the right and left quantile weights of the histogram, reflecting
the left vs. right asymmetry of the histogram. There was a statistically significant difference
in QDMs between RAS and BOS patients. Higher QDM values were significantly associated
with decreased survival. The authors concluded that this quantitative analysis of CT images
was associated with survival after the onset of CLAD and was able to differentiate RAS and
BOS phenotypes. QDM measurement has been used by the same authors [25] to predict the
risk of subsequent CLAD in patients with CLAD-0p, defined as a drop in FEV1 to 81–90%
of baseline. Higher QDM values were associated with a shorter time between CLAD-0p-CT
and CLAD.

Fewer quantitative CT methods have been developed for the RAS phenotype of CLAD.
Measurement of inspiratory and expiratory CT lung volumes can be easily performed and
CT volumetry has been shown to differentiate RAS patients from BOS patients due to the
strong positive correlation between inspiratory lung CT volumes and TLC [20]. Computed
tomography is particularly useful for detecting CLAD affecting a single lung [7,21], because
the unaffected contralateral lung compensates for the deficit in lung function on PFTs. A
decrease over time in the difference between inspiratory and expiratory lung volumes has
been reported for obstructive and restrictive CLAD phenotypes [21].

PRM is another method allowing quantitative evaluation of patients with the RAS
phenotype of CLAD, who have persistent parenchymal opacities and pleural thickening.
Voxels with attenuation values ≥−810 HU at inspiration represent parenchymal disease
(PRMPD). In the study by Belloli et al. [11] evaluating 22 LTx patients, those with concurrent
declines in both FEV1 and FVC (e.g., RAS phenotype) were found to have significantly more
PRMPD than their control group, even after adjusting for age, baseline FEV1% predicted,
and baseline FVC % predicted. The prognostic value of PRMPD was not mentioned and
should probably be evaluated in a larger patient group.

To be clinically useful, quantitative methods should not require multiple complex
algorithms or manual steps to correct segmentation, which is the case with computer-
assisted airway morphometry. In addition, these methods only assess the BOS phenotype
of CLAD and have limited diagnostic value. Simpler methods based on CT volumetry are
more accessible, with the assessment of lung volume and lobe attenuation on inspiration
and expiration of interest for all CLAD phenotypes.

Regarding the processing of imaging data by artificial intelligence for CLAD diagnosis,
the current literature is scarce. Classical machine learning methods such as the support
vector machine (SVM) using quantitative CT metrics were of interest to diagnose BOS
following unilateral LTx, as previously mentioned [16]. SVM was also used to evaluate
multiple combinations of functional respiratory indexes (FRI) for BOS prediction at six
months after transplantation [12]. A maximal accuracy of 85% was obtained by combining
three baseline FRI features: the right middle lobe volume at total lung capacity (inspiratory
CT scan), the right upper lobe airway resistance and the central airway surface at functional
residual capacity (expiratory CT). Deep learning represents a major advance in the field of
artificial intelligence applied to medical imaging, but requires a large amount of data [26,27].
As previously highlighted, most series on quantitative imaging for CLAD evaluation post
LTx are based on a limited number of patients, because lung transplantation is not a
common procedure. In 2015, only 14 centers reported performing 50 or more LTx per
year [28]. Therefore, the standardization of imaging follow-up and data sharing through a
common registry is crucial before considering the development of deep learning algorithms
for the prediction and early diagnosis of CLAD.
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4. Conclusions

Quantitative imaging methods offer the opportunity to perform reader-independent
assessment of the airways and lung parenchyma in LTx patients. Although said to be
automatic, most methods still require significant time-consuming manual corrections,
and require the availability of segmentation and elastic registration algorithms, which
limits their direct use in clinical routine. However, the results obtained in the studies
published to date demonstrate the prognostic impact of methods such as parametric
response mapping quantifying functional small airway disease (PRMfSAD) or quantitative
density metrics (QDM). The performance for the prediction or early detection of CLAD
needs to be strengthened, which could be an objective of deep learning-based methods.
Developing prediction models is indeed important to improve outcomes for patients who
are developing CLAD and better understand the underlining pathophysiology.
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