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Abstract
1.	 Metabarcoding	of	arthropod	communities	can	be	used	for	assessing	species	di-
versity	 in	 tropical	 forests	but	 the	methodology	 requires	validation	 for	accurate	
and	repeatable	species	occurrences	in	complex	mixtures.	This	study	investigates	
how	 the	 composition	 of	 ecological	 samples	 affects	 the	 accuracy	 of	 species	
recovery.

2.	 Starting	with	field‐collected	bulk	samples	from	the	tropical	canopy,	the	recovery	
of	specimens	was	tested	for	subsets	of	different	body	sizes	and	major	taxa,	by	as-
sembling	 these	subsets	 into	 increasingly	complex	composite	pools.	After	meta-
barcoding,	we	track	whether	richness,	diversity,	and	most	importantly	composition	
of	any	size	class	or	taxonomic	subset	are	affected	by	the	presence	of	other	sub-
sets	in	the	mixture.

3.	 Operational	taxonomic	units	(OTUs)	greatly	exceeded	the	number	of	morphospe-
cies	in	most	taxa,	even	under	very	stringent	sequencing	read	filtering.	There	was	
no	significant	effect	on	the	recovered	OTU	richness	of	small	and	medium‐sized	
arthropods	when	metabarcoded	alongside	larger	arthropods,	despite	substantial	
biomass	differences	in	the	mixture.	The	recovery	of	taxonomic	subsets	was	not	
generally	 influenced	by	the	presence	of	other	taxa,	although	with	some	excep-
tions	likely	due	to	primer	mismatches.	Considerable	compositional	variation	within	
size	and	taxon‐based	subcommunities	was	evident	resulting	in	high	beta‐diversity	
among	samples	from	within	a	single	tree	canopy,	but	this	beta‐diversity	was	not	
affected	by	experimental	manipulation.

4.	 We	conclude	that	OTU	recovery	in	complex	arthropod	communities,	with	suffi-
cient	sequencing	depth	and	within	reasonable	size	ranges,	is	not	skewed	by	vari-
able	 biomass	 of	 the	 constituent	 species.	 This	 could	 remove	 the	 need	 for	
time‐intensive	manual	sorting	prior	to	metabarcoding.	However,	there	remains	a	
chance	of	taxonomic	bias,	which	may	be	primer‐dependent.	There	will	never	be	a	
panacea	primer;	instead,	metabarcoding	studies	should	carefully	consider	whether	
the	aim	is	broadscale	turnover,	in	which	case	these	biases	may	not	be	important,	
or	species	lists,	in	which	case	separate	PCRs	and	sequencing	might	be	necessary.	
OTU	number	 inflation	remains	an	issue	in	metabarcoding	and	requires	bioinfor-
matic	 development,	 particularly	 in	 read	 filtering	 and	 OTU	 clustering,	 and/or	
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1  | INTRODUC TION

The	great	diversity	of	arthropods,	challenging	 to	study	with	 tradi-
tional	 taxonomic	 methods,	 is	 increasingly	 being	 investigated	 with	
metabarcoding,	 that	 is,	 the	PCR	amplification	and	next‐generation	
sequencing	of	bulk	samples	obtained	from	mass	trapping.	For	highly	
diverse	arthropods	of	the	tropical	rainforest	canopy,	metabarcoding	
may	be	suitable	to	answer	fundamental	questions	about	the	magni-
tude	and	distribution	of	species	richness	within	and	among	different	
host	tree	species,	to	improve	existing	estimates	of	total	species	rich-
ness	on	Earth	(Erwin,	1982;	Hamilton	et	al.,	2010;	Ødegaard,	2000)	
and	to	better	understand	the	ecology	of	this	understudied	commu-
nity	(Nakamura	et	al.,	2017).	Metabarcoding	is	already	widely	used	
in	studies	of	arthropods,	such	as	the	pioneering	work	on	Lepidoptera	
in	 (sub)tropical	 forests	 (Ji	et	al.,	2013;	Yu	et	al.,	2012)	and	soil	and	
aquatic	macroinvertebrates	(Arribas,	Andújar,	Hopkins,	Shepherd,	&	
Vogler,	2016;	Fonseca	et	al.,	2014;	Macher	et	al.,	2016).	These	stud-
ies	have	shown	that	metabarcoding	is	a	highly	suitable	method	for	
assessing	total	richness	and	species	turnover	for	many	topics	from	
evolutionary	 biology	 to	 environmental	 monitoring	 (Andújar	 et	al.,	
2018;	 Elbrecht,	Vamos,	Meissner,	Aroviita,	&	 Leese,	 2017;	Gibson	
et	al.,	2015;	Hajibabaei,	Baird,	Fahner,	Beiko,	&	Golding,	2016).

While	 metabarcoding	 is	 showing	 great	 promise,	 the	 precise	
methodology	 remains	 in	 flux.	 Studies	 of	 mixed	 species	 assem-
blages	 have	 recovered	 a	 relatively	 high	 number	 of	 operational	
taxonomic	units	(OTUs:	clusters	of	sequence	reads	that	aim	to	be	
equivalent	to	biological	species),	even	when	invisible	with	macro-
scopic	methods	 (Arribas	 et	al.,	 2016)	 or	 solely	 detected	 as	 envi-
ronmental	traces	(Fonseca	et	al.,	2014).	This	raises	the	possibility	
of	 inflated	 OTU	 numbers	 due	 to	 artifacts	 of	 the	 amplification	
process,	 including	 the	 formation	 of	 chimerical	 sequences,	 sam-
ple	contamination,	and	the	amplification	of	pseudogenes,	among	
others.	Conversely,	other	factors	might	lead	to	an	underestimate	
of	species	numbers,	for	example,	if	primers	skew	PCR	success	or	
if	reads	are	dominated	by	a	few	species	 in	the	specimen	mixture	
due	to	high	biomass.	Recent	studies	have	attempted	validation	of	
metabarcoding	 for	 arthropods,	 frequently	 by	 constructing	mock	
communities	 to	 test	 the	 effects	 of	 primer	 choice	 (Elbrecht	 &	
Leese,	 2015;	 Krehenwinkel	 et	al.,	 2017),	 taxonomic	 composition	
(Krehenwinkel	 et	al.,	 2018;	 Morinière	 et	al.,	 2016),	 and	 amount	
of	 input	 DNA	 (Elbrecht	 et	al.,	 2017;	 Krehenwinkel	 et	al.,	 2017).	
This	work	has	resulted	in	specific	recommendations	for	improved	
methodologies,	but	it	is	limited	by	the	focus	on	particular	species	
and	the	low	complexity	of	artificial	communities.

In	 moving	 from	 contrived	 specimen	 mixtures	 to	 the	 analysis	
of	 real‐world	 samples,	 particularly	 in	 highly	 diverse	 communities	
of	never‐before‐sequenced	 species	 as	 those	 from	 tropical	 forests,	
we	 are	 faced	 with	 several	 challenges	 in	 molecular	 methodology	
and	 bioinformatics.	 Ideally,	 to	 characterize	 large	 numbers	 of	 sam-
ples,	we	would	use	trap‐collected	samples	without	time‐consuming	
prior	 sorting	 and	 instead	 apply	metabarcoding	 to	 the	 full	mixture	
regardless	 of	 taxonomic	 composition,	 relative	 abundance,	 or	 bio-
mass	 of	 species	 present.	However,	 as	 the	 complexity	 of	 the	 sam-
ple	increases,	differences	in	the	amount	of	tissue	between	species	
(Elbrecht	&	Leese,	2015;	Krehenwinkel	et	al.,	2017)	and	primer	skew	
(Arribas	 et	al.,	 2016;	 Elbrecht	 &	 Leese,	 2015;	 Krehenwinkel	 et	al.,	
2017)	may	favor	a	few	large‐bodied	or	abundant	species	and	partic-
ular	 taxonomic	groups,	while	negatively	affecting	the	detection	of	
others.	The	accuracy	of	metabarcoding	would	thus	depend	on	the	
wider	 composition	 of	 the	 pool,	 as	 the	 various	 templates	 compete	
in	 different	 context	 of	 other	 templates,	 which	 also	 differ	 in	 their	
numbers.

Ultimately,	while	studies	of	mock	communities	can	test	the	pa-
rameters	 that	most	 strongly	 affect	 the	 efficiency	 and	 accuracy	of	
metabarcoding,	 and	 provide	 avenues	 for	 mitigating	 against	 these	
confounding	parameters,	they	are	not	suited	to	determine	whether	a	
given	real	community	of	unknown	composition	is	characterized	con-
sistently.	To	make	these	compositional	assessments	more	realistic,	
we	take	an	approach	that	uses	several	samples	collected	under	very	
similar	conditions,	but	whose	individual	composition	is	unknown,	to	
evaluate	the	error	due	to	the	structure	of	each	sample.	Specifically,	
we	assess	 (a)	 the	degree	to	which	specimens	of	each	of	four	body	
size	 classes	 are	 recovered	 if	 assessed	on	 their	 own	or	 in	 the	 con-
text	of	larger‐bodied	species,	and	(b)	how	the	presence	or	absence	
of	particular	taxonomic	groups	(orders	of	arthropods)	in	a	metabar-
coding	mixture	might	affect	the	recovery	of	other	groups.	We	exam-
ine	multiple	 samples,	measuring	both	 the	 recovery	OTU	 richness/
alpha‐diversity	and	the	consistency	of	recovery	of	between‐sample	
beta‐diversity,	 utilizing	 both	 incidence	 (presence–absence)‐	 and	
abundance	(read	numbers)‐based	metrics.

2  | MATERIAL S AND METHODS

Samples	were	collected	in	Cusuco	National	Park,	Cortés,	Honduras,	
during	a	single	5%	cypermethrin	canopy	fogging	occasion	of	an	indi-
vidual	Liquidambar styracaflua	(Saxifragales:	Altingiaceae)	tree	using	
circular	1	m2	trays	suspended	in	the	canopy	at	approximately	30	m	

greater	 use	 of	 species‐identifying	 sequences	 generated	 outside	 of	 bulk	
sequencing.

K E Y W O R D S

arthropods,	body	size,	compositionality,	metabarcoding,	sequencing	bias,	species	diversity,	
taxon	composition
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above	ground	at	very	short	distances	 from	each	other.	Specimens	
collected	in	each	tray	formed	a	“tray	sample.”	Samples	were	stored	
in	100%	ethanol	and	sorted	to	major	taxa	and/or	size	classes	in	the	
laboratory.	In	total,	we	used	13	tray	samples	from	this	fogging	event,	
each	representing	natural	communities	sampled	in	a	highly	uniform	
way;	thus,	differences	in	composition	were	only	due	to	the	uneven	
distribution	of	species	and	stochastic	differences	in	collecting	suc-
cess	within	a	single	tree	canopy.

Size	 sorting	 was	 performed	 according	 to	 approximate	 body	
size,	 as	 measured	 under	 a	 dissecting	 scope.	 Four	 size	 classes	
were	 established,	 corresponding	 to	 cross‐sectional	 areas	 (body	
length	×	width)	of	1–3	mm2,	3–9	mm2,	9–26	mm2,	and	26–75	mm2,	
referred	to	as	small,	medium,	large,	and	extra‐large,	respectively.	
The	number	and	boundaries	of	these	size	classes	were	established	
based	on	morphometric	measurements	of	Coleoptera	morphospe-
cies,	such	that	the	mean	volume	of	each	size	class	was	a	constant	

F I G U R E  1  Diagram	showing	construction	of	size	pools,	both	the	Specimen	method	(a–e,	blue	and	pink	backgrounds)	and	the	
DNA	method	(a–b,f–h,	blue	and	yellow	backgrounds).	Colored	letters	denote	individual	arthropods,	each	different	letter	a	different	
morphospecies.	Letter	color	and	size	denote	size	class,	white	boxes	distinct	samples,	as	shown	in	the	legend.	Tube	cartoons	denote	distinct	
DNA	samples,	with	colors	denoting	size	class(es)	of	contents.	For	Specimen	method	size	pool	construction	(blue,	pink),	arthropods	from	
raw	mixed	tray	samples	(a)	were	sorted	into	size	classes	(b).	Each	size	class	was	then	sorted	into	subsamples	of	identical	morphospecies	and	
abundance	composition	(c).	Four	Size	Pools	(SizeP)	were	constructed	from	sets	of	these	subsamples,	such	that	each	Size	Pool	contained	a	
representative	subsample	of	the	size	classes	included	(d).	DNA	was	then	extracted	from	each	of	these	Size	Pools	(e).	This	process	was	carried	
out	for	five	tray	samples,	resulting	in	20	Size	Pool	samples	for	sequencing.	For	DNA	size	pool	construction	(blue,	yellow),	arthropods	were	
also	sorted	to	size	class	(a,	b,	as	above).	DNA	was	extracted	from	each	size	class	(f),	and	each	DNA	extract	was	split	into	five	equal	parts	(g).	
Size	pools	were	constructed	from	sets	of	these	equal	parts	as	shown.	For	SP1–SP4,	equal	quantities	of	each	size	class	were	combined	(h).	
For	the	Prop.	composite	pool,	DNA	was	combined	proportional	to	the	inverse	of	the	mean	size	of	each	size	class,	at	a	ratio	of	64:16:4:1	from	
smallest	to	largest	class.	This	process	was	carried	out	for	4	tray	samples,	resulting	in	20	Size	Pool	samples	for	sequencing
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multiple	 of	 the	 next	 smallest	 size	 class.	 Specimens	 smaller	 than	
1	mm2	 in	 cross‐sectional	 area	 (the	 smallest	 area	 that	 could	 be	
measured	accurately)	were	 included	 in	 the	small	class;	 for	speci-
mens	larger	than	75	mm2,	tissue	was	sampled	from	the	specimen	
and	the	tissue	size	determined	 its	size	class	placement.	The	vast	
majority	of	specimens	fell	in	the	range	1–75	mm2.	All	sorting	was	
performed	under	a	microscope,	and	no	attached	external	parasites	
or	phoronts	were	observed	–	it	is	likely	that	any	such	arthropods	
were	 detached	 from	 their	 hosts	 upon	death	 or	 during	 transport	
and	 manipulation	 of	 the	 samples,	 and	 thus	 would	 be	 properly	
categorized.	 Internal	 parasites/parasitoids	 could	 not	 be	 feasi-
bly	 identified	 or	 separated	 from	 hosts,	 and	 this	may	 cause	 bias	
whereby	physically	 smaller	 arthropods	were	actually	 included	 in	
larger	classes	along	with	 their	hosts.	Taxonomic	 sorting	entailed	
the	placement	of	specimens	into	one	of	eight	“classes”	of	arthro-
pods	 (usually	 orders),	 which	 included	 the	 vast	 majority	 of	 indi-
vidual	arthropods	obtained.	Formicidae	were	separated	from	the	
other	Hymenoptera	due	to	pilot	data	suggesting	a	high	likelihood	
of	primer	mismatch	(Supporting	information	Table	S2).

2.1 | DNA extractions, composite pool 
construction, and sequencing

Composite	 pools	 were	 created	 from	 sets	 of	 the	 size‐sorted	 or	
taxon‐sorted	classes	(“subcommunities”),	as	detailed	in	Figure	1,	by	
sequentially	adding	more	size	classes	(starting	with	the	smallest)	or	
by	adding	more	taxonomic	classes	(starting	with	either	Coleoptera,	
Formicidae,	or	Acari	and	adding	one	new	taxon	at	a	time).	We	did	not	
equilibrate	the	concentration	of	DNA	extract	from	different	classes	
in	order	that	combinations	of	extracts	from	a	set	of	classes	would	
be	equivalent	to	an	extraction	of	specimens	from	all	of	those	classes	
together.	To	the	four	size	pools	(SizeP1–SizeP4,	see	Figure	1),	a	“pro-
portional”	pool	(Prop.)	was	added	by	combining	the	four	extractions	
in	proportions	inverse	to	their	mean	body	sizes,	that	is,	in	ratios	of	
64:16:4:1	(small:	medium:	large:	extra‐large)	in	order	to	normalize	the	
effect	of	body	size	variation	(proportional	to	specimen	biomass,	not	
considering	 their	 relative	 abundance	 in	 the	 natural	 sample;	 for	 an	
explanation,	see	Supporting	information	Appendix	S1).

To	 extract	 DNA,	 dried	 specimen	 pools	 were	 suspended	 in	
200–600 μl	1:9	Proteinase	K	and	ATL	and	homogenized	using	a	sin-
gle	3	mm	stainless‐steel	ball	bearing	 in	a	Qiagen	TissueLyser	 II	 for	
80–120	s	at	30	Hz.	After	overnight	 lysis	 in	a	56°C	shaking	 incuba-
tor,	 samples	were	 vortexed	 thoroughly	 and	 centrifuged	 at	 3000	g 
for	3	min.	The	lysate	supernatant	was	used	for	DNA	extraction	with	
Qiagen	DNeasy	Spin	Columns.	The	resulting	elutions	were	combined	
with	others	in	specific	ratios	(see	Figure	1).	PCR	was	conducted	on	
the	DNA	pools	for	418	bp	of	the	cytochrome	oxidase	subunit	I	(COI)	
barcode	region	using	the	primers	Ill_B_F	(Shokralla	et	al.,	2015)	and	
Fol_degen_rev	 (Yu	 et	al.,	 2012)	 following	 the	 protocol	 of	 Arribas	
et	al.	 (2016).	 Amplicons	 were	 sequenced	 on	 an	 Illumina	 MiSeq	
flow	 cell	 (2	×	300	bp	 paired‐end)	 after	 quality	 control,	 secondary	
PCR,	and	indexing	with	Nextera	XT	tags,	at	the	sequencing	facility,	
Natural	History	Museum	London.

2.2 | Bioinformatics and data processing

Bioinformatics	processing	was	carried	out	using	the	NAPtime	pipe-
line,	a	set	of	Perl	scripts	 to	wrap	filtering	and	clustering	software.	
NAPmerge	carries	out	trimming,	merging	of	paired‐end	reads,	and	
quality	filtering/conversion	using	fastx_trimmer	(Hannon	Lab,	2012),	
PEAR	(Zhang	et	al.,	2014),	and	USEARCH	fastq_filter	(Edgar,	2010),	
respectively.	A	range	of	parameters	was	tested,	but	the	final	dataset	
used	a	PEAR‐q	value	of	26	and	an	fastq_filter	expected	error	 rate	
threshold	of	1,	also	chosen	by	Arribas	et	al.	(2016).	NAPcluster	car-
ries	out	dereplication	and	size	sorting	of	reads	before	denoising	using	
USEARCH	UNOISE	 (Edgar,	2016),	clustering	using	USEARCH	clus-
ter_otus	(Edgar,	2010)	or	swarm	(Mahé,	Rognes,	Quince,	de	Vargas,	
&	Dunthorn,	 2015),	 and	mapping	 reads	 to	OTUs	 using	USEARCH	
usearch_global	 (Edgar,	2010).	NAPcluster	also	assigns	OTUs	a	pre-
liminary	 taxonomy	 based	 on	 parsing	 BLAST	 searches	 against	 the	
GenBank	 nt	 database.	 Only	 contigs	 with	 the	 expected	 length	 of	
418	bp	 and	 unique	 sequences	 with	 >5	 copies	 were	 retained.	We	
considered	five	or	fewer	copies	to	be	more	likely	to	be	sequencing	
errors	rather	than	valid	sequences.	NAPcluster	converts	the	output	
of	usearch_global	to	a	table	of	read	numbers	for	each	OTU	in	each-
sequenced	pool	(“composite	community’).	The	output	table	for	each	
composite	community	was	rarefied	to	control	for	total	read	number	
and	 for	 the	 effect	 of	 dilution	when	 comparing	 the	OTUs	within	 a	
particular	size	class	or	taxon	class	between	composite	pools	of	 in-
creasing	complexity	(Supporting	information	Table	S1).

Each	OTU	was	allocated	 to	a	 size	and/or	 taxon	subcommunity	
based	 on	 its	 detection	 in	 the	 composite	 pools	 (Supporting	 infor-
mation	 Figure	 S1).	 As	 the	 sequenced	 composite	 size	 pools	 were	
composed	of	 only	 the	 small	 size	 class	 (named	 “SizeP1”)	 or	 the	 se-
quentially	 added	 three	 larger	 size	 classes	 (SizeP2	 to	 SizeP4),	 only	
small‐sized	 OTUs	 could	 occur	 in	 all	 four	 composite	 communities,	
while	the	extra‐large	OTUs	should	occur	only	in	the	composite	com-
munities	of	all	size	classes	mixed	together.	Based	on	their	incidence	
pattern,	each	OTU	was	assigned	to	one	of	the	four	size	classes.	An	
analogous	 approach	was	 used	 for	 the	 assignment	 to	 taxon	 in	 the	
mixed	pools	of	increasing	taxonomic	complexity.	An	OTU	present	in	
a	single‐taxon	pool	can	be	assigned	confidently	to	that	taxon,	while	
the	first	appearance	in	the	sequential	addition	of	other	taxa	deter-
mined	the	taxonomic	assignment	for	other	OTUs.	Size	class	or	taxon	
class	 assignment	was	 then	used	 to	 separate	each	composite	 com-
munity	 into	a	set	of	constituent	subcommunities,	 in	order	to	track	
each	class‐assigned	OTU	 in	 any	particular	 sample	or	 to	determine	
the	composition	of	an	entire	subcommunity.

2.3 | Statistical analysis

For	 each	 subcommunity,	 the	 number	 of	OTUs	 and	 the	 Shannon	
diversity	was	calculated.	Shannon	diversity	was	based	on	rarefied	
read	numbers,	and	as	such	may	be	affected	by	stochastic	variation	
in	 read	 number	 recovery	 proportional	 to	 true	 OTU	 abundances	
and	so	may	not	reflect	true	diversity.	The	significance	of	change	
in	 richness	 and	 diversity	 within	 each	 subcommunity	 between	
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size‐based	 or	 taxonomy‐based	 composite	 communities	 was	 as-
sessed	 fitting	 generalized	 linear	 mixed	 effects	 models	 (GLMM)	
using	the	 lme4	package	(Bates,	Mächler,	Bolker,	&	Walker,	2015)	
in	R	(R	Core	Team,	2018).	Log‐log	transformations	were	employed	
for	 the	test	of	OTU	richness,	as	 the	number	of	OTUs	followed	a	
Poisson	distribution,	and	in	both	cases,	the	original	tray	sample	ID	
was	fitted	as	a	random	effect.	Post	hoc	Tukey	comparisons	were	
calculated	using	the	lsmeans	package	(Lenth,	2016).	Where	appli-
cable,	the	number	of	OTUs	in	each	set	of	taxa	was	compared	with	
the	number	of	morphospecies	derived	from	parataxonomic	sample	
sorting.	The	“proportional	recovery”	was	calculated	as	(l+1)∕(k+1)

,	where	 l	and	k	are	the	number	of	OTUs	and	morphospecies	 in	a	
taxon,	respectively.

To	explore	the	effect	of	experimental	community	construction	
on	 observed	 beta‐diversity	 between	 the	 tray	 samples,	 multisam-
ple	Jaccard	and	Bray–Curtis	beta‐diversity	 indices	were	computed	
for	 each	 set	 of	 samples	within	 each	 combination	 of	 size	 or	 taxon	
class,	 composite	 pool,	 and	 construction	method.	 Finally,	 the	 com-
bined	read	table	was	used	to	calculate	the	Jaccard	and	Bray–Curtis	
indices	 of	 total	 beta	 dissimilarity	 between	 size‐	 or	 taxon‐based	

subcommunities.	 In	 both	 cases,	 the	 Jaccard	 index	 used	 only	 inci-
dence	 (presence–absence)	 data	 while	 the	 Bray–Curtis	 index	 used	
read	numbers	as	a	proxy	for	abundance.	Dissimilarity	was	visualized	
using	 ordination	with	 nonmetric	multidimensional	 scaling	 (NMDS;	
Kruskal,	 1964,	 Supporting	 information	 Appendix	 S1),	 and	 the	 sig-
nificance	of	dissimilarity/turnover	in	specific	size	or	taxon	subcom-
munities	between	increasingly	complex	composite	pools	was	tested	
using	GLMMs	 fitting	 the	binomial	distribution	 for	proportion	data	
and	sample	as	a	random	effect.	Analyses	employed	R	(R	Core	Team,	
2018)	 packages	 betapart	 (Baselga,	 Orme,	 Villeger,	 De	 Bortoli,	 &	
Leprieur,	2017)	and	vegan	(Oksanen	et	al.,	2017).

3  | RESULTS

3.1 | Sequencing data and OTU recovery

In	total,	we	generated	80	metabarcode	libraries	with	3.9	million	reads	
after	 pair	merging	 and	quality	 filtering,	 comprising	43,000	unique	
contigs	of	418	bp	in	length	and	with	>5	copies.	After	denoising	and	
chimera	filtering,	these	were	reduced	to	1,800	unique	sequences.	A	

F I G U R E  2  The	recovery	of	OTUs	and	community	turnover	patterns	for	each	of	four	size	classes	(colors),	for	each	of	five	pool	types	
(x‐axes),	for	two	experimental	community	construction	methods	(line	type,	see	Figure	1).	Subplot	(a)	shows	number	of	OTUs	recovered,	
and	subplot	(b)	shows	Shannon	diversity	of	OTUs	taking	into	account	read	numbers.	For	(a	and	b),	points	and	error	bars	show	mean	and	
standard	error.	Bottom	plots	report	beta‐diversity	((c)	Jaccard,	using	presence–absence	only,	(d)	Bray–Curtis,	using	read	numbers)	between	
replicates	(error	bar	range	in	top	plots)	for	each	pool	type	and	construction	method,	for	each	separate	size	class	subcommunity	and	for	all	
subcommunities	in	the	pool	together.	For	example,	four	source	samples	were	used	to	construct	experimental	pools	by	mixing	DNA	from	
different	size	classes	in	the	laboratory	(solid	line).	For	the	library	where	the	small,	medium,	and	large	size	classes	were	combined	(SizeP3),	we	
calculate	beta‐diversity	between	the	four	small	subcommunities	from	those	replicates	(red	point),	for	the	medium	and	large	fractions	as	well	
(orange	and	green	points),	and	for	the	complete	community	comprising	all	three	subcommunities	(black	point)
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wide	range	of	clustering	methods	were	applied,	of	which	clustering	
with	usearch_global	version	9.2	at	a	3%	threshold	was	considered	
the	 most	 appropriate	 setting	 (Supporting	 information	 Figure	 S4),	
producing	913	OTUs	across	the	entire	dataset.

Across	a	set	of	sequenced	pools	for	which	parataxonomic	data	
was	 recorded,	 the	 number	 of	 morphospecies	 was	 compared	with	
the	 number	 of	OTUs	 preliminarily	 classified	 into	 a	 set	 of	 12	 taxa.	
Samples	 were	 dominated	 by	 Coleoptera,	 followed	 by	 Araneae,	
Hemiptera,	and	Hymenoptera	(Supporting	information	Figure	S2a).	
Molecular	OTU	delimitation	 revealed	 significantly	 higher	 diversity	
than	estimated	from	parataxonomy	in	many	groups,	with	high	ratios	
of	 molecular	 OTUs	 to	 morphospecies	 in	 particular	 in	 Coleoptera,	
Hemiptera,	 and	Diptera	 (e.g.,	 a	 ratio	of	9.9	 in	 the	 latter),	 although	
some	 samples	 also	 underestimated	 the	 morphological	 diversity	
(Supporting	information	Figure	S2b).	The	mean	proportional	recov-
ery	 of	OTU	 to	morphospecies	 across	 all	 taxa	was	 3.5	 and	 signifi-
cantly	>1	 (one‐sample	t	 test,	t	=	9.2,	731	df, p	<	0.001)	for	eight	of	
the	12	taxa.

3.2 | The effects of body size

Two	experiments	examined	the	effect	of	size	composition	of	speci-
men	mixtures	on	recovered	OTU	diversity.	First,	a	tray	sample	was	
sorted	 into	 four	 size	 classes,	DNA	was	 extracted	 from	 each	 class	
separately,	and	the	resulting	extracts	were	used	to	create	five	pools,	
SizeP1–SizeP4	and	Prop.	This	analysis	was	replicated	on	four	sepa-
rate	 tray	 samples	 (Figure	1,	 blue	 and	 pink	 panels).	Metabarcoding	
produced	 a	 high	 number	 of	 small‐bodied	 OTUs	 and	 increasingly	
fewer	OTUs	for	the	other	size	classes.	According	to	post	hoc	Tukey	
comparisons	of	GLMM	fittings,	there	were	no	significant	differences	
in	 mean	 OTU	 Richness	 or	 Shannon	 diversity	 between	 composite	
pools	 within	 each	 class	 within	 each	 construction	 method,	 taking	
account	of	variation	between	tray	sample	(Figure	2,	solid	lines,	top	
panel).

A	second	experiment	of	sequential	size	class	addition	was	per-
formed	with	subcommunities	consisting	of	defined	morphospecies,	
conducted	 on	 five	 replicate	 tray	 samples.	 The	 selection	 required	
that	species	were	present	in	sufficient	numbers	of	individuals	within	
each	tray	sample	to	include	them	in	four	exactly	equal	subsamples	
from	which	four	size	pools	were	produced	(SizeP1–SizeP4;	Figure	1,	
blue	and	yellow	panels).	These	pooled	communities	were	generally	
comprised	of	fewer	OTUs	than	the	pools	of	the	first	experiment	(as	
only	species	with	a	minimum	of	four	individuals	were	selected	to	be	
represented	in	each	class),	but	again	no	significant	differences	in	the	
number	or	diversity	of	OTUs	within	size	classes	were	observed,	that	
is,	the	addition	of	further	size	classes	had	little	effect	on	the	detec-
tion	of	the	small‐sized	OTUs	(Figure	2,	top	panels,	dashed	lines).

For	 each	 experiment,	 we	 calculated	 beta‐diversity	 between	
equivalent	 subcommunities	 from	 the	 different	 replicates	 (tray	
samples)	within	 each	 size	 class,	 composite	 pool,	 and	 construction	
method	combination	(Figure	2,	bottom	panels).	The	purpose	of	this	
was	 to	 examine	 the	 effect	 of	 pool	 composition	 and	methodology	
on	the	apparent	turnover	between	our	real‐world	samples.	Average	

between‐sample	 (“real‐world”)	 turnover	 varied	 between	 different	
size	classes	and	between	experimental	composite	community	con-
struction	method;	however,	the	pattern	of	change	in	turnover	with	
the	addition	of	larger	size	classes	was	largely	flat:	Beta‐diversity	re-
mained	consistent	within	each	size	class	and	construction	method	
despite	increasingly	complex	pool	structure.

Finally,	we	 tested	 the	 degree	 to	which	 these	 conclusions	 de-
pend	on	the	sequencing	depth,	using	a	range	of	lower	rarefaction	
targets	 to	 simulate	 decreased	 sequencing	 intensity.	We	 rarefied	
to	between	0.001	and	1	times	 the	 lowest	 read	number	available.	
To	reduce	the	effects	of	stochasticity	 in	rarefaction,	especially	at	
low	target	values,	we	repeated	rarefaction	at	each	target	total	read	
number	20	 times	and	averaged	 the	 resulting	OTU	 read	numbers.	
The	 effect	 of	 adding	 another	 size	 class	 on	 the	 recovery	 of	OTU	
richness	 was	 compared	 directly	 between	 pairs	 of	 consecutively	

F I G U R E  3  Relative	change	in	number	of	OTUs	recovered	
between	pairs	of	composite	pools	(columns)	within	size	classes	
(rows),	over	simulated	variation	in	read	depth,	using	only	the	
data	from	the	laboratory‐constructed	samples.	Read	depth	
is	represented	by	differing	levels	of	rarefaction,	representing	
increasingly	lower	read	numbers.	The	x‐axis	increases	from	0.1%	
to	100%	of	the	values	used	in	rarefaction	of	this	dataset	for	the	
main	analyses	(Supporting	information	Table	S1).	Columns	of	
panels	show	pairwise	comparisons	between	successive	pairs	of	
pools,	for	example,	the	rightmost	panel	compares	the	number	of	
OTUs	recovered	in	SizeP4	and	Prop,	split	into	the	four	different	
subcommunities	based	on	size	(rows).	Comparisons	are	the	
proportional	change	in	the	number	of	OTUs:	Where	TC	is	the	
number	of	OTUs	in	a	less	complex	size	class,	and	TC+1	is	the	
number	of	OTUs	in	the	next	more	complex,	proportional	change	
is	calculated	as	(TC+1+1)∕(TC+1).	Values	above	the	red	line	show	
an	increase	in	the	number	of	OTUs	recovered	going	from	the	less	
complex	to	the	more	complex	experimental	communities.	Fitted	
lines	are	lmer	fits	controlling	for	variation	between	sample,	and	
stars	show	significance	of	slope	compared	with	0	(*0.01	<	p	<	0.05,	
**0.001	<	p	<	0.01,	***p	<	0.001)
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more	complex	size	pools,	for	example,	SizeP1	vs.	SizeP2,	SizeP2	vs.	
SizeP3,	and	so	on	up	to	SizeP4	vs.	Prop.	At	lower	sequencing	depth,	
we	might	expect	that	adding	a	larger	size	class	to	a	composite	pool	
would	have	a	greater	effect	on	the	difference	in	the	observed	OTU	
richness	of	a	smaller	size	class	subcommunity.	However,	this	exper-
iment	showed	no	or	very	marginal	change	in	OTU	recovery	differ-
ences	between	most	adjacent	 size	pools	with	 stricter	 rarefaction	
(Figure	3).	However,	when	comparing	the	two	composite	communi-
ties	where	all	size	classes	were	represented,	but	at	different	ratios,	
(SizeP4	vs.	Prop.),	higher	levels	of	rarefaction	(i.e.,	lower	sequencing	
depth)	generally	resulted	in	a	greater	proportions	of	OTU	changes.	
As	“sequencing	depth”	decreased,	the	smallest	size	classes	were	re-
covered	significantly	better	through	proportional	recombination	of	
size	classes	in	a	pool	(Prop.)	compared	with	equal‐volume	(SizeP4),	
while	recovery	of	the	largest	size	classes	was	significantly	poorer	
for	the	same	comparison.

3.3 | The effects of taxonomic composition

The	 effects	 of	 taxonomic	 composition	 on	 metabarcoding	 success	
were	 tested	with	 tray	 samples	 sorted	 into	 eight	 higher	 taxa	 of	 ar-
thropods.	Separate	DNA	extractions	from	each	taxon	were	combined	
to	create	10	composite	taxonomic	pools	(TaxP1–10).	For	most	taxa,	
there	was	a	slight	decline	in	the	number	of	OTUs	recovered	in	increas-
ingly	 complex	 composite	 communities,	 despite	 controlling	 for	 the	
dilution	effect	as	relative	read	numbers	decrease	(Supporting	infor-
mation	Table	S4).	For	most	taxa,	OTU	richness	and	diversity	were	not	
significantly	affected	by	any	single	addition	of	further	taxa	(Figure	4,	
top	panels).	However,	 there	was	 a	 significant	decline	 in	both	Acari	
and	Formicidae	OTU	richness	 (but	not	diversity)	with	the	 introduc-
tion	of	Coleoptera,	and	a	similarly	significant	decline	in	Araneae	with	
the	introduction	of	Diptera.	Notably,	the	OTU	richness	of	Formicidae	
and	Acari	recovered	somewhat	and	then	declined	again,	whereas	the	

F I G U R E  4  The	recovery	of	OTUs	and	community	turnover	patterns	for	different	taxa	(colors),	for	each	of	10	pool	types	(x‐axes).	Subplot	
(a)	shows	number	of	OTUs	recovered,	and	subplot	(b)	shows	Shannon	diversity	of	OTUs	taking	into	account	read	numbers.	For	(a	and	b),	
points	and	error	bars	show	mean	and	standard	error.	Note	that	where	taxon	point	is	absent	for	a	pool	type	(e.g.,	there	is	no	green	Coleoptera	
point	for	TaxP2),	this	taxon	was	not	included	in	this	construction.	Bottom	plots	report	multisample	beta‐diversity	((c)	Jaccard,	using	
presence–absence	only,	(d)	Bray–Curtis,	using	read	numbers)	between	replicates	for	each	pool	type,	for	each	separate	taxon	subcommunity	
and	for	all	subcommunities	in	the	pool	together.	For	example,	four	source	samples	were	used	to	construct	experimental	pools.	For	the	
library	where	the	Coleoptera,	Acari,	and	Formicidae	were	combined	(TaxP5),	we	calculate	beta‐diversity	between	the	four	Coleoptera	
subcommunities	from	those	replicates	(green	point),	for	the	Acari	and	Formicidae	fractions	as	well	(light	orange	and	light	blue	points),	and	for	
the	complete	community	comprising	all	three	subcommunities	(black	point)
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richness	of	Araneae	did	not	recover	(although	there	were	fewer	sam-
ples	to	explore	this	pattern).	However,	when	looking	at	compositional	
similarity,	only	the	Coleoptera	showed	evidence	that	the	same	OTUs	
were	recovered	consistently,	 irrespective	of	the	composition	of	the	
wider	 sample.	All	others	 showed	 increasing	discrepancies	 from	the	
OTU	composition	under	low	complexity	(Figure	5).

As	 with	 the	 size	 experiment,	 we	 calculated	 the	 multisample	
beta‐diversity	between	the	subcommunities	from	different	samples	
within	each	taxon	class,	composite	pool,	and	construction	method	
combination	(Figure	4,	bottom	panels).	There	was	substantially	less	
variation	 in	 beta‐diversity	 between	 different	 taxonomic	 fractions	
compared	with	size‐based	 fractions;	however,	 there	was	consider-
ably	greater	variation	within	taxon	classes	over	different	composite	
pools,	especially	when	considering	abundance‐based	beta‐diversity.

4  | DISCUSSION

We	 sequenced	 various	 reconstructions	 of	 community	 samples	 to	
test	the	reliability	of	metabarcoding	for	arthropod	community	ecol-
ogy,	 in	 the	 face	 of	many	 possible	 biases.	 Attempting	 a	 real‐world	
application	of	metabarcoding,	we	used	actual	community	samples,	
rather	 than	widely	employed	artificial	mock	communities.	The	de-
sign	 involved	 separate	 DNA	 extraction	 on	 size‐	 and	 taxon‐based	
subcommunities	and	tests	their	recovery	when	combined	with	vari-
ous	portions	of	the	full	community.	With	this	two‐step	process	of	in	
vitro	deconstruction	and	in	silico	reassembly,	we	were	able	to	assign	
otherwise‐anonymous	OTUs	to	specific	subcommunities	and	to	ac-
curately	trace	the	detection	of	these	OTUs	between	samples.	The	
resulting	 data	 show	 that,	 in	 general,	 size	 classes	 and	 taxa	 remain	
compositionally	consistent	when	processed	together	in	various	com-
binations	with	other	components	of	the	pool	community.

We	recover	significantly	more	OTUs	than	input	morphospecies.	
We	 invested	 substantial	 effort	 to	determine	 the	most	appropriate	

similarity	 levels	 for	OTU	 delimitation	 (see	 Supporting	 information	
Appendix	S1)	and	found	that	to	recover	an	equal	ratio	of	OTUs	to	
morphospecies	required	parameters	well	outside	the	current	stan-
dard	practice	(Supporting	information	Figure	S4).	We	settled	on	the	
3%	value,	which	remains	an	arbitrary	choice	but	is	in	line,	on	average,	
with	levels	defining	intra‐	and	interspecific	differentiation	for	group-
ing	 barcode	 data	 (e.g.,	 BINS,	 Ratnasingham	 &	 Hebert,	 2013).	We	
attribute	OTU	 inflation	to	several	 issues:	unidentifiable	non‐target	
sequences	 (e.g.,	pseudogenes),	systematic	differences	 in	molecular	
species	 divergences,	 or	 inability	 to	 accurately	 differentiate	 mor-
phospecies	 during	 sorting.	OTU	 limits	 certainly	 affect	 the	 assess-
ment	of	richness	in	metabarcoding,	but	we	believe	that	in	this	study,	
OTU	inflation	is	a	consistent	bias	that	does	not	confound	our	inter-
pretations	 of	 within‐study	 diversity	 and	 compositional	 variation.	
However,	the	lack	of	validated	taxon	concepts	for	sequencing	clus-
ters	remains	a	major	limitation	to	reliable	biodiversity	estimates,	in	
particular	in	the	study	of	unknown	faunas	lacking	external	sequence	
reference	 libraries.	 Further	 bioinformatic	 development	 is	 required	
to	 improve	 filtering	 of	 non‐target	 sequence	 reads	 and	 perhaps	 to	
adapt	OTU	delimitation	 to	 taxonomic	context.	Currently,	 the	 ideal	
metabarcoding	study	should	 include	controls	of	known	taxonomic	
composition	 and	 could	 be	 greatly	 improved	 by	 an	 approach	 that	
defines	at	least	a	subset	of	OTUs	independently	of	metabarcoding,	
through	individual	barcoding	or	even	mitochondrial	sequencing.	The	
latter	approach	adds	considerable	value	to	metabarcoding	ecology	
by	enabling	phylogenetic	reconstruction,	which	can	be	followed	by	
placement	of	unknown	OTUs	to	a	 tree	 for	 improved	 identification	
and	filtering.

4.1 | Biases in species composition

Size	 differences	 did	 not	 greatly	 or	 consistently	 affect	 species	 re-
covery	in	metabarcoding,	given	a	certain	level	of	sequencing	depth.	
Specifically,	the	number	and	diversity	of	OTUs	in	each	size	class	did	

F I G U R E  5  Plots	of	compositional	
dissimilarity	between	the	least‐dilute	
subcommunity	for	a	taxon	and	subsequent	
subcommunities	as	part	of	more	complex	
experimental	communities.	Each	panel	
is	a	different	taxon,	and	the	x‐axis	is	
experimental	pools	in	increasing	order	of	
complexity.	Y‐axis	shows	compositional	
dissimilarity,	with	0	=	identical	and	
1	=	completely	dissimilar	(no	shared	
OTUs).	Line	types	show	dissimilarity	
measure:	Jaccard	(presence–absence	only)	
or	Bray–Curtis	(read	numbers).	Points	
and	error	bars	show	mean	and	standard	
error.	Note	that	the	leftmost	point	in	each	
plot	is	the	reference	subcommunity	and	
therefore	will	always	have	a	dissimilarity	
value	of	0
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not	greatly	change	whether	sequenced	individually	or	together	with	
other	size	classes	(Figure	2).	We	observe	that	even	as	the	proportion	
of	DNA	contributed	by	a	subcommunity	becomes	smaller,	the	recov-
ery	of	OTUs	and	OTU	alpha‐diversity	is	reliable.	The	assays	are	sensi-
tive	and	realistic,	as	evidenced	by	the	very	similar	patterns	observed	
comparing	subcommunities	generated	from	all	DNA	in	the	tray	sam-
ple	or	only	from	particular	species	selected	for	manual	assembly,	the	
latter	of	which	shows	a	 lower	 total	number	of	OTUs	recovered.	 In	
general,	we	see	no	effect	on	incidence‐based	beta‐diversity	with	in-
creasingly	complex	mixed	pools	(within	size	class	and	method),	show-
ing	that	sample	composition	does	not	affect	our	ability	 to	observe	
study‐level	 community	 structure.	 However,	 variability	 in	 turnover	
increases	 when	 using	 abundance‐based	 beta‐diversity	 and	 with	
specimen‐based	construction	method.	We	attribute	 this	 to	greater	
stochasticity	 driven	 by	 variation	 in	 OTU	 read	 numbers	 between	
sequenced	 libraries,	 and	 by	 fewer	OTUs	with	 the	 specimen‐based	
method.	These	results	also	allow	us	to	be	confident	 that	observed	
turnover	of	the	composite	and	subcommunities	is	valid	“natural”	sto-
chastic	 compositional	 change,	 as	 turnover	 varies	 largely	 as	 part	 of	
experimental	modification	rather	than	methodological	error.

The	 result	 of	 lower	 sequencing	 coverage	 is	 inconsistent.	With	
low	rarefaction	targets	(simulating	low	sequencing	depth),	we	would	
expect	that	the	smallest	OTUs	are	more	likely	to	be	recovered	more	
poorly	when	sequenced	alongside	larger	sizes	than	when	sequenced	
alone:	 Instead,	the	results	show	a	significant	slight	opposite	effect	
for	both	the	small	and	medium	size	classes	comparing	between	the	
three	 less	 complex	 composite	 communities	 (Figure	3).	 Inversely,	
comparing	 composite	 communities	 with	 all	 size	 classes	 combined	
at	different	ratios	(SizeP4	vs.	Prop.),	we	see	the	expected	response:	
The	recovery	of	small	OTUs	is	 improved	and	the	recovery	of	 large	
OTUs	is	suppressed	by	proportional	combination	of	DNA	from	dif-
ferent	size	classes	at	low	read	levels,	but	this	effect	diminished	with	
higher	read	numbers	(=	higher	rarefaction	targets).

We	find	clear	variation	in	the	recovery	of	OTU	richness	and	di-
versity	of	certain	taxon	classes	once	other	taxa	were	included	in	the	
metabarcoding	(Figures	4	and	5).	The	composition	of	all	taxon	sub-
communities	substantially	changes	with	the	addition	of	other	taxa,	
and	 this	 is	 exacerbated	 when	 using	 abundance‐based	 measures	
of	 dissimilarity,	 with	 both	 assemblage	 and	 relative	 read	 numbers	
being	 affected	by	 increasing	 taxonomic	 complexity.	Most	 taxa	 re-
spond	with	a	roughly	linear	rate	of	compositional	dissimilarity	with	
increased	community	complexity,	with	a	shallower	response	in	the	
Coleoptera	and	a	steeper	response	in	the	hymenoptera,	suggesting	a	
primer	affinity	in	the	former	and	greater	incompatibility	in	the	latter.	
Between‐sample	 beta‐diversity	 is	 considerably	 more	 inconsistent	
over	 increasingly	 complex	 communities	 compared	 with	 the	 size‐
based	study.	The	introduction	of	other	taxa	clearly	affects	the	abil-
ity	of	metabarcoding	to	successfully	recover	a	consistently	accurate	
representation	of	 the	 community	 structure	of	 individual	 taxa,	 and	
this	may	considerably	affect	the	ability	of	a	study	to	report	accurate	
measures	of	study‐level	structure	such	as	beta‐diversity.	This	is	par-
ticularly	the	case	if	read	numbers	are	used	in	an	abundance‐based	
assessment	 of	 compositionality:	Where	 only	 presence–absence	 is	

employed,	 beta‐diversity	 between	 samples	 is	 broadly	 consistent	
over	differing	taxonomic	compositions.

While	 the	Arribas	et	al.	 (2016)	primers	successfully	amplify	a	
wide	range	of	arthropod	lineages,	 it	does	appear	that	binding	af-
finity	is	unevenly	biased	toward	some	taxa	and	away	from	others,	
leading	to	inaccurate	representation	of	relative	taxon	richness	and	
composition	in	mixed	metabarcoding	samples.	In	particular,	these	
results	suggest	the	primers	have	a	greater	affinity	for	Coleoptera	
DNA,	 as	 recovery	 of	 OTU	 richness,	 diversity,	 and	 composition	
of	 this	 taxon	 is	 clearly	 affected	 less	 by	 the	 inclusion	 of	 other	
taxa	 compared	with	 the	 other	 groups.	 The	 particular	 affinity	 of	
Coleoptera	 for	 this	primer	sequence	 is	 further	evidenced	by	 the	
effect	 on	 the	 recovery	 of	OTU	 richness	 and	 composition	 of	 the	
Formicidae	 and	 Acari	 by	 the	 addition	 of	 beetles	 in	 a	 three‐way	
combination	 (TaxP5).	 Fortunately,	 this	 appears	 to	 be	 the	 only	
taxon	that	causes	this	effect,	and	the	extent	of	the	disruption	 is	
somewhat	ameliorated	by	the	dilution	of	the	Coleoptera	through	
further	 addition	 of	 other	 taxa.	 Notably,	 the	 greatest	 changes	 in	
OTU	numbers	and	turnover	 (Figures	4	and	5)	occurred	 in	groups	
that	generally	appear	 to	be	composed	of	 fairly	small	numbers	of	
OTUs,	which	may	be	subject	to	stochastic	effects	of	species	de-
tection	in	the	PCRs	(although	we	combined	three	replicates)	and	
sequencing.	The	stringent	read	quality	filtering,	chimera	removal,	
and	OTU	clustering	prior	to	the	analysis	of	turnover	probably	min-
imize	artifactual	OTUs	arising	in	the	mixed	DNA,	but	the	conser-
vative	handling	of	reads	could	also	result	in	low	detection	success	
for	certain	OTUs.	False	negatives	in	part	would	be	dependent	on	
read	depth,	which	was	addressed	by	rarefaction	to	control	for	the	
dilution	of	reads	by	the	addition	of	new	taxa	in	the	taxonomic	ad-
dition	experiment.

4.2 | Measuring community structure

We	calculated	 community	 structure	 indices	 based	 on	 both	OTU	
presence–absence	 and	 read	 numbers.	 While	 abundance‐based	
metrics	 are	 better	 able	 to	 represent	 the	 composition	 of	 a	 true	
ecological	community,	we	cannot	be	certain	that	the	use	of	read	
numbers	 is	 truly	 representative	 of	 ecological	 abundance,	 espe-
cially	in	samples	of	mixed	size	and	taxonomy	where	the	relation-
ship	between	read	numbers	of	an	OTU	and	species	abundance	will	
be	affected	by	primer	affinity,	DNA	quantity,	and	sequencing	sto-
chasticity.	In	both	size	and	taxonomy	experiments	in	the	present	
study,	there	was	little	difference	in	the	observed	patterns	between	
OTU	richness	and	Shannon	diversity:	Including	read	numbers	did	
not	 affect	 the	 conclusions	 drawn.	 However,	 there	 was	 greater	
variation	in	the	observed	pattern	of	beta‐diversity	calculated	from	
read	numbers	compared	with	beta‐diversity	calculated	from	pres-
ence–absence	alone,	although	patterns	were	generally	consistent	
in	direction.	We	are	cautious	about	deriving	firm	conclusions	from	
abundance‐based	composition	metrics;	while	 the	variation	could	
be	interpreted	to	point	toward	size	or	taxon	biases	in	recovery,	it	
could	also	be	due	to	many	sources	of	error	in	the	metabarcoding	
processes.
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4.3 | Implications for studies of canopy arthropods

These	data	join	a	relatively	small	cohort	of	studies	that	examine	the	
entirety	of	a	high‐diversity	tropical	arthropod	community	at	a	spe-
cies‐equivalent	level,	and	the	separation	of	different	subsets	of	this	
community	revealed	interesting	patterns	that	should	inform	similar	
future	studies.	Small‐bodied	OTUs	dominated	 the	communities,	 in	
line	 with	 known	 molecular	 abundance	 spectra	 of	 tropical	 insects	
(Choo,	Crampton‐Platt,	&	Vogler,	2017).	The	canopy	fogging	method	
employed	here,	 using	 small	 collecting	 trays	 suspended	high	 in	 the	
canopy,	is	particularly	efficient	for	catching	small‐bodied	specimens	
that	would	be	missed	 in	 larger,	ground‐level	 sampling	screens	due	
to	drifting	of	specimens,	while	larger	specimens	may	be	missed	due	
to	their	ability	to	escape	from	the	small‐scale	canopy	fogging.	The	
smallest	specimens	of	 the	community	are	 frequently	not	captured	
or	are	understudied	by	morphological	 approaches.	Metabarcoding	
thus	 may	 be	 crucial	 in	 understanding	 the	 important	 contribution	
these	 species	make	 to	 species	 composition	 and	 turnover,	without	
the	 bias	 introduced	 by	 traditional	 taxonomy.	 Furthermore,	 mor-
phological	studies	are	frequently	limited	in	taxonomic	breadth	and	
may	 misrepresent	 the	 extent	 and	 pattern	 of	 turnover	 across	 the	
entire	Arthropoda,	which	 is	 overcome	 by	metabarcoding.	 In	 addi-
tion,	 the	magnitude	of	 compositional	 change	across	 the	 tray	 sam-
ples	(Supporting	information	Figure	S3	and	Table	S3)	clearly	varies	
between	different	subcommunities,	which	provide	additional	infor-
mation	for	arthropod	community	ecology	from	comparing	separate	
subcommunities	(e.g.,	small	bodied	vs.	 large	specimen)	without	the	
need	for	direct	characterization	of	the	species	involved.

The	largest	arthropods	used	in	this	study	had	a	cross‐sectional	
area	of	75	mm2;	this	may	be	considered	to	limit	the	applicability	of	
these	 findings	 to	metabarcoding	 studies	 that	 include	much	 larger	
individuals.	However,	metabarcoding	is	most	useful	for	smaller‐bod-
ied	 individuals,	which	make	up	a	disproportionate	part	of	 the	spe-
cies	and	individuals	in	most	terrestrial	arthropod	communities.	The	
power‐based	 grouping	 system	used	 in	 this	 study	 allowed	 compar-
ison	 between	 arthropods	 that	 varied	 in	 size	 by	 up	 to	 64‐fold	 and	
found	no	difference	in	or	effects	on	recovery	rate.	With	sufficient	
sequencing,	 this	pattern	may	be	expected	 to	hold	 true	 for	arthro-
pods	at	least	another	size	class	larger	(up	to	220	mm2,	a	fourfold	in-
crease	on	the	largest	individuals	used	in	this	study);	alternatively,	the	
largest	individuals	are	easily	extracted	from	mixed	pools	and	can	be	
tissue‐subsampled	to	be	included	fairly	in	metabarcoding.	As	such,	
this	caveat	is	relatively	minor	and	these	results	likely	apply	to	most	
arthropod	metabarcoding	studies.

4.4 | Implications for metabarcoding arthropod 
communities

The	 findings	 have	 obvious	 practical	 implications:	 Should	 we	 sort	
by	size,	or	by	taxon,	or	both,	prior	to	DNA	extraction	and	metabar-
coding?	The	great	power	of	metabarcoding	clearly	derives	from	the	
ability	to	go	from	the	trap	catch	directly	to	DNA	analysis	of	species	
composition	without	 elaborate	 (para)taxonomic	 steps.	Our	 results	

suggest	that	in	most	cases,	size	sorting	and	biomass	control	are	not	
necessary	with	sufficient	sequencing	depth;	however,	some	degree	
of	taxonomic	sorting	and	the	use	of	taxonomic‐based	control	sam-
ples	may	be	beneficial,	in	particular	to	gain	additional	ecological	in-
formation.	Size	 sorting	 is	much	easier	 than	any	kind	of	 taxonomic	
sorting,	although	even	sorting	to	order	level	can	be	performed	rela-
tively	rapidly,	perhaps	while	also	gathering	other	valuable	informa-
tion	such	as	specimens	counts.

The	biases	from	taxonomic	composition	of	samples	would	gener-
ally	suggest	that	where	feasible	this	kind	of	separation	is	desirable,	at	
least	in	taxa	known	to	either	strongly	affect	or	be	strongly	affected	
by	other	taxa,	such	as	the	Coleoptera	for	these	primers.	In	addition,	
performing	multiple	PCRs	in	combination	and	separately	may	give	a	
more	accurate	picture	of	the	total	species	diversity,	which	in	individ-
ual	reactions	may	be	missed.	It	appears	the	lack	of	detection	of	many	
species	 in	 a	 particular	 run	 is	 not	 primarily	 due	 to	 low	 read	depth,	
although	this	could	potentially	be	increased	to	optimize	the	detec-
tion	 of	 rare	 reads	 when	 applying	 highly	 stringent	 quality	 filtering	
protocols,	as	was	done	here.	The	decision	to	apply	metabarcoding	to	
particular	subsets	of	a	mass‐trapped	sample	ultimately	depends	on	
the	required	accuracy	of	the	data.	For	many	applications	of	species	
turnover	and	total	diversity,	the	exact	number	is	not	 important,	as	
long	as	a	similar	error	is	introduced	in	all	samples	equally.	However,	
when	 the	 experiments	 require	 great	 precision	 of	 species	 lists,	 
presorting	of	specimens	by	taxon	and	potentially	also	by	size	may	be	
helpful,	and	in	fact,	using	different	primers	may	further	avoid	the	in-
advertent	omission	of	species.	At	the	same	time,	the	frequently	very	
high	number	of	OTUs	obtained	 in	some	studies	 (Bista	et	al.,	2017)	
could	include	false	positives	that	can	be	eliminated	by	only	scoring	
OTUs	 consistently	 obtained	 from	multiple	 separate	 amplifications	
and	sequencing,	or	through	use	of	separately	prepared	barcode	or	
genomic	datasets.

4.5 | Conclusions

As	we	start	using	metabarcoding	for	studying	the	great	diversity	
of	arthropods	of	the	rainforest	canopy,	to	reassess	the	long‐stand-
ing	 questions	 about	 species	 numbers,	 host	 specificity,	 and	 spe-
cies	 turnover,	 the	validation	of	 the	approach	 requires	 that	 these	
entities	are	equivalent	to	the	Linnaean	species	or	morphospecies	
of	existing	studies	of	tropical	 insect	diversity.	OTU	clusters	here	
were	 defined	 with	 stringent	 methods	 for	 sequence	 quality	 and	
cluster	threshold,	which	allowed	to	trace	each	cluster	across	natu-
ral	communities	and	artificial	subcommunities	derived	from	them,	
and	thus	to	test	the	effect	of	potentially	confounding	parameters	
of	 species	 detection.	 It	was	 important	 that	 natural	 communities	
from	trapping	efforts	were	used,	making	 the	scenarios	as	 realis-
tic	as	possible.	The	consistent	recovery	of	particular	OTUs	within	
and	between	natural	 samples	shows	that	metabarcoding	may	be	
more	 rigorous,	 consistent,	 and	 have	 greater	 utility	 than	 simple	
parataxonomic	 morphospecies	 delimitation	 and	 identification.	
Arthropod	 ecologists	 can	 thus	 be	 confident	 that	metabarcoding	
can	 generate	 comprehensive,	 realistic,	 and	 accurate	 community	
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data,	in	particular	for	small‐bodied	taxa,	even	without	controlling	
for	body	size	or	taxonomic	composition	of	samples.	The	high	qual-
ity	of	metabarcoding	data	thus	can	contribute	to	the	global	effort	
for	generating	sequence	data	of	all	species	on	Earth,	in	particular	
for	poorly	known,	diverse	ecosystems	such	as	the	tropical	rainfor-
est	canopy.
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