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Purpose: The purpose of this study was to propose a new algorithm for the segmen-
tation and thickness measurement of pathological corneas with irregular layers using a
two-stage graph search and ray tracing.

Methods: In the first stage, a graph, with only gradient edge-cost, is used to segment
the air-epithelium and endothelium-aqueous boundaries. In the second stage, a graph,
withgradient, directional, andmultiplier edge-cost, is used to correct segmentation. The
optical coherence tomography (OCT) image is flattenedusing the air-epitheliumbound-
ary and a graph search is used to segment the epithelium-Bowman’s and Bowman’s-
stroma boundaries. Then, the OCT image is flattened using the endothelium-aqueous
boundary and a graph search is used to segment theDescemet’smembrane. Ray tracing
is used to correct the inter-boundary distances, then the thickness ismeasuredusing the
shortest distance. The proposed algorithm was trained and evaluated using 190 OCT
images manually segmented by trained operators.

Results: The mean and standard deviation of the unsigned errors of the algorithm-
operator and inter-operator were 0.89 ± 1.03 and 0.77 ± 0.68 pixels in segmentation
and 3.62 ± 3.98 and 2.95 ± 2.52 μm in thickness measurement.

Conclusions: Our proposed algorithm can produce accurate segmentation and thick-
ness measurements compared with the manual operators.

Translational Relevance: Our algorithm could be potentially useful in the clinical
practice.

Introduction

Optical measuring the thickness of different corneal
layers using optical coherence tomography (OCT)1
is a common technique for the diagnosis of numer-
ous eye diseases, such as dry eye, keratoconus, Fuchs
dystrophy, and corneal graft rejection, and manag-
ing their progression.2–9 The cornea has five layers:
epithelium, Bowman’s, stroma, Descemet’s membrane,
and endothelium.10 In OCT images, five corneal
layer boundaries are usually present: air-epithelium
(EP), epithelium-Bowman’s (BW), Bowman’s-stroma
(ST), Descemet’s membrane (DM), and endothelium-

aqueous (EN). To measure the thickness of different
corneal layers, the layer boundaries are segmented,
the locations of the layer boundaries are corrected to
account for the refraction of the OCT light, and the
point-wise distances between successive boundaries are
calculated. Manual measurement of the thickness is
challenging for three reasons. First, manual segmenta-
tion has low repeatability and reproducibility,11 and it
is time-consuming.11–13 Second, points of each bound-
ary need to be corrected for both distance and direc-
tion using multiple refractive indices for the cornea,
but mistakenly points are corrected for only distance
using one refractive index for the cornea.14 Third, the
thickness measurement is measured as the difference
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in the axial coordinates, which is not accurate. There-
fore, the development of robust automatic algorithms
for the segmentation and thicknessmeasurement of the
corneal layers is necessary for accurate results. Most of
the existing automatic methods focus on the segmen-
tation of corneal layer boundaries without consid-
ering the thickness measurement, which is impor-
tant. In addition, they focus on the regular-shaped
cornea whose layer boundaries can be modeled using
prior known models.11–13,15–26 In these methods, the
corneal layer boundaries are modeled using circles,22
parabolas,11–13,16,17,19 fourth-order polynomials,15,18
ellipses,24,25 or Zernike polynomials.23 Some of these
methods first extract the highest intensity points of
each boundary from the OCT image or its gradi-
ent and fit them to a model to estimate the bound-
ary.11,13,15,17,22 The accuracy of thesemethods depends
on the quality of the OCT images and they are most
likely to fail in images with low signal to noise ratio
(SNR). In other methods, instead of extracting the
highest intensity points, graph theory and dynamic
programming or level sets are used to search for the
minimum-cost paths in the image, according to a
designed cost function, which is more likely to pass
through the boundary.12,19,21,23,25,26 However, when
segmenting the corneal OCT images with low SNR, a
model is used with these methods to approximate or
limit the search region of each boundary in low-SNR
regions.

Recently, some studies have used deep learning for
the segmentation of retinal and corneal layer bound-
aries.27–30 Fang et al.28 used a hybrid approach that
combines convolutional neural networks31 and graph
search to segment retinal layer boundaries. They train
a convolutional neural network on batches from all
boundaries as well as the background. Then, they
use their network to predict the likelihood of each
pixel belonging to a boundary or background. Then,
a graph search is used with these likelihood maps to
segment each boundary. However, the corneal OCT
images usually have low SNR at the periphery12 and
the segmentation needs to be handled properly in
these regions. Methods in References 27, 29, and 30
use the U-shape network (e.g., U-Net32) to semanti-
cally segment each layer as a region. However, Dos
Santos et al.27 crop the OCT images to remove the
low SNR regions, and they do not post-process the
output segmentation, which is not practical. Mathai et
al. use curve fitting for postprocessing, which assumes
a model for the layer boundary. Thus, the limitations
of the existing segmentation methods are (1) they
are not robust to OCT images with low SNR, (2)
they do not segment layer boundaries with arbitrary
shapes, (3) they segment less number of layer bound-

aries, and (4) there is no emphasis on thickness
measurement.

In this work, we propose a graph-based algorithm
for the segmentation and thicknessmeasurement of the
corneal layers of pathological eyes. We use a two-stage
graph-based segmentation method to segment patho-
logical corneas whose layer boundaries are irregular
and do not have a specific model. We compare our
method to three counterpart methods.11–13 We trained
our method using 60 images, and evaluate it using 130
OCT images from multiple datasets. We use a 2D ray-
tracing algorithm to correct the locations of the layer
boundary due to the refraction of the imaging light,
and then we measure the thickness profiles for differ-
ent corneal layers using the shortest distance. There are
four contributions in this paper:

1. We present a graph-based method for the
segmentation of corneal OCT images without
assuming any model to better handle the irregu-
larity of the layer boundaries in pathological eyes.

2. We segment five corneal layer boundaries, which
are necessary to be able to generate thickness
profiles for different corneal layers.

3. We present an accurate method to correct
the inter-boundary distances using ray tracing,
and we measure the thickness of the corneal
layers, which is important because the diagnos-
tic measures of many corneal diseases are based
on thickness values.

4. We compare the performance of our segmenta-
tion algorithm with three existing methods using
our and their datasets.

Methods

Dataset Description

In this study, radial OCT scans of the central cornea
were obtained using a high-definition OCT machine
(HD-OCT; Envisu R2210, Bioptigen, Buffalo Grove,
IL) from 67 eyes of 53 patients recruited at Bascom
Palmer Eye Institute (BPEI). The presence of the
specular reflection was used to ensure that the scans
were centered at the corneal apex. All patients signed
a written informed consent approved by the Univer-
sity of Miami Institutional Review Boards (IRBs).
The images have a size of 1024 × 1000 pixels. The
axial depth of the machine is 2.18 millimeters, and
the transversal width of the machine is 6 millime-
ters. The OCT machine has an optical resolution of
3 μm. A set of 120 images was randomly collected
from all eyes using a computer script. The dataset
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contained an even number of OCT images for patients
diagnosed with keratoconus, Fuchs dystrophy, and dry
eye, in addition to normal controls (i.e., 30 each). The
dataset was evenly divided into a training dataset of 60
OCT images and a testing dataset of 60 OCT images.
In addition to our dataset, we used two additional
datasets from other studies for further assessment of
our proposed method and for comparison with the
other methods. A dataset was obtained from our previ-
ous study in Reference 11 and it contained 50 OCT
images of normal controls obtained using the same
OCT machine. Another dataset was obtained from
LaRocca et al.12 and it contained 20 OCT images
of normal controls obtained using a different OCT
machine. Therefore, we had a total dataset of 190 OCT
images (i.e., 100 normal OCT images and 90 patho-
logical OCT images). The OCT images, in our study,
were manually segmented by two trained operators for
quantitative comparison with the automatic method.
Both operators had previous experience with corneal
OCT images for more than 3 years. The OCT images
in our previous study11 were manually segmented by
two operators where one of them is the first manual
operator in this study. The OCT images in LaRocca’s
dataset12 were manually segmented by two different
experienced and trained operators.

Graph Construction

Agraph G of verticesV and edges E was constructed
from the given image.33 The pixels P of the image
were used to represent the vertices V of the graph G in
addition to two terminal vertices: a source vertex s and
a target vertex t (i.e., V = P ∪ {s, t}). Each image pixel
was connected to its immediate five neighbors using
weighted directed links (i.e., EN). The terminals s and
t were connected to the vertices of the leftmost and
rightmost columns, respectively, using constant-weight
links (i.e., ET ). The graph edges E included the neigh-
borhood edges EN and the terminal edges ET (i.e., E =
EN ∪ ET ). An illustration of the constructed graph is
shown in Figure 1. Any set of connected edges between
the source s and target t vertices constructs an s-t path,
and its cost is the sum of the weights of its edges. The
segmentation of a corneal layer boundary was formu-
lated as finding the minimum-cost s-t path according
to some cost function. The terminal edge cost was set
to a constant value to give equal chance to any path.
The proposed neighborhood edge cost Cab, between
two vertices a and b, consisted of three terms:

• A gradient cost CG
ab, which represented the main

cost term based on the intensity values of the gradi-
ent image.

Figure 1. The construction of the graph from the image where the
image pixels are used as the vertices of the graph in addition to
source and target vertices. (a) Each pixel is connected to its immedi-
ate neighbors using five-connectivity, and (b) the source vertex is
connected to the image leftmost pixels and the target vertex is
connected to the image rightmost pixels.

• A directional cost CD
ab, which measured the error

between the segmentation and a polynomial repre-
senting the general shape of the boundary.
• AmultiplierCM

ab , which kept the cost of the central
edges intact, but it reduced the cost of the periph-
eral vertical edges to encourage the segmentation
to go down.

We combined the three terms as follows:

Cab = (
CG
ab +CD

ab
)
CM
ab (1)

where we addedCG
ab andCD

ab to ensure that either term
contributed to the edge cost, which is important at the
periphery when the gradient intensity is weak, andCD

ab
was weighted by a constant α to control its contribu-
tion. We multiplied the sum by a multiplier cost to
ensure that both sum and multiplier contributed to the
edge cost. In other words, we grouped the gradient
and directional costs using “logical OR”operation and
grouped the sum and the multiplier cost using “logical
AND” operation. The gradient cost was computed
using:

CG
ab = e−σg2a · e−σg2b = e−σ (g2a+g2b) (2)

where e is the exponential function, ga and gb are the
normalized gradient values at the vertices a and b,
respectively, and σ is a scaling constant. We used the
exponential function because it is changing slowly near
g = 0 and g = 1, so the weak edges (i.e., g ≈ 0) will
have roughly the same higher cost, and the strong edges
(i.e., g ≈ 1) will roughly have the same low cost. In
addition, we used multiplication with the gradient cost
of the two vertices a and b because it acts as a similar-
ity measure between the two vertices (i.e., multiplica-
tion gives lower cost when both vertices have very close
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gradients). The directional cost was computed using:

CD
ab = ∣∣�yre f − �y

∣∣ (3)

where �yref is the difference in the axial coordinates of
a reference direction and�y is the difference in the axial
coordinates of the vertices a and b. The multiplier cost
was computed using:

CM
ab = 1 · ϕ (x)︸ ︷︷ ︸

central multiplier

+ ρ · [1 − ϕ (x)]︸ ︷︷ ︸
peripheral multiplier

(4)

where x is the transversal coordinate. The function φ(x)
is a rectangular function given by:

ϕ (x) =
{
1 if |x −W/2| ≤ W/4
0, otherwise (5)

whereW is the image width. The function ρ is given by:

ρ = ωx |�x| + ωy |�y|
|�x| + |�y| (6)

where �x and �y are the differences in the transversal
and axial coordinates of the vertices a and b, respec-
tively, and ωx and ωy are weighting constants ≤ 1. The
function ρ can be rewritten as:

ϕ (x) =
⎧⎨
⎩

ωx, if |�y| = 0
ωy, if |�x| = 0
≤ 1, if |�x| = |�y| = 1

(7)

Therefore, if ωx > ωy, the vertical movement has
the least cost, and this encourages graph search to
move vertically, and vice versa. After constructing the
graph and computing its edge cost, the Bellman-Ford
algorithm34 was used to search for the minimum-cost s-
t path. We used the Bellman-Ford algorithm because it
does not require graph weights to be non-zero (i.e., no
need to add a stability constant), and its Matlab imple-
mentation is more efficient than Dijkstra’s algorithm.

Image Filtering

In the segmentation of the outer (or inner) layer
boundaries, we smoothed the image usingGaussian (or
median) filter, thenwe used a gradient filter of the form:

hn =
[
−−−→1� n

2� 0 −−→1� n
2�

]
(8)

where −→1� n
2 � is an all-ones row vector of length � n

2�. A
horizontal gradient fx was obtained by filtering the
OCT image using the filter hn and a vertical gradi-
ent fy was obtained by filtering the image using the
filter hTn where T is the transpose operator. These filters
robustly captured the horizontal and vertical edges. For
the segmentation of the EP and EN boundaries, we

combined fx and fy using:

f = λ | fx| + ∣∣ fy∣∣ (9)

where λ is a weighting function that gives less weight
to the central region of the horizontal gradient fx. The
function λ was computed using:

λ = 1 − e−( x−W/2
w ) (10)

whereW is the width of the image and w is a constant.
The weighting function λ gave more weight to the
peripheral regions and less weight to the central region
of the horizontal gradient fx, which usually contains
the central artifact. Then, we locally normalized the
gradient image f to strengthen the weak edges using:

g = f − μl

σl
(11)

where g is the normalized image, μl is the local mean,
and σ l is the local standard deviation.35 Then, g is
scaled between 0 and 1 using a min-max normaliza-
tion.36

Segmentation Algorithm

The flowchart of the segmentation algorithm is
shown in Figure 2 and each step is discussed in detail
in the following subsections.

Image Resizing

The obtained OCT images had a large size of 1024
× 1000 pixels; therefore, to speed up the segmentation,
the images were resized to a size of 512 × 500 pixels
using decimation.

Segmentation of Outer Boundaries

The outer boundaries include the EP and EN
boundaries, which are the most and second-most
prominent boundaries in the corneal OCT image.12
Segmenting them correctly is very important to be
able to segment the inner corneal layer boundaries. A
typical example of the corneal OCT images is shown
in Figure 3a with common artifacts, such as the satura-
tion artifact, horizontal artifact, and speckle noise.12
First, the OCT image was smoothed using a 5 × 5
Gaussian filter37 to reduce the speckle noise. Then, the
horizontal gradient of the OCT image was obtained
by filtering the smoothed image using a horizontal
filter h11 using (8) and its absolute value was obtained.
The vertical gradient of the OCT image was obtained
by filtering the smoothed image using a vertical filter
hT11 using (8) and its absolute value was obtained.
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Figure 2. A flowchart that illustrates the steps of the proposed segmentation algorithm.

Figure 3. (a) An unaveraged optical coherence tomography (OCT)
image and (b) the locally normalized gradient of the OCT image.

The gradient image was obtained by combining the
absolute horizontal and vertical gradients using (9).
Then, the gradient image was locally normalized using
(11) and scaled between 0 and 1 (e.g., Fig. 3b). The
normalized gradient highlights both the dark-to-bright
transition (i.e., the EP boundary) and the bright-to-
dark transition (i.e., the EN boundary). Some false
edges appeared at the top and bottom parts of the
normalized gradient image because of the image filter-
ing37; therefore, to prevent the graph search from
following these false edges, we cut their continuity
by setting the top left, top right, and bottom central
regions to zero.

A directed graph was constructed using the normal-
ized gradient image, and the edge cost was computed
using (2) (i.e., using gradient cost only). The most
prominent boundary (i.e., usually the EP boundary)
was segmented by finding the minimum-cost s-t path
in the constructed graph (e.g., Fig. 4a). Then, the

Figure 4: The segmentation steps. (a) The initial segmentation
using a gradient term, (b) zoomed regions that show the defects in
the initial segmentation, (c) the second segmentation using gradi-
ent, directional and multiplier terms, and (d) the same zoomed
regions after the second segmentation.

segmented boundary was occluded in the normalized
gradient image by setting a window of 100 pixels
around it to zero, and the edge-costs of the graph
were updated. The second-most prominent bound-
ary (i.e., usually the EN boundary) was segmented
by finding the minimum-cost s-t path in the updated
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graph (e.g., Fig. 4a). The mean of the two bound-
aries was used to distinguish between them (i.e., the
EP boundary is before the EN boundary). The initial
segmentation usually had defects at the peripheral
parts with low SNR and shifted from the true bound-
ary due to the image filtering37 (e.g., Fig. 4b). We
hypothesize that the graph search tends to go upward
toward the region with higher SNR; therefore, to
discourage the graph from curling up toward higher
SNR regions, we included the directional and multi-
plier costs as defined in (1). To remove the defec-
tive parts of the segmentation, the segmented bound-
ary was smoothed using a 1 × 25 moving average
filter, then filtered using h27 horizontal gradient filter.
The locations of maximum values of the absolute
of the gradient indicate the locations of the defects.
The reference direction in the directional cost CD

ab was
derived by fitting a second-order polynomial to the
initial segmentation after removing its defective parts.
We used a second-order polynomial because it was
used in literature to represent the corneal layer bound-
aries,11–13,20,38,39 and more importantly it has exactly
one local minimum that can represent the general
shape of each corneal layer boundary with only one
apex.40 The graph search was encouraged to move
vertically by setting ωx > ωy in the multiplier cost CM

ab
in (4). Another directed graph was constructed using
the normalized gradient image and the edge cost was
computed using (1). The EP and EN boundaries were
segmented by finding theminimum-cost s-t paths in the
graph. Finally, the obtained segmentation of the EP
and EN boundaries was shifted, to be aligned with the
boundaries in theOCT image, and smoothed. The axial
locations of the segmented boundaries had discrete
values (i.e., whole pixels), so to have smooth transi-
tions in the segmentation with sub-pixel values, the
axial locations were smoothed using a 1 × 15 moving
average filter (e.g., Fig. 4d).

Segmentation of the Inner Boundaries

The OCT image was flattened using the nearest
outer boundary (i.e., EP or EN) to make the inner
boundary nearly horizontal. The flattening was done
by performing a circular shift on each column of the
image such that the outer boundary became a horizon-
tal line in the flattened image. The flattened image
was cropped based on the known thickness of corneal
layers in OCT images8,9,41–43 to limit the search region
for the inner boundary (e.g., Figs. 5a, 5b). To segment
each inner boundary, the flattened imagewas smoothed
using a horizontal median filter with a size of 1 × win
to strengthen the boundary, filtered using a vertical
filter, locally normalized using (11), and scaled between

Figure 5. (a) An OCT image flattened, using the air-epithelium
boundary, and cropped. (b) The OCT image flattened, using the
endothelium-aqueous boundary, and cropped. (c) A locally normal-
ized gradient of a, (d) a locally normalized gradient of b, (e) the
segmentation of the epithelium-Bowman’s and Bowman’s-stroma
boundaries, and (f) the segmentation of the Descemet’s membrane.

0 and 1 (e.g., Figs. 5c, 5d). The BW boundary was
the most prominent inner boundary, then ST, and DM
boundaries. The parameters used with each bound-
ary were obtained experimentally from the training
dataset, and their details are summarized in Table 1.
A directed graph was constructed using the normal-
ized image and the edge cost was computed using (1)
where the directional term was computed using the
nearest layer boundary. In the flattened image, each
boundary was nearly horizontal, so the graph search
was encouraged to move horizontally using (4). The
boundary is segmented by finding the minimum-cost s-
t path in the constructed graph (e.g., Figs. 5e, 5f). The
segmentation of the inner boundaries was rotated back
to the original OCT image and smoothed using a 1 ×
15 moving-average filter. The final segmentation of all
boundaries is shown in Figure 6a with the highlighted
regions in Figure 6b.

2D Ray-Tracing Algorithm and Thickness
Measurement

The cornea is transparent, and the OCT light is
refracted when it passes through it. Moreover, the
corneal layers have different refractive indices.14 A
refractive index of 1.401 is used for the corneal epithe-
lium and 1.376 for the rest of the corneal layers.44 First,
the segmentation was converted into millimeters using
the scan depth (i.e., 2.18 millimeters) and width (i.e.,
6 millimeters) of our OCT machine. An iterative ray-
tracing algorithm was applied to correct the refrac-
tion of the OCT imaging light.45 In the ray-tracing
algorithm, we applied the vector form of Snell’s law
at the boundary between every two successive layers
(i.e., illustrated in Fig. 7). Initially, the direction of
the incident ray was assumed to be orthogonal to the
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Table 1. The Parameters Used for the Segmentation of BW, ST, and DM Boundaries Using EP and EN Boundaries

Boundary BW ST DM

Closest outer boundary EP EP EN
Median filter window 15 11 11
Gradient filter [−1 −1 1 1 −1 −1 ]T [−1 0 1 ]T [−1 0 1 ]T
Search window start (in pixels) EP + 10 BW + 3 EN-3
Search window end (in pixels) EP + 30 BW + 6 EN-9

BW, epithelium-Bowman’s; ST, Bowman’s stroma, DM, Descemet’s membrane; EP, air-epithelium; EN, endothelium-aqueous
boundaries.

Figure 6. (a) The result of the automatic segmentation of the air-epithelium (blue color), epithelium-Bowman’s (cyan color), Bowman’s-
stroma (green color), Descemet’s (yellow color), and endothelium-aqueous (orange color) boundaries, and (b) zoomed regions of the OCT
image.

Figure 7. A diagram that illustrates the Snell’s law where �I is the
incident ray, �R is the refracted ray, �N is the normal to the boundary,
θ1 is the incidence angle, θ2 is the refraction angle, n1 and n2 are the
refractive indices.

corneal apex (i.e., parallel to the axial direction) at each
point of the boundary (e.g., p1 in Fig. 7) and given by:

�I = 〈0 1 〉 (12)

and the normal to the boundary was computed as the
gradient of the boundary points using:

�N = 〈−�y �x 〉 (13)

where �x and �y are the differences in the transver-
sal and axial directions, respectively. At each boundary
point, the cosine of the incidence angle was computed
using:

cos θ1 = −�N · �I (14)

where �N is the normal to the boundary and �I is the
incident ray. The cosine of the refraction angle θ2 was
computed using:

cos θ2 =
√
1 −

(
n1
n2

)2 (
1 − (cos θ1)2

)
(15)

where n1 and n2 are the refractive indices of the
incidence and refraction media.

The refracted ray R was computed using:

�R = n1
n2

�I +
(
n1
n2

cos θ1 − cos θ2

)
�N (16)

The optical path length through each layer (e.g., p1
→ p2 in Fig. 7) was corrected to the geometric path
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length (e.g., p1 → p′
2 in Fig. 7) using:

lgeo = lopt

n2
(17)

The updated location of the point p2 was computed
using:

p′
2 = p1 + lgeo · �R (18)

After correcting each layer boundary, the layer
boundary was uniformly resampled and used to correct
its successor. Then, the thickness of each corneal layer
was measured as the distance between its bound-
aries. The thickness at some boundary point was
measured as the shortest distance from the bound-
ary point to the successive boundary. In this study,
the thicknesses of the epithelium, Bowman’s, stroma,
Descemet’s membrane, and the cornea were measured.

Evaluation

To evaluate the performance of the segmentation
and thickness measurement produced by the proposed
algorithm, two trained manual operators participated
in the study. In addition, the manual segmentation of
additional operators was obtained from other studies
along with their datasets.11,12 For the datasets of this
study, the two trained operators were instructed to
segment all the OCT images in the training and testing
datasets (i.e., totaling 120 segmented OCT images).
Then, the automatic segmentation was used to segment
the OCT images in all the images, including the images
in the datasets of the studies in References 11 and
12. Ray tracing was used to correct the locations of
the segmented corneal layer boundaries to account for
light refraction. Finally, the thickness of the corneal
layers was measured. Additionally, we have imple-
mented themethods in Elsawy et al.,11 LaRocca et al.,12
and Zhang et al. to compare their performance with
our proposed segmentation method on our datasets as
well as their datasets. LaRocca et al.12 used a graphwith
an edge cost given by:

Cab = 2 − fy,a − fy,b + K (19)

where fy,a and fy,b are the vertical gradients at the
vertices a and b, respectively, obtained using (8) and K
is a stability constant.

Quantitative Measures of the Segmentation

To quantitatively compare two segmented bound-
aries, B1 and B2, we calculated the mean unsigned
boundary error (UBE) between the two boundaries

and using:

1
N

N∑
i=1

∣∣B1
i − B2

i
∣∣ (20)

whereN is the number of points of each boundary. We
also calculated the corneal region similarity between
two corneal regions (i.e., regions bounded by the EP
andENboundaries),R1 andR2, using theDice similar-
ity coefficient which is given by:

Dice = 2
∣∣R1 ∩ R2

∣∣∣∣R1
∣∣ + ∣∣R2

∣∣ (21)

Quantitative Measure of the Thickness

To quantitatively compare two different thickness
measurements, we calculated the mean and standard
deviation of each thickness profile. In addition, we
computed the mean unsigned thickness error (UTE)
in microns between two thickness profiles, T1 and T2,
using:

1
M

M∑
j=1

∣∣T 1
i − T 2

i
∣∣ (22)

where M is the number of points in each thickness
profile. To validate the algorithm, we computed these
quantitative measures between each two operators (i.e.,
inter-operator) and between the operators and the
algorithm (i.e., algorithm-operator). In all compar-
isons, we used Wilcoxon rank sum test (RST) with a
significance level of 0.05. Values are presented as mean
± standard deviation.

Results

Datasets

The graph segmentation method was trained on
a training dataset of 60 OCT images, that included
different corneal pathologies, and was tested on three
datasets of 60 (i.e., from this study), 50 (i.e., Elsawy’s
dataset11), and 20 (i.e., LaRocca’s dataset12) OCT
images, receptively (i.e., a total of 130 OCT images).
All the testing datasets were not used in training the
methods. The OCT images included different artifacts
and noise, such as saturation artifact, speckle noise,
and low SNR.
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Table 2. Results of the Mean Unsigned Boundary Error Between the Operators and the Algorithm on the Testing
Dataset

Boundary Inter-Operatora First Operator Second Operator Mean Operatora

EP 0.69 ± 0.53 0.54 ± 0.46 0.84 ± 0.55 0.62 ± 0.43**

BW 0.59 ± 0.50 0.73 ± 0.88 0.57 ± 0.81 0.56 ± 0.81**

ST 0.77 ± 0.65 1.10 ± 1.18 0.98 ± 1.08 0.93 ± 1.10**

DM 1.06 ± 0.89 1.87 ± 1.65 1.78 ± 1.56 1.71 ± 1.49**

EN 0.82 ± 0.72 1.36 ± 1.56 0.74 ± 0.73 0.82 ± 0.74*

Mean 0.77 ± 0.68 1.09 ± 1.29 0.95 ± 1.06 0.89 ± 1.03**

Columns denoted bya, **P < 0.001 and *P = 0.4051 (significance level = 0.05).

Table 3. Results of the Mean Unsigned Boundary Error Between the Operators and the Algorithm on Elsawy’s
Dataset11

Boundary Inter-Operatora First Operator Second Operator Mean Operatora

EP 0.90 ± 0.82 0.86 ± 0.77 0.89 ± 0.79 0.74 ± 0.68*

BW 0.73 ± 0.60 0.60 ± 0.62 0.59 ± 0.57 0.47 ± 0.51*

ST 0.99 ± 0.86 0.85 ± 0.92 0.98 ± 0.88 0.73 ± 0.72*

DM 1.27 ± 0.94 1.34 ± 1.31 1.58 ± 1.28 1.24 ± 1.02*

EN 0.99 ± 0.79 1.03 ± 1.22 1.01 ± 1.37 0.71 ± 0.82*

Mean 0.95 ± 0.82 0.91 ± 1.00 0.99 ± 1.06 0.76 ± 0.79*

Columns denoted bya, *P < 0.001(significance level = 0.05).

Table 4. Results of the Mean Unsigned Boundary Error Between the Operators and the Algorithm on LaRocca’s
Dataset12

Boundary Inter-Operatora First Operator Second Operator Mean Operatora

EP 1.50 ± 0.81 0.97 ± 1.14 1.13 ± 0.98 0.76 ± 0.99*

BW 1.24 ± 0.91 1.69 ± 2.07 1.46 ± 1.64 1.40 ± 1.87*

EN 2.07 ± 3.52 2.37 ± 3.61 2.82 ± 4.70 2.43 ± 3.92*

Mean 1.61 ± 2.18 1.68 ± 2.55 1.80 ± 3.02 1.53 ± 2.66*

Columns denoted bya, *P < 0.001 (significance level = 0.05).

Segmentation Results

The results of the meanUBE between the algorithm
and operators (i.e., algorithm-operator) and the mean
UBE between the manual operators (i.e., inter-
operator) are summarized in Table 2, Table 3, andTable
4. There were significant errors between the algorithm-
operator meanUBE and the inter-operator mean UBE
on the testing dataset (0.89± 1.03 vs. 0.77± 0.68 pixels;
P< 0.001), Elsawy’s dataset (0.76± 0.79 vs. 0.95± 0.82
pixels; P < 0.001), and LaRocca’s dataset (1.53 ± 2.66
vs. 1.61 ± 2.18 pixels; P < 0.001). The mean UBE of
the algorithm-operator was significantly less than the
mean UBE of the inter-operator for the EP, BW, and
EN boundaries on our dataset and Elsawy’s dataset (P
< 0.001). It was only insignificant for the DM bound-
ary for our testing dataset (P= 0.4051). ThemeanUBE

of the algorithm-operator was significantly less than
the mean UBE of the inter-operator for the EP bound-
ary on LaRocca’s dataset (P < 0.001). This is because
our method was trained using a dataset obtained from
an OCTmachine different from the OCTmachine that
was used to obtain LaRocca’s dataset. The mean UBE
of the algorithm-operator was significantly larger than
themeanUBEof the inter-operator for the ST andDM
boundaries on the testing dataset that contained patho-
logical eyes (P < 0.001). This suggests that our method
performed better on normal eyes for those layer bound-
aries and still had a close performance to the inter-
operator errors for the pathological eyes.

The results of themean algorithm-operator corneal-
region similarity and the mean inter-operator corneal-
region similarity are summarized in Table 5 for the
three datasets. There were no significant differences
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Table 5. Results of the Corneal-RegionDice Similarity Coefficient Between theOperators and Between theOpera-
tors and the Algorithm

Dataset Inter-Operatora First Operator Second Operator Mean Operatora

Testing 0.9957 ± 0.0010 0.9946 ± 0.0017 0.9956 ± 0.0007 0.9959 ± 0.0008a

Elsawy 0.9949 ± 0.0014 0.9948 ± 0.0018 0.9945 ± 0.0015 0.9956 ± 0.0013b

LaRocca 0.9896 ± 0.0028 0.9903 ± 0.0041 0.9886 ± 0.0064 0.9908 ± 0.0.0054c

Columns denoted bya, *P = 0.3765, **P = 0.00050, and ***P = 0.0256 (significance level = 0.05).

Table 6. Comparison of the Mean Unsigned Boundary Error of the Proposed Method With the Methods in Refer-
ences 11, 12, and 13 on the Testing Dataset

Boundary Proposeda Elsawya LaRoccaa Zhanga

EP 0.62 ± 0.43* 0.80 ± 3.79 1.01 ± 1.75 2.00 ± 3.15
BW 0.56 ± 0.81* 1.04 ± 2.49 1.59 ± 1.87 7.17 ± 7.40
ST 0.93 ± 1.10* 1.17 ± 2.02 NA NA
DM 1.71 ± 1.49* 4.21 ± 13.99 NA NA
EN 0.82 ± 0.74* 2.61 ± 13.86 3.68 ± 8.74 8.90 ± 31.20
Mean 0.89 ± 1.03* 1.85 ± 8.80 2.00 ± 5.10 5.81 ± 17.82

Columns denoted bya, *P < 0.001 (significance level = 0.05).

Table 7. Comparison of the Mean Unsigned Boundary Error of the Proposed Method With Three Methods11–13

on Elsawy’s Dataset

Boundary Proposeda Elsawya LaRoccaa Zhanga

EP 0.74 ± 0.68* 0.63 ± 0.51 0.84 ± 1.27 8.96 ± 35.93
BW 0.47 ± 0.51* 0.60 ± 0.62 1.28 ± 1.69 6.53 ± 8.06
ST 0.73 ± 0.72* 0.88 ± 0.72 NA NA
DM 1.24 ± 1.02* 1.12 ± 0.91 NA NA
EN 0.71 ± 0.82* 0.48 ± 0.45 1.02 ± 1.66 2.80 ± 4.41
Mean 0.76 ± 0.79* 0.72 ± 0.68 1.05 ± 1.55 6.41 ± 22.70

Columns denoted bya, *P < 0.001 (significance level = 0.05).

between the algorithm-operator mean corneal region
similarity and the inter-operator mean corneal region
similarity on the testing dataset (0.9959 ± 0.0008 vs.
0.9957 ± 0.0010; P = 0.3765), but there were signifi-
cant differences on Elsawy’s dataset (0.9956 ± 0.0013
vs. 0.9949 ± 0.0014; P = 0.00050), and on LaRocca’s
dataset (0.9908 ± 0.0054 vs. 0.9897 ± 0.0028; P =
0.0256).

Comparison of the Proposed Segmentation
with Other Methods

The results of other methods in References 11, 12,
and 13were reported based on our implementation and
using an image with a size of 512 × 500 pixels to be
consistent on all methods and all datasets. The results
of the mean UBE for our proposed segmentation
method as well as the three implemented methods11–13

are summarized in Table 6, Table 7, and Table 8. There
were significant differences between the mean UBE
of our proposed methods and the methods in Elsawy
et al.,11 LaRocca et al.,12 and Zhang et al.13 on the
testing dataset (0.89 ± 1.03 vs. 1.85 ± 8.80, 2.00 ±
5.10, 5.81 ± 17.82 pixels; respectively; P < 0.001),
Elsawy’s dataset (0.76 ± 0.79 vs. 0.72 ± 0.68, 1.05
± 1.55, 6.41 ± 22.70; respectively; P < 0.001), and
LaRocca’s dataset (1.53 ± 2.66 vs. 4.87 ± 16.15, 3.03
± 6.94, 4.84 ± 6.65 pixels; respectively; P < 0.001).
A summary of the best-performing method for each
boundary is shown in Table 9 for all datasets. The
proposed method was better than the other methods
on the testing dataset. However, the proposed method
was inferior to Elsawy’s method for the EP, DM, and
EN boundaries on Elsawy’s dataset. This is because
the proposed method does not fit the segmentation
to a model to be generic, but Elsawy et al.11 used
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Table 8. Comparison of the Mean Unsigned Boundary Error of the Proposed Method With Three Methods11–13

on LaRocca’s Dataset

Boundary Proposeda Elsawya LaRoccaa Zhanga

EP 0.76 ± 0.99* 5.79 ± 18.86 2.07 ± 6.13 2.88 ± 3.43
BW 1.40 ± 1.87* 6.45 ± 20.32 2.59 ± 6.04 6.04 ± 6.98
EN 2.43 ± 3.92* 2.37 ± 2.13 4.42 ± 8.21 5.60 ± 8.15
Mean 1.53 ± 62.66* 4.87 ± 16.15 3.03 ± 6.94 4.84 ± 6.65

Columns denoted bya, *P < 0.001 (significance level = 0.05).

Table 9. Summary of the Best-Performing Method for Each Boundary on all Datasets

Boundary Testing Dataset Elsawy’s Dataset LaRocca’s Dataset

EP Proposed Elsawy11 Proposed
BW Proposed Proposed Proposed
ST Proposed Proposed NA
DM Proposed Elsawy11 NA
EN Proposed Elsawy11 Elsawy11

Table 10. Thickness Measurement in μm on the Testing Dataset

Layer First Operator Second Operator Mean Operator Algorithm

Epithelium 49.19 ± 4.32 50.41 ± 4.56 49.81 ± 4.21 48.59 ± 5.06
Bowman’s 15.19 ± 3.06 15.86 ± 2.66 15.51 ± 2.47 14.84 ± 2.92
Stroma 452.97 ± 33.54 449.08 ± 34.26 450.09 ± 33.20 455.05 ± 37.53
Descemet’s 15.06 ± 7.11 15.95 ± 6.41 15.57 ± 6.44 18.52 ± 3.64
Cornea 532.00 ± 36.16 530.21 ± 36.61 530.37 ± 35.74 535.93 ± 37.46

Table 11. Thickness Measurement in μm on Elsawy’s Dataset

Layer First Operator Second Operator Mean Operator Algorithm

Epithelium 50.46 ± 4.50 49.70 ± 4.58 50.14 ± 4.25 50.71 ± 4.67
Bowman’s 15.22 ± 3.32 15.16 ± 3.59 15.15 ± 2.76 14.89 ± 2.53
Stroma 448.81 ± 27.6 451.45 ± 28.25 448.17 ± 26.62 454.41 ± 30.57
Descemet’s 11.99 ± 3.35 11.45 ± 3.64 11.57 ± 2.66 13.89 ± 3.41
Cornea 525.56 ± 28.72 526.77 ± 28.49 524.21 ± 27.43 532.89 ± 30.29

polynomial models, which were more accurate for the
segmentation of normal OCT images. The proposed
method was better than other methods for the EP
and BW interfaces on LaRocca’s dataset. These results
suggest that the proposed method is better when the
corneal layer boundary has an irregular shape, but less
favorable when the layer boundary can be modeled
using a specific model as in the case of normal OCT
images.

Thickness Measurement Results

The results of the thickness measurement are
summarized in Table 10 and Table 11. We used the

testing and Elsawy’s datasets because these datasets
have a radial scan pattern; therefore, the thickness
measurement is reliable in 2D. Based on the study
in Reference 41, the mean thickness of the central
cornea, epithelium, Bowman’s, stroma, and Descemet
endothelium were 555.50 ± 29.64, 54.60 ± 4.25, 16.70
± 1.73, 467.51 ± 28.91, and 16.74 ± 1.66 μm, respec-
tively, for healthy eyes. By comparing these thickness
values to the results in Table 11, which were obtained
from a dataset of healthy eyes, the measured thickness
values are close to the reported values in Reference 41.
In addition, the measured thickness values calculated
from the segmentation of the manual operators are
close to the measured thickness values calculated from



Corneal Segmentation and Thickness Measurement TVST | October 2020 | Vol. 9 | No. 11 | Article 24 | 12

Table 12. Mean Unsigned Thickness Error in μm on the Testing Dataset Between the Operators and Between the
Operators and the Algorithm

Layer First Operator Second Operator Mean Operator Algorithm

Epithelium 2.25 ± 1.96 2.36 ± 2.75 2.73 ± 2.58 2.26 ± 2.49
Bowman’s 2.28 ± 1.96 2.80 ± 2.71 2.70 ± 2.36 2.42 ± 2.29
Stroma 3.75 ± 2.91 6.52 ± 5.61 6.09 ± 5.42 5.96 ± 5.43
Descemet’s 3.81 ± 2.89 6.30 ± 5.02 5.48 ± 4.87 5.55 ± 4.86
Cornea 3.13 ± 2.52 3.36 ± 2.98 3.21 ± 2.77 2.79 ± 2.62
Mean 2.95 ± 2.52 3.90 ± 3.97 4.11 ± 4.30 3.62 ± 3.98

Table 13. Mean Unsigned Thickness Error in μm on Elsawy’s Dataset Between the Operators and Between the
Operators and the Algorithm

Layer First Operator Second Operator Mean Operator Algorithm

Epithelium 2.44 ± 2.10 2.38 ± 1.90 2.46 ± 2.00 2.10 ± 1.65
Bowman’s 3.00 ± 2.61 2.45 ± 2.13 2.73 ± 2.32 2.03 ± 1.66
Stroma 4.01 ± 3.13 4.86 ± 4.22 5.51 ± 4.05 4.74 ± 3.55
Descemet’s 3.35 ± 2.56 4.24 ± 3.01 4.63 ± 3.39 4.24 ± 2.85
Cornea 2.47 ± 1.93 4.10 ± 4.09 3.81 ± 3.67 3.78 ± 3.59
Mean 2.99 ± 2.54 3.72 ± 3.32 3.47 ± 3.26 3.21 ± 2.90

the graph segmentation. Based on studies inReferences
8, 9, and 42, corneal diseases can cause thinning or
thickening of the cornea. The results in Table 10 were
obtained froma dataset of healthy and diseased eyes, so
the layer thickness measurements had larger variabil-
ity. The thickness measurements in Table 10 are within
the normal values, but with a larger standard devia-
tion due to variability. In addition, the measured thick-
ness values from the manual operators are close to the
measured thickness values from the graph segmenta-
tion. The results of the mean UTE in μm are summa-
rized Table 12 and Table 13. The mean UTE of the
algorithm versus the mean operator was close to the
mean UTE of the inter-operator on the testing dataset
(3.62 ± 3.98 vs. 2.95 ± 2.52 μm; P < 0.001), and
Elsawy’s dataset (3.21 ± 2.90 vs. 2.99 ± 2.54 μm; P <

0.001). On average, the difference in thickness measure-
ment was less the optical resolution of the imaging
machine (i.e., 3 μm). This confirms that the thickness
measurement using the proposed graph segmentation
can reproduce the thickness measurement from the
manual operators.

Segmentation Examples

Graphical examples of the proposed segmenta-
tion against the two operators are shown in Figure 8
and Figure 9 for OCT images from our testing dataset.
From the graphical examples, the proposed segmen-
tation is close to the manual segmentation. Graphi-

Figure 8. (a) Graphical comparison of the graph segmentation
(orange color) against the manual segmentation of the two trained
operators (blue and green colors) for an optical coherence tomog-
raphy image from our testing dataset, (b) zoomed top-left box, (c)
zoomed top-right box, and (d) zoomed bottom box.

cal examples of the proposed segmentation against the
expert and trained operator are shown in Figure 10
and Figure 11 for OCT images fromLaRocca’s dataset.
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Figure 9. (a) Graphical comparison of the graph segmentation
(orange color) against the manual segmentation of the two trained
operators (blue and green colors) for another optical coherence
tomography image from our testing dataset, (b) zoomed top-left
box, (c) zoomed top-right box, and (d) zoomed bottom box.

Figure 10. (a) Graphical comparison of the graph segmentation
(orange color) against the manual segmentation of the two trained
operators (blue and green colors) for an optical coherence tomog-
raphy image from LaRocca’s dataset, (b) zoomed top-left box, (c)
zoomed top-right box, and (d) zoomed bottom box.

Figure 11. (a) Graphical comparison of the graph segmentation
(orange color) against the manual segmentation of the two trained
operators (blue and green colors) for another optical coherence
tomography image from LaRocca’s dataset, (b) zoomed top-left box,
(c) zoomed top-right box, and (d) zoomed bottom box.

From the graphical examples, the proposed segmenta-
tion is closer to the expert than the trained operator.
For a visual comparison of the proposed segmenta-
tion method against other methods in References 11,
12, and 13, examples of the segmentation of differ-
ent methods are shown in Figure 12 and Figure 13.
From the examples, the proposed method is closer to
the mean of the two operators than other methods.
An example of the worst performance of the proposed
method is shown in Figure 14 where the epithelium-
Bowman’s boundary is mislocated because of the size
of the search window. However, other methods had
many dislocated boundaries in several images.

Discussion

Measuring the thickness of different corneal layers
using OCT images is used for the diagnosis of different
corneal diseases.2–9 Therefore, an automated algorithm
to segment layer boundaries in OCT images and
measure layer thicknesses is highly needed. Existing
methods have limitations in segmenting pathologi-
cal corneas with irregular boundaries and they do
not segment all boundaries. In addition, they do not
consider the thickness measurement, which is of great
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Figure 12. (a) Graphical comparison of different segmentation
methods and the mean segmentation of the trained operators for
an optical coherence tomography image from our testing dataset,
(b) zoomed topbox, (c) zoomedbottombox, and (d) zoomedmiddle
box.

Figure 13. (a) Graphical comparison of different segmentation
methods and themean segmentation of the trained operators for an
optical coherence tomography image from our testing dataset, (b)
zoomed top-left box, (c) zoomed bottom-left box, and (d) zoomed
middle-central box.

interest. In this work, we proposed a graph-based
algorithm that segments five corneal layer boundaries
in pathological cases, we accounted for light refrac-
tion, and we measured the thickness of different layers.
The proposed algorithm can segment five corneal
layer boundaries in pathological corneas. To our
knowledge, there is no other algorithm that segments
five corneal layer boundaries in pathological corneas
that have irregular layer boundaries. The proposed
algorithm was validated against manual segmenta-
tion from different operators on three datasets. The
datasets contained a total of 130 OCT images of
pathological and healthy corneas, and they had the
common artifacts that typically exist in corneal OCT
images to ensure the robustness of the algorithm. The
proposed algorithm segments the corneal layer bound-
aries accurately, where the mean unsigned boundary
error of between the algorithm and the mean opera-
tor is less than one pixel across all boundaries except
the DM. The segmentation of the DM boundary is
less accurate which may be due to the low SNR of
images. Another reason for this could be that we used
a large search window for the DMboundary to accom-
modate the possible variations of its location in patho-
logical eyes, which can lead to increasing the chance of
error. The proposed segmentation results had similar
corneal region similarity compared with the inter-
operator mean corneal region similarity across the
testing datasets. In Elsawy’s and LaRocca’s datasets,
there were significant differences in the advantage of
our algorithm. The obtained results suggest that the
proposed segmentation algorithm could be equivalent
to manual operators.

In order to compare the performance of our
proposed methods with existing segmentation
methods, we implemented the methods in Refer-
ences 11, 12, and 13 and evaluated their performance
on our and their datasets. Our proposed segmentation
method performed significantly better than LaRocca’s
method12 and Zhang’s method13 on our and their
datasets. Elsawy’s method11 performed better than the
proposed method in segmenting three layer boundaries
on Elsawy’s dataset because their method was tuned
on this dataset, which included normal eyes only. In
addition, they used a polynomial model to segment the
layer boundaries, which was more accurate. However,
Elsawy’s method11 was not able to generalize to
pathological OCT images in the testing dataset.
In addition, the proposed segmentation method
could segment more layer boundaries than other
methods.12,13

The graphical comparison of the proposed
segmentation method and trained operators showed
that it was close to the manual segmentation of
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Figure 14. (a) Graphical example of the worst performance of the proposed method where the epithelium-Bowman’s boundary is mislo-
cated due to the used search region for the boundary, (b) zoomed top-left box, and (c) zoomed top-right box.

the trained operators on our testing dataset and
closer to the expert than the trained operator on
LaRocca’s dataset.12 In addition, the graphical
comparison of the proposed segmentation method
and other segmentation methods11–13 showed that
the proposed method performed better than other
methods.

The corneal layer thickness measurements obtained
using the proposed method have excellent reliabil-
ity with accuracy up to the optical resolution of
the machine. In addition, the measured layer thick-
ness was close to the thickness reported in the liter-
ature. The algorithm had a mean unsigned thick-
ness error less than 1 μm compared to that of
the inter-operator for the epithelium and Bowman’s
layers as well as the total corneal thickness. In
addition, the algorithm had a mean unsigned thickness
error less than the optical resolution of the imaging
machine (i.e., 3 μm) for the Descemet’s. Our proposed
algorithm could be a potential tool to assist in clini-
cal practice because it overcomes the low repeatability,
low reproducibility, and laborious work of the manual
segmentation.

There are some limitations in the proposed segmen-
tation method. First, the directional term in the cost
function depends on having a good estimate of the
reference polynomial from the initial segmentation.
This is affected by the detection of the low SNR regions
and the size of the good part of the initial segmen-
tation. The proposed method can fail in the segmen-
tation of severe pathological corneal OCT images
if the layer boundaries are not clear or completely
missing. Finally, this study is limited to the segmenta-
tion and thickness measurement in 2D OCT images.
However, the thickness measurement can be general-
ized to 3D using the segmentation of a complete OCT
scan.

Conclusion

In this paper, we proposed an automatic algorithm
for the segmentation and thickness measurement of
the corneal layers using OCT images of normal as well
as pathological corneas. Our algorithm was validated
against manual operators on different datasets and
compared to its counterpart methods in the literature.
The proposed algorithm can segment five corneal layer
boundaries in pathological corneas as well as healthy
corneas, which is significantly better than some exist-
ingmethods. The thicknessmeasurement is accurate up
to the optical resolution of the machine. Our proposed
algorithm can be a potential tool to assist in clinical
practice.
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