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Abstract
1.	 Metabarcoding of arthropod communities can be used for assessing species di-
versity in tropical forests but the methodology requires validation for accurate 
and repeatable species occurrences in complex mixtures. This study investigates 
how the composition of ecological samples affects the accuracy of species 
recovery.

2.	 Starting with field‐collected bulk samples from the tropical canopy, the recovery 
of specimens was tested for subsets of different body sizes and major taxa, by as-
sembling these subsets into increasingly complex composite pools. After meta-
barcoding, we track whether richness, diversity, and most importantly composition 
of any size class or taxonomic subset are affected by the presence of other sub-
sets in the mixture.

3.	 Operational taxonomic units (OTUs) greatly exceeded the number of morphospe-
cies in most taxa, even under very stringent sequencing read filtering. There was 
no significant effect on the recovered OTU richness of small and medium‐sized 
arthropods when metabarcoded alongside larger arthropods, despite substantial 
biomass differences in the mixture. The recovery of taxonomic subsets was not 
generally influenced by the presence of other taxa, although with some excep-
tions likely due to primer mismatches. Considerable compositional variation within 
size and taxon‐based subcommunities was evident resulting in high beta‐diversity 
among samples from within a single tree canopy, but this beta‐diversity was not 
affected by experimental manipulation.

4.	 We conclude that OTU recovery in complex arthropod communities, with suffi-
cient sequencing depth and within reasonable size ranges, is not skewed by vari-
able biomass of the constituent species. This could remove the need for 
time‐intensive manual sorting prior to metabarcoding. However, there remains a 
chance of taxonomic bias, which may be primer‐dependent. There will never be a 
panacea primer; instead, metabarcoding studies should carefully consider whether 
the aim is broadscale turnover, in which case these biases may not be important, 
or species lists, in which case separate PCRs and sequencing might be necessary. 
OTU number inflation remains an issue in metabarcoding and requires bioinfor-
matic development, particularly in read filtering and OTU clustering, and/or 
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1  | INTRODUC TION

The great diversity of arthropods, challenging to study with tradi-
tional taxonomic methods, is increasingly being investigated with 
metabarcoding, that is, the PCR amplification and next‐generation 
sequencing of bulk samples obtained from mass trapping. For highly 
diverse arthropods of the tropical rainforest canopy, metabarcoding 
may be suitable to answer fundamental questions about the magni-
tude and distribution of species richness within and among different 
host tree species, to improve existing estimates of total species rich-
ness on Earth (Erwin, 1982; Hamilton et al., 2010; Ødegaard, 2000) 
and to better understand the ecology of this understudied commu-
nity (Nakamura et al., 2017). Metabarcoding is already widely used 
in studies of arthropods, such as the pioneering work on Lepidoptera 
in (sub)tropical forests (Ji et al., 2013; Yu et al., 2012) and soil and 
aquatic macroinvertebrates (Arribas, Andújar, Hopkins, Shepherd, & 
Vogler, 2016; Fonseca et al., 2014; Macher et al., 2016). These stud-
ies have shown that metabarcoding is a highly suitable method for 
assessing total richness and species turnover for many topics from 
evolutionary biology to environmental monitoring (Andújar et al., 
2018; Elbrecht, Vamos, Meissner, Aroviita, & Leese, 2017; Gibson 
et al., 2015; Hajibabaei, Baird, Fahner, Beiko, & Golding, 2016).

While metabarcoding is showing great promise, the precise 
methodology remains in flux. Studies of mixed species assem-
blages have recovered a relatively high number of operational 
taxonomic units (OTUs: clusters of sequence reads that aim to be 
equivalent to biological species), even when invisible with macro-
scopic methods (Arribas et al., 2016) or solely detected as envi-
ronmental traces (Fonseca et al., 2014). This raises the possibility 
of inflated OTU numbers due to artifacts of the amplification 
process, including the formation of chimerical sequences, sam-
ple contamination, and the amplification of pseudogenes, among 
others. Conversely, other factors might lead to an underestimate 
of species numbers, for example, if primers skew PCR success or 
if reads are dominated by a few species in the specimen mixture 
due to high biomass. Recent studies have attempted validation of 
metabarcoding for arthropods, frequently by constructing mock 
communities to test the effects of primer choice (Elbrecht & 
Leese, 2015; Krehenwinkel et al., 2017), taxonomic composition 
(Krehenwinkel et al., 2018; Morinière et al., 2016), and amount 
of input DNA (Elbrecht et al., 2017; Krehenwinkel et al., 2017). 
This work has resulted in specific recommendations for improved 
methodologies, but it is limited by the focus on particular species 
and the low complexity of artificial communities.

In moving from contrived specimen mixtures to the analysis 
of real‐world samples, particularly in highly diverse communities 
of never‐before‐sequenced species as those from tropical forests, 
we are faced with several challenges in molecular methodology 
and bioinformatics. Ideally, to characterize large numbers of sam-
ples, we would use trap‐collected samples without time‐consuming 
prior sorting and instead apply metabarcoding to the full mixture 
regardless of taxonomic composition, relative abundance, or bio-
mass of species present. However, as the complexity of the sam-
ple increases, differences in the amount of tissue between species 
(Elbrecht & Leese, 2015; Krehenwinkel et al., 2017) and primer skew 
(Arribas et al., 2016; Elbrecht & Leese, 2015; Krehenwinkel et al., 
2017) may favor a few large‐bodied or abundant species and partic-
ular taxonomic groups, while negatively affecting the detection of 
others. The accuracy of metabarcoding would thus depend on the 
wider composition of the pool, as the various templates compete 
in different context of other templates, which also differ in their 
numbers.

Ultimately, while studies of mock communities can test the pa-
rameters that most strongly affect the efficiency and accuracy of 
metabarcoding, and provide avenues for mitigating against these 
confounding parameters, they are not suited to determine whether a 
given real community of unknown composition is characterized con-
sistently. To make these compositional assessments more realistic, 
we take an approach that uses several samples collected under very 
similar conditions, but whose individual composition is unknown, to 
evaluate the error due to the structure of each sample. Specifically, 
we assess (a) the degree to which specimens of each of four body 
size classes are recovered if assessed on their own or in the con-
text of larger‐bodied species, and (b) how the presence or absence 
of particular taxonomic groups (orders of arthropods) in a metabar-
coding mixture might affect the recovery of other groups. We exam-
ine multiple samples, measuring both the recovery OTU richness/
alpha‐diversity and the consistency of recovery of between‐sample 
beta‐diversity, utilizing both incidence (presence–absence)‐ and 
abundance (read numbers)‐based metrics.

2  | MATERIAL S AND METHODS

Samples were collected in Cusuco National Park, Cortés, Honduras, 
during a single 5% cypermethrin canopy fogging occasion of an indi-
vidual Liquidambar styracaflua (Saxifragales: Altingiaceae) tree using 
circular 1 m2 trays suspended in the canopy at approximately 30 m 

greater use of species‐identifying sequences generated outside of bulk 
sequencing.
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above ground at very short distances from each other. Specimens 
collected in each tray formed a “tray sample.” Samples were stored 
in 100% ethanol and sorted to major taxa and/or size classes in the 
laboratory. In total, we used 13 tray samples from this fogging event, 
each representing natural communities sampled in a highly uniform 
way; thus, differences in composition were only due to the uneven 
distribution of species and stochastic differences in collecting suc-
cess within a single tree canopy.

Size sorting was performed according to approximate body 
size, as measured under a dissecting scope. Four size classes 
were established, corresponding to cross‐sectional areas (body 
length × width) of 1–3 mm2, 3–9 mm2, 9–26 mm2, and 26–75 mm2, 
referred to as small, medium, large, and extra‐large, respectively. 
The number and boundaries of these size classes were established 
based on morphometric measurements of Coleoptera morphospe-
cies, such that the mean volume of each size class was a constant 

F I G U R E  1  Diagram showing construction of size pools, both the Specimen method (a–e, blue and pink backgrounds) and the 
DNA method (a–b,f–h, blue and yellow backgrounds). Colored letters denote individual arthropods, each different letter a different 
morphospecies. Letter color and size denote size class, white boxes distinct samples, as shown in the legend. Tube cartoons denote distinct 
DNA samples, with colors denoting size class(es) of contents. For Specimen method size pool construction (blue, pink), arthropods from 
raw mixed tray samples (a) were sorted into size classes (b). Each size class was then sorted into subsamples of identical morphospecies and 
abundance composition (c). Four Size Pools (SizeP) were constructed from sets of these subsamples, such that each Size Pool contained a 
representative subsample of the size classes included (d). DNA was then extracted from each of these Size Pools (e). This process was carried 
out for five tray samples, resulting in 20 Size Pool samples for sequencing. For DNA size pool construction (blue, yellow), arthropods were 
also sorted to size class (a, b, as above). DNA was extracted from each size class (f), and each DNA extract was split into five equal parts (g). 
Size pools were constructed from sets of these equal parts as shown. For SP1–SP4, equal quantities of each size class were combined (h). 
For the Prop. composite pool, DNA was combined proportional to the inverse of the mean size of each size class, at a ratio of 64:16:4:1 from 
smallest to largest class. This process was carried out for 4 tray samples, resulting in 20 Size Pool samples for sequencing
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multiple of the next smallest size class. Specimens smaller than 
1 mm2 in cross‐sectional area (the smallest area that could be 
measured accurately) were included in the small class; for speci-
mens larger than 75 mm2, tissue was sampled from the specimen 
and the tissue size determined its size class placement. The vast 
majority of specimens fell in the range 1–75 mm2. All sorting was 
performed under a microscope, and no attached external parasites 
or phoronts were observed – it is likely that any such arthropods 
were detached from their hosts upon death or during transport 
and manipulation of the samples, and thus would be properly 
categorized. Internal parasites/parasitoids could not be feasi-
bly identified or separated from hosts, and this may cause bias 
whereby physically smaller arthropods were actually included in 
larger classes along with their hosts. Taxonomic sorting entailed 
the placement of specimens into one of eight “classes” of arthro-
pods (usually orders), which included the vast majority of indi-
vidual arthropods obtained. Formicidae were separated from the 
other Hymenoptera due to pilot data suggesting a high likelihood 
of primer mismatch (Supporting information Table S2).

2.1 | DNA extractions, composite pool 
construction, and sequencing

Composite pools were created from sets of the size‐sorted or 
taxon‐sorted classes (“subcommunities”), as detailed in Figure 1, by 
sequentially adding more size classes (starting with the smallest) or 
by adding more taxonomic classes (starting with either Coleoptera, 
Formicidae, or Acari and adding one new taxon at a time). We did not 
equilibrate the concentration of DNA extract from different classes 
in order that combinations of extracts from a set of classes would 
be equivalent to an extraction of specimens from all of those classes 
together. To the four size pools (SizeP1–SizeP4, see Figure 1), a “pro-
portional” pool (Prop.) was added by combining the four extractions 
in proportions inverse to their mean body sizes, that is, in ratios of 
64:16:4:1 (small: medium: large: extra‐large) in order to normalize the 
effect of body size variation (proportional to specimen biomass, not 
considering their relative abundance in the natural sample; for an 
explanation, see Supporting information Appendix S1).

To extract DNA, dried specimen pools were suspended in 
200–600 μl 1:9 Proteinase K and ATL and homogenized using a sin-
gle 3 mm stainless‐steel ball bearing in a Qiagen TissueLyser II for 
80–120 s at 30 Hz. After overnight lysis in a 56°C shaking incuba-
tor, samples were vortexed thoroughly and centrifuged at 3000 g 
for 3 min. The lysate supernatant was used for DNA extraction with 
Qiagen DNeasy Spin Columns. The resulting elutions were combined 
with others in specific ratios (see Figure 1). PCR was conducted on 
the DNA pools for 418 bp of the cytochrome oxidase subunit I (COI) 
barcode region using the primers Ill_B_F (Shokralla et al., 2015) and 
Fol_degen_rev (Yu et al., 2012) following the protocol of Arribas 
et al. (2016). Amplicons were sequenced on an Illumina MiSeq 
flow cell (2 × 300 bp paired‐end) after quality control, secondary 
PCR, and indexing with Nextera XT tags, at the sequencing facility, 
Natural History Museum London.

2.2 | Bioinformatics and data processing

Bioinformatics processing was carried out using the NAPtime pipe-
line, a set of Perl scripts to wrap filtering and clustering software. 
NAPmerge carries out trimming, merging of paired‐end reads, and 
quality filtering/conversion using fastx_trimmer (Hannon Lab, 2012), 
PEAR (Zhang et al., 2014), and USEARCH fastq_filter (Edgar, 2010), 
respectively. A range of parameters was tested, but the final dataset 
used a PEAR‐q value of 26 and an fastq_filter expected error rate 
threshold of 1, also chosen by Arribas et al. (2016). NAPcluster car-
ries out dereplication and size sorting of reads before denoising using 
USEARCH UNOISE (Edgar, 2016), clustering using USEARCH clus-
ter_otus (Edgar, 2010) or swarm (Mahé, Rognes, Quince, de Vargas, 
& Dunthorn, 2015), and mapping reads to OTUs using USEARCH 
usearch_global (Edgar, 2010). NAPcluster also assigns OTUs a pre-
liminary taxonomy based on parsing BLAST searches against the 
GenBank nt database. Only contigs with the expected length of 
418 bp and unique sequences with >5 copies were retained. We 
considered five or fewer copies to be more likely to be sequencing 
errors rather than valid sequences. NAPcluster converts the output 
of usearch_global to a table of read numbers for each OTU in each-
sequenced pool (“composite community’). The output table for each 
composite community was rarefied to control for total read number 
and for the effect of dilution when comparing the OTUs within a 
particular size class or taxon class between composite pools of in-
creasing complexity (Supporting information Table S1).

Each OTU was allocated to a size and/or taxon subcommunity 
based on its detection in the composite pools (Supporting infor-
mation Figure S1). As the sequenced composite size pools were 
composed of only the small size class (named “SizeP1”) or the se-
quentially added three larger size classes (SizeP2 to SizeP4), only 
small‐sized OTUs could occur in all four composite communities, 
while the extra‐large OTUs should occur only in the composite com-
munities of all size classes mixed together. Based on their incidence 
pattern, each OTU was assigned to one of the four size classes. An 
analogous approach was used for the assignment to taxon in the 
mixed pools of increasing taxonomic complexity. An OTU present in 
a single‐taxon pool can be assigned confidently to that taxon, while 
the first appearance in the sequential addition of other taxa deter-
mined the taxonomic assignment for other OTUs. Size class or taxon 
class assignment was then used to separate each composite com-
munity into a set of constituent subcommunities, in order to track 
each class‐assigned OTU in any particular sample or to determine 
the composition of an entire subcommunity.

2.3 | Statistical analysis

For each subcommunity, the number of OTUs and the Shannon 
diversity was calculated. Shannon diversity was based on rarefied 
read numbers, and as such may be affected by stochastic variation 
in read number recovery proportional to true OTU abundances 
and so may not reflect true diversity. The significance of change 
in richness and diversity within each subcommunity between 
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size‐based or taxonomy‐based composite communities was as-
sessed fitting generalized linear mixed effects models (GLMM) 
using the lme4 package (Bates, Mächler, Bolker, & Walker, 2015) 
in R (R Core Team, 2018). Log‐log transformations were employed 
for the test of OTU richness, as the number of OTUs followed a 
Poisson distribution, and in both cases, the original tray sample ID 
was fitted as a random effect. Post hoc Tukey comparisons were 
calculated using the lsmeans package (Lenth, 2016). Where appli-
cable, the number of OTUs in each set of taxa was compared with 
the number of morphospecies derived from parataxonomic sample 
sorting. The “proportional recovery” was calculated as (l+1)∕(k+1)

, where l and k are the number of OTUs and morphospecies in a 
taxon, respectively.

To explore the effect of experimental community construction 
on observed beta‐diversity between the tray samples, multisam-
ple Jaccard and Bray–Curtis beta‐diversity indices were computed 
for each set of samples within each combination of size or taxon 
class, composite pool, and construction method. Finally, the com-
bined read table was used to calculate the Jaccard and Bray–Curtis 
indices of total beta dissimilarity between size‐ or taxon‐based 

subcommunities. In both cases, the Jaccard index used only inci-
dence (presence–absence) data while the Bray–Curtis index used 
read numbers as a proxy for abundance. Dissimilarity was visualized 
using ordination with nonmetric multidimensional scaling (NMDS; 
Kruskal, 1964, Supporting information Appendix S1), and the sig-
nificance of dissimilarity/turnover in specific size or taxon subcom-
munities between increasingly complex composite pools was tested 
using GLMMs fitting the binomial distribution for proportion data 
and sample as a random effect. Analyses employed R (R Core Team, 
2018) packages betapart (Baselga, Orme, Villeger, De Bortoli, & 
Leprieur, 2017) and vegan (Oksanen et al., 2017).

3  | RESULTS

3.1 | Sequencing data and OTU recovery

In total, we generated 80 metabarcode libraries with 3.9 million reads 
after pair merging and quality filtering, comprising 43,000 unique 
contigs of 418 bp in length and with >5 copies. After denoising and 
chimera filtering, these were reduced to 1,800 unique sequences. A 

F I G U R E  2  The recovery of OTUs and community turnover patterns for each of four size classes (colors), for each of five pool types 
(x‐axes), for two experimental community construction methods (line type, see Figure 1). Subplot (a) shows number of OTUs recovered, 
and subplot (b) shows Shannon diversity of OTUs taking into account read numbers. For (a and b), points and error bars show mean and 
standard error. Bottom plots report beta‐diversity ((c) Jaccard, using presence–absence only, (d) Bray–Curtis, using read numbers) between 
replicates (error bar range in top plots) for each pool type and construction method, for each separate size class subcommunity and for all 
subcommunities in the pool together. For example, four source samples were used to construct experimental pools by mixing DNA from 
different size classes in the laboratory (solid line). For the library where the small, medium, and large size classes were combined (SizeP3), we 
calculate beta‐diversity between the four small subcommunities from those replicates (red point), for the medium and large fractions as well 
(orange and green points), and for the complete community comprising all three subcommunities (black point)
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wide range of clustering methods were applied, of which clustering 
with usearch_global version 9.2 at a 3% threshold was considered 
the most appropriate setting (Supporting information Figure S4), 
producing 913 OTUs across the entire dataset.

Across a set of sequenced pools for which parataxonomic data 
was recorded, the number of morphospecies was compared with 
the number of OTUs preliminarily classified into a set of 12 taxa. 
Samples were dominated by Coleoptera, followed by Araneae, 
Hemiptera, and Hymenoptera (Supporting information Figure S2a). 
Molecular OTU delimitation revealed significantly higher diversity 
than estimated from parataxonomy in many groups, with high ratios 
of molecular OTUs to morphospecies in particular in Coleoptera, 
Hemiptera, and Diptera (e.g., a ratio of 9.9 in the latter), although 
some samples also underestimated the morphological diversity 
(Supporting information Figure S2b). The mean proportional recov-
ery of OTU to morphospecies across all taxa was 3.5 and signifi-
cantly >1 (one‐sample t test, t = 9.2, 731 df, p < 0.001) for eight of 
the 12 taxa.

3.2 | The effects of body size

Two experiments examined the effect of size composition of speci-
men mixtures on recovered OTU diversity. First, a tray sample was 
sorted into four size classes, DNA was extracted from each class 
separately, and the resulting extracts were used to create five pools, 
SizeP1–SizeP4 and Prop. This analysis was replicated on four sepa-
rate tray samples (Figure 1, blue and pink panels). Metabarcoding 
produced a high number of small‐bodied OTUs and increasingly 
fewer OTUs for the other size classes. According to post hoc Tukey 
comparisons of GLMM fittings, there were no significant differences 
in mean OTU Richness or Shannon diversity between composite 
pools within each class within each construction method, taking 
account of variation between tray sample (Figure 2, solid lines, top 
panel).

A second experiment of sequential size class addition was per-
formed with subcommunities consisting of defined morphospecies, 
conducted on five replicate tray samples. The selection required 
that species were present in sufficient numbers of individuals within 
each tray sample to include them in four exactly equal subsamples 
from which four size pools were produced (SizeP1–SizeP4; Figure 1, 
blue and yellow panels). These pooled communities were generally 
comprised of fewer OTUs than the pools of the first experiment (as 
only species with a minimum of four individuals were selected to be 
represented in each class), but again no significant differences in the 
number or diversity of OTUs within size classes were observed, that 
is, the addition of further size classes had little effect on the detec-
tion of the small‐sized OTUs (Figure 2, top panels, dashed lines).

For each experiment, we calculated beta‐diversity between 
equivalent subcommunities from the different replicates (tray 
samples) within each size class, composite pool, and construction 
method combination (Figure 2, bottom panels). The purpose of this 
was to examine the effect of pool composition and methodology 
on the apparent turnover between our real‐world samples. Average 

between‐sample (“real‐world”) turnover varied between different 
size classes and between experimental composite community con-
struction method; however, the pattern of change in turnover with 
the addition of larger size classes was largely flat: Beta‐diversity re-
mained consistent within each size class and construction method 
despite increasingly complex pool structure.

Finally, we tested the degree to which these conclusions de-
pend on the sequencing depth, using a range of lower rarefaction 
targets to simulate decreased sequencing intensity. We rarefied 
to between 0.001 and 1 times the lowest read number available. 
To reduce the effects of stochasticity in rarefaction, especially at 
low target values, we repeated rarefaction at each target total read 
number 20 times and averaged the resulting OTU read numbers. 
The effect of adding another size class on the recovery of OTU 
richness was compared directly between pairs of consecutively 

F I G U R E  3  Relative change in number of OTUs recovered 
between pairs of composite pools (columns) within size classes 
(rows), over simulated variation in read depth, using only the 
data from the laboratory‐constructed samples. Read depth 
is represented by differing levels of rarefaction, representing 
increasingly lower read numbers. The x‐axis increases from 0.1% 
to 100% of the values used in rarefaction of this dataset for the 
main analyses (Supporting information Table S1). Columns of 
panels show pairwise comparisons between successive pairs of 
pools, for example, the rightmost panel compares the number of 
OTUs recovered in SizeP4 and Prop, split into the four different 
subcommunities based on size (rows). Comparisons are the 
proportional change in the number of OTUs: Where TC is the 
number of OTUs in a less complex size class, and TC+1 is the 
number of OTUs in the next more complex, proportional change 
is calculated as (TC+1+1)∕(TC+1). Values above the red line show 
an increase in the number of OTUs recovered going from the less 
complex to the more complex experimental communities. Fitted 
lines are lmer fits controlling for variation between sample, and 
stars show significance of slope compared with 0 (*0.01 < p < 0.05, 
**0.001 < p < 0.01, ***p < 0.001)
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more complex size pools, for example, SizeP1 vs. SizeP2, SizeP2 vs. 
SizeP3, and so on up to SizeP4 vs. Prop. At lower sequencing depth, 
we might expect that adding a larger size class to a composite pool 
would have a greater effect on the difference in the observed OTU 
richness of a smaller size class subcommunity. However, this exper-
iment showed no or very marginal change in OTU recovery differ-
ences between most adjacent size pools with stricter rarefaction 
(Figure 3). However, when comparing the two composite communi-
ties where all size classes were represented, but at different ratios, 
(SizeP4 vs. Prop.), higher levels of rarefaction (i.e., lower sequencing 
depth) generally resulted in a greater proportions of OTU changes. 
As “sequencing depth” decreased, the smallest size classes were re-
covered significantly better through proportional recombination of 
size classes in a pool (Prop.) compared with equal‐volume (SizeP4), 
while recovery of the largest size classes was significantly poorer 
for the same comparison.

3.3 | The effects of taxonomic composition

The effects of taxonomic composition on metabarcoding success 
were tested with tray samples sorted into eight higher taxa of ar-
thropods. Separate DNA extractions from each taxon were combined 
to create 10 composite taxonomic pools (TaxP1–10). For most taxa, 
there was a slight decline in the number of OTUs recovered in increas-
ingly complex composite communities, despite controlling for the 
dilution effect as relative read numbers decrease (Supporting infor-
mation Table S4). For most taxa, OTU richness and diversity were not 
significantly affected by any single addition of further taxa (Figure 4, 
top panels). However, there was a significant decline in both Acari 
and Formicidae OTU richness (but not diversity) with the introduc-
tion of Coleoptera, and a similarly significant decline in Araneae with 
the introduction of Diptera. Notably, the OTU richness of Formicidae 
and Acari recovered somewhat and then declined again, whereas the 

F I G U R E  4  The recovery of OTUs and community turnover patterns for different taxa (colors), for each of 10 pool types (x‐axes). Subplot 
(a) shows number of OTUs recovered, and subplot (b) shows Shannon diversity of OTUs taking into account read numbers. For (a and b), 
points and error bars show mean and standard error. Note that where taxon point is absent for a pool type (e.g., there is no green Coleoptera 
point for TaxP2), this taxon was not included in this construction. Bottom plots report multisample beta‐diversity ((c) Jaccard, using 
presence–absence only, (d) Bray–Curtis, using read numbers) between replicates for each pool type, for each separate taxon subcommunity 
and for all subcommunities in the pool together. For example, four source samples were used to construct experimental pools. For the 
library where the Coleoptera, Acari, and Formicidae were combined (TaxP5), we calculate beta‐diversity between the four Coleoptera 
subcommunities from those replicates (green point), for the Acari and Formicidae fractions as well (light orange and light blue points), and for 
the complete community comprising all three subcommunities (black point)
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richness of Araneae did not recover (although there were fewer sam-
ples to explore this pattern). However, when looking at compositional 
similarity, only the Coleoptera showed evidence that the same OTUs 
were recovered consistently, irrespective of the composition of the 
wider sample. All others showed increasing discrepancies from the 
OTU composition under low complexity (Figure 5).

As with the size experiment, we calculated the multisample 
beta‐diversity between the subcommunities from different samples 
within each taxon class, composite pool, and construction method 
combination (Figure 4, bottom panels). There was substantially less 
variation in beta‐diversity between different taxonomic fractions 
compared with size‐based fractions; however, there was consider-
ably greater variation within taxon classes over different composite 
pools, especially when considering abundance‐based beta‐diversity.

4  | DISCUSSION

We sequenced various reconstructions of community samples to 
test the reliability of metabarcoding for arthropod community ecol-
ogy, in the face of many possible biases. Attempting a real‐world 
application of metabarcoding, we used actual community samples, 
rather than widely employed artificial mock communities. The de-
sign involved separate DNA extraction on size‐ and taxon‐based 
subcommunities and tests their recovery when combined with vari-
ous portions of the full community. With this two‐step process of in 
vitro deconstruction and in silico reassembly, we were able to assign 
otherwise‐anonymous OTUs to specific subcommunities and to ac-
curately trace the detection of these OTUs between samples. The 
resulting data show that, in general, size classes and taxa remain 
compositionally consistent when processed together in various com-
binations with other components of the pool community.

We recover significantly more OTUs than input morphospecies. 
We invested substantial effort to determine the most appropriate 

similarity levels for OTU delimitation (see Supporting information 
Appendix S1) and found that to recover an equal ratio of OTUs to 
morphospecies required parameters well outside the current stan-
dard practice (Supporting information Figure S4). We settled on the 
3% value, which remains an arbitrary choice but is in line, on average, 
with levels defining intra‐ and interspecific differentiation for group-
ing barcode data (e.g., BINS, Ratnasingham & Hebert, 2013). We 
attribute OTU inflation to several issues: unidentifiable non‐target 
sequences (e.g., pseudogenes), systematic differences in molecular 
species divergences, or inability to accurately differentiate mor-
phospecies during sorting. OTU limits certainly affect the assess-
ment of richness in metabarcoding, but we believe that in this study, 
OTU inflation is a consistent bias that does not confound our inter-
pretations of within‐study diversity and compositional variation. 
However, the lack of validated taxon concepts for sequencing clus-
ters remains a major limitation to reliable biodiversity estimates, in 
particular in the study of unknown faunas lacking external sequence 
reference libraries. Further bioinformatic development is required 
to improve filtering of non‐target sequence reads and perhaps to 
adapt OTU delimitation to taxonomic context. Currently, the ideal 
metabarcoding study should include controls of known taxonomic 
composition and could be greatly improved by an approach that 
defines at least a subset of OTUs independently of metabarcoding, 
through individual barcoding or even mitochondrial sequencing. The 
latter approach adds considerable value to metabarcoding ecology 
by enabling phylogenetic reconstruction, which can be followed by 
placement of unknown OTUs to a tree for improved identification 
and filtering.

4.1 | Biases in species composition

Size differences did not greatly or consistently affect species re-
covery in metabarcoding, given a certain level of sequencing depth. 
Specifically, the number and diversity of OTUs in each size class did 

F I G U R E  5  Plots of compositional 
dissimilarity between the least‐dilute 
subcommunity for a taxon and subsequent 
subcommunities as part of more complex 
experimental communities. Each panel 
is a different taxon, and the x‐axis is 
experimental pools in increasing order of 
complexity. Y‐axis shows compositional 
dissimilarity, with 0 = identical and 
1 = completely dissimilar (no shared 
OTUs). Line types show dissimilarity 
measure: Jaccard (presence–absence only) 
or Bray–Curtis (read numbers). Points 
and error bars show mean and standard 
error. Note that the leftmost point in each 
plot is the reference subcommunity and 
therefore will always have a dissimilarity 
value of 0
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not greatly change whether sequenced individually or together with 
other size classes (Figure 2). We observe that even as the proportion 
of DNA contributed by a subcommunity becomes smaller, the recov-
ery of OTUs and OTU alpha‐diversity is reliable. The assays are sensi-
tive and realistic, as evidenced by the very similar patterns observed 
comparing subcommunities generated from all DNA in the tray sam-
ple or only from particular species selected for manual assembly, the 
latter of which shows a lower total number of OTUs recovered. In 
general, we see no effect on incidence‐based beta‐diversity with in-
creasingly complex mixed pools (within size class and method), show-
ing that sample composition does not affect our ability to observe 
study‐level community structure. However, variability in turnover 
increases when using abundance‐based beta‐diversity and with 
specimen‐based construction method. We attribute this to greater 
stochasticity driven by variation in OTU read numbers between 
sequenced libraries, and by fewer OTUs with the specimen‐based 
method. These results also allow us to be confident that observed 
turnover of the composite and subcommunities is valid “natural” sto-
chastic compositional change, as turnover varies largely as part of 
experimental modification rather than methodological error.

The result of lower sequencing coverage is inconsistent. With 
low rarefaction targets (simulating low sequencing depth), we would 
expect that the smallest OTUs are more likely to be recovered more 
poorly when sequenced alongside larger sizes than when sequenced 
alone: Instead, the results show a significant slight opposite effect 
for both the small and medium size classes comparing between the 
three less complex composite communities (Figure 3). Inversely, 
comparing composite communities with all size classes combined 
at different ratios (SizeP4 vs. Prop.), we see the expected response: 
The recovery of small OTUs is improved and the recovery of large 
OTUs is suppressed by proportional combination of DNA from dif-
ferent size classes at low read levels, but this effect diminished with 
higher read numbers (= higher rarefaction targets).

We find clear variation in the recovery of OTU richness and di-
versity of certain taxon classes once other taxa were included in the 
metabarcoding (Figures 4 and 5). The composition of all taxon sub-
communities substantially changes with the addition of other taxa, 
and this is exacerbated when using abundance‐based measures 
of dissimilarity, with both assemblage and relative read numbers 
being affected by increasing taxonomic complexity. Most taxa re-
spond with a roughly linear rate of compositional dissimilarity with 
increased community complexity, with a shallower response in the 
Coleoptera and a steeper response in the hymenoptera, suggesting a 
primer affinity in the former and greater incompatibility in the latter. 
Between‐sample beta‐diversity is considerably more inconsistent 
over increasingly complex communities compared with the size‐
based study. The introduction of other taxa clearly affects the abil-
ity of metabarcoding to successfully recover a consistently accurate 
representation of the community structure of individual taxa, and 
this may considerably affect the ability of a study to report accurate 
measures of study‐level structure such as beta‐diversity. This is par-
ticularly the case if read numbers are used in an abundance‐based 
assessment of compositionality: Where only presence–absence is 

employed, beta‐diversity between samples is broadly consistent 
over differing taxonomic compositions.

While the Arribas et al. (2016) primers successfully amplify a 
wide range of arthropod lineages, it does appear that binding af-
finity is unevenly biased toward some taxa and away from others, 
leading to inaccurate representation of relative taxon richness and 
composition in mixed metabarcoding samples. In particular, these 
results suggest the primers have a greater affinity for Coleoptera 
DNA, as recovery of OTU richness, diversity, and composition 
of this taxon is clearly affected less by the inclusion of other 
taxa compared with the other groups. The particular affinity of 
Coleoptera for this primer sequence is further evidenced by the 
effect on the recovery of OTU richness and composition of the 
Formicidae and Acari by the addition of beetles in a three‐way 
combination (TaxP5). Fortunately, this appears to be the only 
taxon that causes this effect, and the extent of the disruption is 
somewhat ameliorated by the dilution of the Coleoptera through 
further addition of other taxa. Notably, the greatest changes in 
OTU numbers and turnover (Figures 4 and 5) occurred in groups 
that generally appear to be composed of fairly small numbers of 
OTUs, which may be subject to stochastic effects of species de-
tection in the PCRs (although we combined three replicates) and 
sequencing. The stringent read quality filtering, chimera removal, 
and OTU clustering prior to the analysis of turnover probably min-
imize artifactual OTUs arising in the mixed DNA, but the conser-
vative handling of reads could also result in low detection success 
for certain OTUs. False negatives in part would be dependent on 
read depth, which was addressed by rarefaction to control for the 
dilution of reads by the addition of new taxa in the taxonomic ad-
dition experiment.

4.2 | Measuring community structure

We calculated community structure indices based on both OTU 
presence–absence and read numbers. While abundance‐based 
metrics are better able to represent the composition of a true 
ecological community, we cannot be certain that the use of read 
numbers is truly representative of ecological abundance, espe-
cially in samples of mixed size and taxonomy where the relation-
ship between read numbers of an OTU and species abundance will 
be affected by primer affinity, DNA quantity, and sequencing sto-
chasticity. In both size and taxonomy experiments in the present 
study, there was little difference in the observed patterns between 
OTU richness and Shannon diversity: Including read numbers did 
not affect the conclusions drawn. However, there was greater 
variation in the observed pattern of beta‐diversity calculated from 
read numbers compared with beta‐diversity calculated from pres-
ence–absence alone, although patterns were generally consistent 
in direction. We are cautious about deriving firm conclusions from 
abundance‐based composition metrics; while the variation could 
be interpreted to point toward size or taxon biases in recovery, it 
could also be due to many sources of error in the metabarcoding 
processes.
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4.3 | Implications for studies of canopy arthropods

These data join a relatively small cohort of studies that examine the 
entirety of a high‐diversity tropical arthropod community at a spe-
cies‐equivalent level, and the separation of different subsets of this 
community revealed interesting patterns that should inform similar 
future studies. Small‐bodied OTUs dominated the communities, in 
line with known molecular abundance spectra of tropical insects 
(Choo, Crampton‐Platt, & Vogler, 2017). The canopy fogging method 
employed here, using small collecting trays suspended high in the 
canopy, is particularly efficient for catching small‐bodied specimens 
that would be missed in larger, ground‐level sampling screens due 
to drifting of specimens, while larger specimens may be missed due 
to their ability to escape from the small‐scale canopy fogging. The 
smallest specimens of the community are frequently not captured 
or are understudied by morphological approaches. Metabarcoding 
thus may be crucial in understanding the important contribution 
these species make to species composition and turnover, without 
the bias introduced by traditional taxonomy. Furthermore, mor-
phological studies are frequently limited in taxonomic breadth and 
may misrepresent the extent and pattern of turnover across the 
entire Arthropoda, which is overcome by metabarcoding. In addi-
tion, the magnitude of compositional change across the tray sam-
ples (Supporting information Figure S3 and Table S3) clearly varies 
between different subcommunities, which provide additional infor-
mation for arthropod community ecology from comparing separate 
subcommunities (e.g., small bodied vs. large specimen) without the 
need for direct characterization of the species involved.

The largest arthropods used in this study had a cross‐sectional 
area of 75 mm2; this may be considered to limit the applicability of 
these findings to metabarcoding studies that include much larger 
individuals. However, metabarcoding is most useful for smaller‐bod-
ied individuals, which make up a disproportionate part of the spe-
cies and individuals in most terrestrial arthropod communities. The 
power‐based grouping system used in this study allowed compar-
ison between arthropods that varied in size by up to 64‐fold and 
found no difference in or effects on recovery rate. With sufficient 
sequencing, this pattern may be expected to hold true for arthro-
pods at least another size class larger (up to 220 mm2, a fourfold in-
crease on the largest individuals used in this study); alternatively, the 
largest individuals are easily extracted from mixed pools and can be 
tissue‐subsampled to be included fairly in metabarcoding. As such, 
this caveat is relatively minor and these results likely apply to most 
arthropod metabarcoding studies.

4.4 | Implications for metabarcoding arthropod 
communities

The findings have obvious practical implications: Should we sort 
by size, or by taxon, or both, prior to DNA extraction and metabar-
coding? The great power of metabarcoding clearly derives from the 
ability to go from the trap catch directly to DNA analysis of species 
composition without elaborate (para)taxonomic steps. Our results 

suggest that in most cases, size sorting and biomass control are not 
necessary with sufficient sequencing depth; however, some degree 
of taxonomic sorting and the use of taxonomic‐based control sam-
ples may be beneficial, in particular to gain additional ecological in-
formation. Size sorting is much easier than any kind of taxonomic 
sorting, although even sorting to order level can be performed rela-
tively rapidly, perhaps while also gathering other valuable informa-
tion such as specimens counts.

The biases from taxonomic composition of samples would gener-
ally suggest that where feasible this kind of separation is desirable, at 
least in taxa known to either strongly affect or be strongly affected 
by other taxa, such as the Coleoptera for these primers. In addition, 
performing multiple PCRs in combination and separately may give a 
more accurate picture of the total species diversity, which in individ-
ual reactions may be missed. It appears the lack of detection of many 
species in a particular run is not primarily due to low read depth, 
although this could potentially be increased to optimize the detec-
tion of rare reads when applying highly stringent quality filtering 
protocols, as was done here. The decision to apply metabarcoding to 
particular subsets of a mass‐trapped sample ultimately depends on 
the required accuracy of the data. For many applications of species 
turnover and total diversity, the exact number is not important, as 
long as a similar error is introduced in all samples equally. However, 
when the experiments require great precision of species lists,  
presorting of specimens by taxon and potentially also by size may be 
helpful, and in fact, using different primers may further avoid the in-
advertent omission of species. At the same time, the frequently very 
high number of OTUs obtained in some studies (Bista et al., 2017) 
could include false positives that can be eliminated by only scoring 
OTUs consistently obtained from multiple separate amplifications 
and sequencing, or through use of separately prepared barcode or 
genomic datasets.

4.5 | Conclusions

As we start using metabarcoding for studying the great diversity 
of arthropods of the rainforest canopy, to reassess the long‐stand-
ing questions about species numbers, host specificity, and spe-
cies turnover, the validation of the approach requires that these 
entities are equivalent to the Linnaean species or morphospecies 
of existing studies of tropical insect diversity. OTU clusters here 
were defined with stringent methods for sequence quality and 
cluster threshold, which allowed to trace each cluster across natu-
ral communities and artificial subcommunities derived from them, 
and thus to test the effect of potentially confounding parameters 
of species detection. It was important that natural communities 
from trapping efforts were used, making the scenarios as realis-
tic as possible. The consistent recovery of particular OTUs within 
and between natural samples shows that metabarcoding may be 
more rigorous, consistent, and have greater utility than simple 
parataxonomic morphospecies delimitation and identification. 
Arthropod ecologists can thus be confident that metabarcoding 
can generate comprehensive, realistic, and accurate community 
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data, in particular for small‐bodied taxa, even without controlling 
for body size or taxonomic composition of samples. The high qual-
ity of metabarcoding data thus can contribute to the global effort 
for generating sequence data of all species on Earth, in particular 
for poorly known, diverse ecosystems such as the tropical rainfor-
est canopy.
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