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Background: The detection rate for identifying the underlyingmutation in neurocutaneous syndromes is affected by
the sensitivity of themutation test and the heterogeneity of the disease based on the diagnostic criteria. Neurofibro-
matosis type (NF1) has been defined for 29 years by the National Institutes for Health (NIH) criteria which include
≥6Café au Laitmacules (CAL) as a defining criterion. The discovery of SPRED1 as a cause of Legius syndromewhich is
manifested by CAL, freckling and learning difficulties has introduced substantial heterogeneity to the NIH criteria.
Methods:Wehave defined the sensitivity of comprehensive RNA analysis on blood of presumedNF1 patientsmeet-
ing NIH criteria with at least one nonpigmentary criterion and determined the proportion of children with ≥6 CAL
and no family history that has an NF1 or SPRED1 genetic variant. RNA analysis was carried out from 04/2009–12/
2015 on 361 NF1 patients.
Findings: A presumed causative NF1mutation was found in 166/171 (97.08%–95% CI 94.56–99.6%) of familial cases
and 182/190 (95.8%–95% CI 92.93–98.65%) sporadic de novo cases. Two of thirteen (15%)mutation negative individ-
uals had dysembryoplastic neuroepithelial tumour (DNET) compared to 2/348 (0.6%) with an NF1 variant (p =
0.007). No SPRED1 variants were found in the thirteen individuals with no NF1 variant. Of seventy-one individuals
with ≥6 CAL and no non-pigmentary criterion aged 0–20 years, 47 (66.2%) had an NF1 variant six (8.5%) a SPRED1
variant and 18 (25.3%) no disease causing variant. Using the 95.8% detection rate the likelihood of a child with ≥6
CAL having constitutional NF1 drops from 2/3 to 1/9 after negative RNA analysis.
Interpretation: RNA analysis in individuals with presumed NF1 has high sensitivity and includes a small subset with
DNET without an NF1 variant. Furthermore negative analysis for NF1/SPRED1 provides strong reassurance to chil-
dren with ≥6 CAL that they are unlikely to have NF1.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Neurofibromatosis type 1 (NF1) is a multisystem autosomal domi-
nantly inherited tumour predisposition neurocutaneous syndrome
characterised by pigmentary skin changes and benign nerve sheath tu-
mors (neurofibromas) (Anderson & Gutmann, 2015; Huson et al.,
1988). NF1 affects around 1 in 1/1900–2500 live births (Huson et al.,
1989; Evans et al., 2010; Uusitalo et al., 2015) and significantly reduces
life expectancy primarily due to the development ofMalignant Peripheral
Nerve Sheath Tumors (MPNST) in around 10% of affected people, but also
gliomas and other malignancies including breast cancer (Evans et al.,
2011). The National Institutes of Health (NIH) defined diagnostic criteria
in 1987 (National Institutes of Health Consensus Development
Conference, 1987) and these have largely remained unchanged also in-
cluding bone dysplasia and Lisch nodules as criteria (Table 1) (Anderson
&Gutmann, 2015; Gutmann et al., 1997). For such a large gene containing
58 coding exons (Shen et al., 1996) little is still knownabout domains out-
side the GTPase-activating protein-related domain (GRD) domain which
is thought to be the main region associated with tumour suppression
through down-regulation of the oncogene ras (Anderson & Gutmann,
2015; Ferner, 2007). There are substantial risks of neurological deficits in-
cluding cognitive impairment, epilepsy, spinal cord compression, cerebro-
vascular disease, and multiple sclerosis (Ferner, 2007).

The genewas cloned in 1990 and initial studies of the large complex
gene identified only between 30 and 65% of germline mutations in
clearly affected individuals (Shen et al., 1996). Furthermore, phenotype
analysis in pedigrees suggested that there would be little significant ge-
notype–phenotype correlation (Easton et al., 1993) and apart from the
NF1 microdeletions first reported in 1994 (Kayes et al., 1992), there
was little interest in this field until relatively recently. It was not until
10 years after the gene was identified that a study using an exhaustive
approach including RNA analysis identified 64/67 (95%) of mutations
in clearly affected NF1 individuals (Messiaen et al., 2000). Since then
mutations in the SPRED1 gene have been identified as the cause of
Legius syndrome characterised by multiple (CAL) patches and
macrocephaly, but without the tumour features of NF1. Among a cohort
of 42 SPRED1 mutated individuals 48% fulfilled NIH NF1 diagnostic
criteria based on the presence of N5 CAL with or without freckling or
an NF1-compatible family history (Messiaen et al., 2009). Of 94 pro-
bands with familial CAL with or without freckling and no other NF1 fea-
tures, 69 (73%; 95% CI, 63%–80%) had anNF1mutation and 18 (19%; 95%
CI, 12%–29%) had a pathogenic SPRED1mutation (Messiaen et al., 2009).
Variants have not been identified in any further gene producing
resulting in an NF1-like syndrome. However, since the finding that cer-
tain NF1 mutations give rise to a CAL and freckling only phenotype
(Upadhyaya et al., 2007; Rojnueangnit et al., 2015) and that patients
with ‘spinal phenotype’ have an excess of splicing and missense muta-
tions there has been a resurgence of interest in genotype–phenotype
correlation. Although post zygotic mutations in embryogenesis leading
to mosaicism have been shown to be the cause at least 33% of de novo
Neurofibromatosis type 2 (NF2) affected individuals with classical
disease fulfilling NIH criteria with bilateral vestibular schwannoma
(National Institutes of Health Consensus Development Conference,
Table 1
NIH criteria for NF1.

NIH diagnostic criteria for Neurofibromatosis type 1

Two or more of the following:
6 or more café au lait macules (0.5 cm in children or 1.5 cm in adults)
2 or more cutaneous/subcutaneous neurofibromas or one plexiform neurofibroma
Skin fold freckling
Optic pathway glioma
2 of more Lisch nodules (iris hamartomas seen on slit lamp examination)
Bony dysplasia (sphenoid wing dysplasia, bowing of long bone, pseudarthrosis)
First degree relative with NF1
1987; Evans et al., 2007), it has rarely been reported as the cause of clas-
sical non segmental NF1.

As the reference laboratory for the nationally funded highly
specialised complex NF1 service in England, from 2009we have applied
comprehensive RNA analysis of the NF1 gene coupled with MLPA based
copy number analysis using the approach developed by Messiaen et al.
(Messiaen et al., 2000) The current study aimed to determine the sensi-
tivity of this strategy to detect mutations in a large cohort of well
characterised individuals with NF1 who met NIH diagnostic with more
than just pigmentary criteria. This would potentially identify whether
other genes may still cause features compatible with NF1. Furthermore
the study aimed to assess the likely contribution of mosaicism to classi-
cally affected de novo cases.

2. Materials and Methods

Individuals referred to the Manchester service who fulfilled NIH
criteria (Table 1), which was not confined to a body segment and who
had at least one non-pigmentary criteria for NF1 in them or their affected
relativewere included. NF1 affected individualswere divided into familial
where there was at least one affected first degree relative who also met
NIH criteria and sporadic de novo cases. All the families tested were unre-
lated and did not contain known multiple branches of the same family.

In addition, a separate analysis was carried out on consecutive chil-
dren with at least 6 CAL with or without freckling, but no other NF1 di-
agnostic criterion who also had no parent with an NF1 criterion and
were aged b20 years of age at assessment. This was for a 5-year period
from November 2010–November 2015.

NF1 mutation analysis was carried out in the Genomic Diagnostic
Laboratory at theManchester Centre for Genomic Medicine in St Mary's
Hospital, Manchester. This is a clinically accredited medical testing lab-
oratory. RNA and genomic DNA were prepared from peripheral blood
samples. RNA was isolated from short term PHA stimulated cultures
pre-treated before RNA extraction with Puromycin to inhibit nonsense
mediated decay. RNA was reverse transcribed to cDNA using standard
procedures, and the cDNA was PCR amplified in 5 overlapping frag-
ments of approx. 2 kb in size. Each fragmentwas then Sanger sequenced
with between 8 and11primers to give overlapping sequence data of the
whole fragment thus highlighting abnormalities in NF1 splicing or mu-
tations within the coding sequence. Short term culture followed by Pu-
romycin treatment was used in preference to RNA stabilising blood
collection tubes e.g. PAXgene, due to more consistent and robust RNA
quality achieved in preliminary tests. Mutation status was confirmed
in genomic DNA. Multiplex ligation dependent probe amplification
(MLPA) for dosage analysis was additionally performed in samples
without a clearly pathogenic mutation identified on cDNA analysis
using the MRC-Holland P081 and P082 probe sets. In samples where
no clearly pathogenic NF1 mutation was identified the SPRED1 gene
was screened for mutations by bidirectional Sanger sequencing of the
whole coding region and flanking splice donor and acceptor sites to
±15 bp plus MLPA dosage analysis using the MRC-Holland P295
probe set.

Statistical analysis was carried out using chi square testing with two
tailed Fisher's exact test.

3. Results

RNA analysis was carried out on 361 NF1 affected individuals who
fulfilled NIH criteria with at least one non pigmentary criterion. Twenty
one familial cases with just pigmentary NIH criteria were excluded (14
NF1 mutations (12 missense mutations); 7 SPRED1 mutations). One
hundred and seventy one individuals were from families with multiple
affected individuals and 190were sporadic de novo (no evidence of NF1
family history) affected people. Potentially causative variants in theNF1
gene were identified in 166/171 (97.08%–95% CI 94.56–99.6%) of famil-
ial cases compared to 182/190 (95.8%–95% CI 92.93–98.65%) of sporadic



Table 2
Mutation detection in familial and de novo NF1 patients.

Type mutation Familial number Familial %+ De novo number De novo % p value Sporadic ≥6 CAL group ≥6 CAL %

WGD on MLPA
(type 1;2;3)

6
(5;1;0)

3.61% 15
(13;1;1)

8.24% 0.076 1 2.13%

MLPA deletion 3 1.81% 4 2.20% Ns 1 2.13%
Frameshift 53 31.93% 61 33.52% ns 10 21.28%
IFD 7 4.22% 6 3.30% Ns 1 2.13%
Nonsense 35 21.08% 41 22.53% Ns 15 31.91%
Missense class 4/5 7 4.21% 7⁎ 3.85% 6⁎ 12.77%
Missense class 3 11 6.63% 6⁎ 3.30% 0.26 3⁎ 6.38%
Splice site 40 24.10% 40 21.98% Ns 10 21.28%
5′ UTR class 4/5 3 1.81% 1 0.55% ns 0 0.00%
5′UTR class 3 1 0.60% 1 0.55% ns 0 0.00%
Total variant found 166 97.08% 182 95.79% 0.58 47 66.2%
Total pathogenic variant found 154 90.06% 175 92.10% ns 44 62.0%
No mutation 5 8 24
All tested 171 190 71
Only identified through RNA 21 12.65% 20 10.99% ns 3 6.40%
Truncating 88 53.01% 102 56.04% 0.39 25 53.19%
Non truncating 29 17.47% 21 11.54% 0.29 10 21.28%

+Mutation proportions are of total where mutation was found.
Ns —not significant; WGD—whole gene deletion; IFD in frame deletion; 5′ UTR —untranslated region.
+This is percentage of found mutations.
⁎ difference between de novo NIH criteria with at least one non-pigmentary criterion and de novo ≥ 6 CAL group significant for missense variants (p = 0.023).
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samples (p=0.58-Table 2). This dropped to 154/171 (90.06%) and 175/
190 (92.10%) respectively if class 3 variants were excluded. Although
truncating mutations (nonsense and frameshift) were seen slightly
more frequently in sporadic cases and non-truncating mutations in fa-
milial affected individuals these differences were not significant
(Table 2).Whole gene deletionswere present in 6/166 (3.6%) of familial
samples with identified mutations and 15/182 (8.2%) of sporadic sam-
ples but this difference did not quite reach significance (p=0.08). How-
ever, whenwhole gene deletions found before Nov 2010were included
the 21 found in sporadic de novo cases was significantly higher than the
9 in familial cases (p= 0.05). Two sporadic cases had a point mutation
detected at low level in their lymphocyte RNA and were assumed to be
mosaic for themutation. Onepatientwith the c.2530CNT (p.Lys844Phe)
missense mutation detected at low level in blood lymphocytes (we es-
timate that the mutation is present in approx. 40% of lymphocytes in
this sample, this equates to a ~20%mutant allele fraction) has had an af-
fected childwhohas the samemutation. On reassessment of her skin al-
though she clearly met NIH criteria with N5 CAL, freckling and
neurofibromas her pattern of skin involvementmeant various body seg-
ments were completely unaffected.

A similar proportion of inherited and sporadic samples had muta-
tions identified that were only classifiable by RNA analysis (Table 3). A
total of 41/348 (11.8%) of samples with proven mutations met this
criteria with ten (2.9%) variants occurring N10 nucleotides from the
consensus splice site of which six would have been well outside the
boundaries of intron exon regions screened in standard DNA analysis.
Sevenmutationswhichwouldhave been classified as a variant of uncer-
tain significance (VUS) (6 missense mutations, one synonymous
change) and eight patients with six nonsense mutations on DNA analy-
sis alone were also found to affect the normal splicing of NF1 RNA.

Table 4 shows the variants which were not truncating and did not
affect the splicing at RNA level. These were predominantly missense mu-
tations some of which have previous published evidence for pathogenic-
ity (Griffiths et al., 2007; Upadhyaya et al., 1997; Ahmadian et al., 2003;
Valero et al., 2011; Fahsold et al., 2000). However, six samples (4 familial)
occurred in an evolutionary conserved region of the 5′ untranslated re-
gion (UTR). Although we did confirm bi-allelic NF1 expression in two
samples that were heterozygous at the DNA level for transcribed SNPs
(c.-272GNA and c.-273ANC), the first variant segregated with disease in
the family. Furthermore c.-273ANC was shown to have arisen de novo
as it was not carried by the unaffected parents of a sporadic case. Classifi-
cation of pathogenicity in Table 4 is as per accepted guidelines (Plon et al.,
2008; Wallis et al., 2013; Richards et al., 2015).
Of the thirteen cases with no identified mutation two had a
dysembryoplastic neuroepithelial tumour (DNET) identified on MRI of
the brain (Fig. 1a and b) both associated males with epilepsy. One had
inherited NF1 from a mother affected with classical features of NF1. The
other was sporadic but did appear to havemajor nerve root nerve sheath
tumors on whole body MRI and had tumour resection because of his in-
tractable epilepsy. Histopathology of tissue removed at surgery to relieve
epilepsy in the sporadic case showed sections of cortical grey matter re-
vealing indistinct glioneuronal nodules, the familial case histopathology
showedoligodendroglia-like cells forming bundles around axonal profiles
with occasional floating neurons, both consistentwith the radiological di-
agnosis of DNET. Both patients tested negative for SPRED1mutations. The
only two other NF1 affected individuals with a DNET had identified NF1
nonsense mutations (c.6763GNT p.(Glu2255Ter; c.4084CNT
p.(Arg1362Ter). They both had classical NF1 inherited from a clearly af-
fected parent with N6 CAL and neurofibromas, but did not have epilepsy
and diagnosis was based on imaging appearances alone. The presence of
DNET in 2/13 (15%) negative screens versus 2/348 (0.6%-Relative Risk of
0.004) with mutations is highly significant (p= 0.007).

Seventy one individuals aged b20 with 6+ CAL and no non-
pigmentary NF1 criterion had an RNA sample assessed (Table 5). 44/71
(62%) had a clearly deleterious NF1mutation, this included six with mis-
sense variants that were shown to have arisen de novo (c.2329TNC
p.(Trp777Arg); c.3610CNG p.(Arg1204GIy); c.4016TNG (p.Leu1339Arg);
c.4267ANG p.(Lys1423Glu); c.5425CNT p.(Arg1809Cys); c.6950TNC
p.(Leu2317Pro); and also an in frame deletion not present in the parents
lymphocyte DNAs (c.3327_3329del p.(Leu1109del)). All of these vari-
ants were also predicted to be deleterious on in silico analysis and
were in conserved amino-acid residues across species and the latter
four missense variants also excluded in both parents. There were
also: fifteen nonsense, ten splice site/splicing variants (including
c.1260 + 1604ANG also seen in Table 3) with three only classified by
RNA, ten frameshift and one deletion of exon2 and one whole gene de-
letion (type 1). One nonsense mutation was detected as a mosaic (esti-
mated 18%mutant cellular fraction) in lymphocyte RNA in an individual
aged 19 years at assessment who had 6 faint CAL (c.5839CNT
p.(Arg1947Ter)). A further three individuals had missense mutations
that had in silico evidence and conservation across species to predict
they were disease causing (c.1658ANG p.(His553Arg); c.5425CNT
p.(Arg1809Cys); c.6554CNG p.(Thr2185Arg)) the former two also had
evidence from a previous patients that they had arisen de novo.

There were six patients from this cohort with predicted loss of func-
tion SPRED1 mutations (8.4%) one was proven de novo (c.190CNT



Table 3
Mutations outside the canonical splicing domains in the NF1 gene classified as causative due to effects on in vitro NF1 splicing.

Inherited Number found RNA mutation DNA mutation Original classification Deep intronic Reported previously

No 1 r.100_204del c.204 + 3_204 + 6delGAGT splice site
Yes 1 r.288_289ins288 + 1917_288 + 2024 c.288 + 2025TNG splice site Yes
No × 2 2 r.289_479del c.479 + 5GNA splice site
Yes 1 r.480_586del c.586 + 3_586 + 4delinsGG splice site
Yes 1 r.480_586del c.586 + 5GNA splice site
No 1 r.587_654del c.587-12_587-10delinsGGG splice site
Yes 1 r.888_889ins888 + 710_888 + 784 c.888 + 789ANG splice site Yes
Yes 1 r.1063_1185del c.1185 + 5GNC splice site Yes
Yes × 1
No × 1

2 r.1260_1261ins1260 + 1605_1260 + 1646 c.1260 + 1604 ANG splice site Yes Yes but missed on DNA

Yes × 2 2 r.1393_1527del c.1527 + 4_1527 + 7delAGTA splice site
No 1 r.2252_2325del c.2325 + 3ANG splice site
No 1 r.2409_2410ins2410–15_2410–1 c.2410–16ANG splice site Yes
Yes 1 r.2851_2990del c.2851–6-2851-3del splice site
No 1 r.3494_3496dupuag p.(Ile1165_Gly1166insVal) c.3497-4TNG splice site
No 1 r.4110_4111 ins4110 + 836_4110 + 940 c.4110 + 945ANG splice site Yes Yes but missed on DNA
No 1 r.4514_4515ins17 c.4515-14TNG splice site
Yes 1 r.5152_5205del p.(Phe1719_Val1736del) c.5205 + 3ANT splice site
Yes 2 r.[5206_5546del; 5206_5749del] c.5206-38ANG splice site Yes
Yes 1 r.5749_5750ins5749 + 155_5749 + 331 c.5749 + 332ANG splice site Yes Yes but missed on DNA
No 1 r.6085_6364del c.6364 + 4ANG splice site
Yes 1 r.[6756_6757ins6757-2_6757–1; 6757_6858del] c.6757-3ANG splice site
No 1 r.7907_7908ins7908-391_7908–322 c.7908-321CNG splice site Yes Yes but missed on DNA
No 1 r.2952_2990del c.2953CNT p.(Gln985Ter) Nonsense
Yes 1 r.5940_5943delgcag c.5941CNT p.(Gln1981Ter) Nonsense
No 1 r.6642_6756del c.6754ANT p.(Lys2252Ter) Nonsense
Yes x 1
No x 2

3 r.6757_6858del c.6792CNA p.(Tyr2264Ter) Nonsense Yes

No 1 r.6756_6858del c.6792CNA p.(Tyr2264Ter) Nonsense Yes
Yes 1 r.7647_7675del29 c.7648ANT p.(Arg2550Ter) Nonsense
Yes 2 r.[1229uNa; 1260_1261ins1260 + 1_1260 + 13] c.1229TNA p.(Leu410Gln) VUS missense
No 1 r.1722_1748del c.1748ANG p.(Lys583Arg) VUS missense Yes
No 1 r.2252_2325del c.2325GNT p.(Glu775Asp) VUS

missense
Yes 1 r.[5206_5546del; 5206_5749del] c.5546GNA (p.Arg1849Gln) VUS missense
Yes 1 r.[5206_5546del; 5206_5749del] c.5546GNT p.(Arg1849Leu) VUS

Missense
No 1 r.5940_5943delgcag c.5943GNA p.(Gln1981Gln) VUS Synonymous
Total 41 26 Splice

7 VUS
8 Nonsense

Additional samples only classifiable by RNA without study criteria or information to determine this Deep intronic

1 r.655_730del c.655-17_655-5del13 Splice site
1 r.[1260 + 1_1260 + 13ins;1260 + 4aNc] c.1260 + 4ANC Splice site
1 r.1393_1527del c.1393-13_1393-3del11 Splice site
1 r.3494_3496dupuag p.(Ile1165_Gly1166insVal) c.3497-4TNG Splice site
1 r.[6642_6858del, 6757_6858del] c.6757–14TNG Splice site
1 r.8050_8051ins8050 + 1_8050 + 85 c.8050 + 86ANG Splice site Yes
1 r.289_479del c.479GNT p.(Arg160Met) VUS missense

Subtotal 7 6 splice 1 missense

Previously reported variants outside study criteria and outside canonical domain

1 r.1642_1721del c.1721 + 3ANG Splice site
1 r.4110_4111ins4110 + 4160_4110 + 4239 c.4110 + 4159ANG Splice site Yes
1 r.1466_1527del c.1466 ANG p.(Tyr489Cys) VUS missense
2 r.1846_1886del41 c.1885GNA p.(Gly629Arg) VUS missense
1 r.2252_2325del c.2325GNT p.(Glu775Asp) VUS missense

Total 13 5 missense
8 splice
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p.(Arg64Ter)) and four further mutations were assumed to be de novo as
the parents had no features (c.177dupT p.(Ile60TyrfsTer18); c.360delA
p.(Ile120MetfsTer32); c.1048_1060del13 p.(Gly350MetfsTer52);
c.304dupA p.(Thr102AsnfsTer7)) and a further mutation was found to
have been inherited from a mother who on closer inspection was
found to have 4 CAL (c.482_483delCA p.(Thr161SerfsTer5)). Seventeen
individuals (24%) had no mutation identified in either NF1 or SPRED1
and one had a missense variant c.4768CNT (p.Arg1590Trp) in NF1
thatwas inherited fromhis fatherwithout CAL and assumed to be unre-
lated to his CAL.
Since 2013 we have screened one hundred and thirty two samples
from patients that did not meet NIH criteria where no NF1 mutation
or variant was identified following comprehensive RNA level and
MLPA copy number analysis.

4. Discussion

The present study has shown a very high detection rate for NF1mu-
tations in classically affected individualsmeetingNIH criteria. Therewas
no difference in detection rates between the familial and de novo group



Table 4
Missense and 5′UTR variants and their likely pathogenicity in main study cohort. (Reference sequence used for mutation names NM_000267.3).

Inherited Times seen in
study cohort

Variant Type Exon Segregation analysis In silico analysis Classification of
pathogenicity1

Yes 1 c.139TNC
p.(Ser47Pro)

missense 2 Seen in 1 individual- no segregation
studies done

Affects an evolutionarily conserved
amino-acid residue, gave conflicting
results on whether it is likely to be
disruptive to normal function

Class 3- Unknown
pathogenicity

No 1 c.412GNC
p.(Ala138Pro)

missense 4 Seen in 1 individual- not detected in
parents

Affects an evolutionarily conserved
amino-acid residue, gave conflicting
results on whether it is likely to be
disruptive to normal function

Class 4- Likely
pathogenic

No 1 c.581TNC
p.(Leu194Pro)

missense 5 Seen in 1 individual- not detected in
parents

Affects an evolutionarily conserved
amino-acid residue and is predicted to
disrupt normal function

Class 4- Likely
pathogenic

No 1 c.988GNC
p.(Ala330Pro)

missense 9 Seen in 1 individual- no segregation
studies done

Affects an evolutionarily conserved
amino-acid residue, gave conflicting
results on whether it is likely to be
disruptive to normal function

Class 3- Unknown
pathogenicity

Yes 1 c.1658ANG
p.(His553Arg)

missense 15 Seen in 3 individuals- appeared to
segregate with NF1 features in 1st family &
not detected in parents in 2nd family, no
segregation studies done in 3rd family

Affects an evolutionarily conserved
amino-acid residue, gave conflicting
results on whether it is likely to be
disruptive to normal function

Class 4- Likely
pathogenic

Yes 1 c.1808TNG
p.(IIe603Arg)

Missense 16 Seen in 1 individual- no segregation
studies done

Affects an evolutionarily conserved
amino-acid residue, gave conflicting
results on whether it is likely to be
disruptive to normal function

Class 3- Unknown
pathogenicity

No 1 c.2329TNA
p.(Trp777Arg)

Missense 20 Seen in 2 individuals- no segregation
studies done in 1st family, not detected in
parents in 2nd study family

Affects an evolutionarily conserved
amino-acid residue, gave conflicting
results on whether it is likely to be
disruptive to normal function

Class 4- Likely
pathogenic

Yes 1 c.2339CNA
p.(Thr780Lys)

Missense 20 Seen in 1 individual- no segregation
studies done

Affects an evolutionarily conserved
amino-acid residue, gave conflicting
results on whether it is likely to be
disruptive to normal function

Class 3- Unknown
pathogenicity

Yes 1 c.2530CNT
p.(Lys844Phe)

Missense 21 Mosaic with heterozygous mutation in
daughter so likely pathogenic

Affects an evolutionarily conserved
amino-acid residue, gave conflicting
results on whether it is likely to be
disruptive to normal function

Class 4 Likely
pathogenic

No 1 c.2540TNC
p.(Leu847Pro)

21 Seen in 2 individuals- no segregation
studies done in 1st family, not detected in
1 parent in 2nd study family

Affects an evolutionarily conserved
amino-acid residue and is predicted to
disrupt normal function

Class 4- Likely
pathogenic (Also reported
in an NF1 patient in
Fahsold et al. (2000)

Yes 1 c.2543GNA
p.(Gly848Glu)

Missense 21 Seen in 1 individual- appeared to segregate
with NF1 features in the family

Affects an evolutionarily conserved
amino-acid residue, gave conflicting
results on whether it is likely to be
disruptive to normal function

Class 3- Unknown
pathogenicity

Yes 1 c.2870ANT
p.(p.Asn957Ile)

Missense 22 Seen in 1 individual- appeared to segregate
with NF1 features in the family

Affects an evolutionarily conserved
amino-acid residue, gave conflicting
results on whether it is likely to be
disruptive to normal function

Class 3- Unknown
pathogenicity

Yes 1 c.3044TNC
p.(Leu1015Pro)

Missense 23 Seen in 1 individual- Did NOT appear to
segregate with NF1 symptoms in the
family

Affects an evolutionarily conserved
amino-acid residue and is predicted to
disrupt normal function

Class 3- Unknown
pathogenicity

Yes 1 c.3047GNA
p.(Cys1016Tyr)

Missense 23 Seen in 1 individual- appeared to segregate
with NF1 symptoms in the family

Affects an evolutionarily conserved
amino-acid residue, gave conflicting
results on whether it is likely to be
disruptive to normal function

Class 3- Unknown
pathogenicity

Yes 1 c.3251CNA
p.(Pro1084His)

Missense 25 Seen in 1 individual on a DNA screen-
appeared to segregate with NF1 symptoms
in the family

Affects an evolutionarily conserved
amino-acid residue and is predicted to
disrupt normal function

Class 3- Unknown
pathogenicity

Yes 1 c.3447GNA
p.(Met1149Ile)

Missense 26 Seen in 2 individuals- appeared to
segregate with NF1 symptoms in 1st
family, no segregation studies done in 2nd
family

Affects an evolutionarily conserved
amino-acid residue, gave conflicting
results on whether it is likely to be
disruptive to normal function

Class 4- Likely
pathogenic de novo in
Griffiths et al. (2007)

No 1 c.3610CNG
p.(Arg1204GIy)

Missense 27 Seen in 2 individuals- not detected in
parents in 1st study family, no segregation
studies done in 2nd family

Affects an evolutionarily conserved
amino-acid residue, gave conflicting
results on whether it is likely to be
disruptive to normal function

Class 4 Likely
pathogenic

No 1 c.3649GNT
p.(Asp1217Tyr)

Missense 27 Seen in 1 individual- no segregation
studies done

Affects an evolutionarily conserved
amino-acid residue, gave conflicting
results on whether it is likely to be
disruptive to normal function

Class 3- Unknown
pathogenicity

Yes 1 c.3827GNA
p.(Arg1276Gln)

Missense 28 Seen in 2 individuals- no segregation
studies done in 1st family, appeared to
segregate with Watson syndrome
symptoms in 2nd family

Affects an evolutionarily conserved
amino-acid residue, gave conflicting
results on whether it is likely to be
disruptive to normal function

Class 4- Likely
pathogenic
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Table 4 (continued)

Inherited Times seen in
study cohort

Variant Type Exon Segregation analysis In silico analysis Classification of
pathogenicity1

No 1 c.4016TNG
p.(Leu1339Arg)

Missense 30 Seen in 1 individual- not detected in
parents

Affects an evolutionarily conserved
amino-acid residue and is predicted to
disrupt normal function

Class 4- Likely
pathogenic

No 1 c.4172GNC
p.(Arg1391Thr)

Missense 32 Seen in 2 individuals- not detected in 1
parent in 1st family, no segregation studies
done in 2nd family

Affects an evolutionarily conserved
amino-acid residue and is predicted to
disrupt normal function

Class 3- Unknown
pathogenicity

No 1 c.4173ANT
p.(Arg1391Ser)

Missense 32 Seen in 1 individual- no segregation
studies done

Affects an evolutionarily conserved
amino-acid residue and is predicted to
disrupt normal function

Class 4- Likely
pathogenic
(Functional studies in
Upadhyaya et al. (1997)

No 1 c.4288ANG
p.(Asn1430Asp)

Missense 33 Seen in 1 individual- no segregation
studies done

Affects an evolutionarily conserved
amino-acid residue and is predicted to
disrupt normal function

Class 4- Likely
pathogenic (located
within the NF1 RAS GAP
domain.
shown to be deleterious
to RAS interaction
in vitro) Ahmadian
et al. (2003)

Yes 1 c.4306ANG
p.(Lys1436Glu)

Missense 33 Seen in 2 individuals- no segregation
studies done

Affects an evolutionarily conserved
amino-acid residue and is predicted to
disrupt normal function

Class 4- Likely
pathogenic (de novo in
Valero et al. (2011)

No 1 c.4715TNC
p.(Phe1572Ser)

Missense 36 Seen in 1 individual- no segregation
studies done

Affects an evolutionarily conserved
amino-acid residue and is predicted to
disrupt normal function

Class 3- Unknown
pathogenicity

Yes 1 c.4805TNC
p.(Leu1602Pro)

Missense 37 Seen in 1 individual- no segregation
studies done

Affects an evolutionarily conserved
amino-acid residue and is predicted to
disrupt normal function

Class 3-Unknown
pathogenicity

Yes 1 c.4986CNG
p.(Asn1662Lys)

Missense 37 Seen in 1 individual- no segregation
studies done

Affects an evolutionarily conserved
amino-acid residue and is predicted to
disrupt normal function

Class 3-Unknown
pathogenicity

No 1 c.5450CNG
p.(Ser1817Cys)

Missense 38 Seen in 1 individual- no segregation
studies done

Affects an evolutionarily conserved
amino-acid residue and is predicted to
disrupt normal function

Class 3-Unknown
pathogenicity

Yes 1 c.5681TNG
p.(Leu1894Arg)

Missense 39 Seen in 1 individual- appeared to segregate
with NF1 features in the family

Affects an evolutionarily conserved
amino-acid residue and is predicted to
disrupt normal function

Class 3-Unknown
pathogenicity

No 1 c.6947TNC
p.(Leu2316Pro)

Missense 47 Seen in 1 individual- not detected in
parents

Affects an evolutionarily conserved
amino-acid residue, gave conflicting
results on whether it is likely to be
disruptive to normal function

Class 4-Likely
pathogenic

Yes 1 c.6950TNC
p.(Leu2317Pro)

Missense 47 Seen in 2 individuals- not detected in
parents in 1st family, no segregation
studies done in 2nd family

Affects an evolutionarily conserved
amino-acid residue and is predicted to
disrupt normal function

Class 4-Likely
pathogenic

Yes × 2 2 c.-272GNA 5′ UTR Seen in 2 individuals- appeared to
segregate with NF1 features in both
families,

Class 4-Likely
pathogenic

Yes 1 c.-272GNC, NF1
RNA NORMAL

5′ UTR Seen in 1 individual- appeared to segregate
with NF1 symptoms in the family

Class 3-Unknown
pathogenicity

No × 1
Yes × 1

2 c.-273ANC 5′ UTR Seen in 2 individuals- not detected in
parents or unaffected sister in 1st family,
no segregation studies done in 2nd family

Class 4-Likely
pathogenic

No 1 c.-280CNT 5′ UTR Seen in 1 individual- no segregation
studies done

Class 3-Unknown
pathogenicity

1 Classification of pathogenicity follows those proposed by Plon et al. (2008) Wallis et al. (2013) and Richards et al. (2015).

217D.G. Evans et al. / EBioMedicine 7 (2016) 212–220
although two patients with de novo NF1 including one with an affected
child had mosaicism detected in lymphocyte RNA. This study would
therefore suggest that levels of mosaicism undetectable in RNA/DNA
are unlikely to cause classical NF1. Mosaicism is nonetheless well docu-
mented as the cause of segmental NF1 where identical NF1 mutations
can be detected in melanocyte cultures from anatomically separate
CAL (Maertens et al., 2007). Nonetheless mosaic large deletions that
are harder to detect by MLPA (as this will usually only detect down to
around 20% level) have been shown to cause an occasional generalised
case (Messiaen et al., 2011). However, both cases reported in the series
with large deletions were present at 50% or greater level (25% mutant
allele fraction) and should therefore have been identified in our current
study. It is nonetheless possible that themore severe phenotype associ-
ated with whole gene deletions may cause generalised disease with
even lower levels of mosaicism, whereas this would be less likely for
point mutations at below 10% mutant allele fraction. A previous RNA
analysis identified 64/67 (95%) ofmutations in clearly affectedNF1 indi-
viduals (Messiaen et al., 2000). This study was based on much smaller
numbers: 29/29 with familial and 35/38 sporadic hadmutations identi-
fied, but was not able to differentiate statistically between inherited and
sporadic cases (p = 0.25).

A substantial proportion of variants identified (12.5% familial; 11%
sporadic)were not classifiable based solely on RNAanalysis as function-
ally relevant. Nonetheless several of those reported here have been
shown to be disease causing by functional analysis and other evidence
such as being proven to have arisen de novo. Most occur at residues
that are highly conserved across species. Using the ExAC database
(http://exac.broadinstitute.org/gene/) from exome sequencing of over
120,000 alleles in humans the prevalence of NF1 missense variants
was only 2.2% per allele with 489 variants being seen 2426 times with
28 variants being seen in a homozygous state. The homozygous variants
are shown in Table 6 and are very unlikely to be functional variants as

http://exac.broadinstitute.org/gene/


Fig. 1. Axial T2-weighted images showingmulti-lobulatedmass lesions in right mesial temporal and amygdala (red arrow) in case 1 and right temporal lobe, including superior temporal
and middle temporal gyral cortex (yellow arrow) in case 2. Lesions were T1-hypointense and failed to enhance with contrast.
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NF1 is thought to be lethal when homozygous (Brannan et al., 1994).
Overall, excluding these variants observed in a homozygous state only
1.2% of NF1 alleles on ExAC contained missense variants which approx-
imates to 2.4% of people. This compares to 28/33 (84%) of familial NF1
cases and 19/27 (70%) sporadic de novo cases in our cohort where no
other NF1 sequence change was present. It is therefore highly likely
that most of these variants are disease causing.

Five of the six variants identified in the NF1 5′ UTR region involve
just two nucleotides at position c.-272 and c.-273. These nucleotides
are highly conserved through species and the c.-273ANC variant was
shown to occur de novo in a sporadic case in our series. Furthermore,
these variants were not seen on the other allele when a pathogenic
NF1 mutation has been found in over 500 full screens. Whilst we have
shown that these variants are still associatedwith bi-allelic RNA expres-
sion in vitro, as transcribed polymorphisms in these patients did not
show any perceptible skewing on Sanger analysis of cDNA, we
hypothesise that they could still act via a reduction in production of ma-
ture mRNA in vivo from the affected allele. For instance these variants
may activate a cryptic translation initiation sitewhich could in turn sup-
press the use of the normal NF1 translation initiation site leading to an
aberrant NF1 protein or nonsense mediated decay if a premature stop
codon is incorporated upstreamof the normal initiation site. Thismech-
anism has been described in a 5UTRmutation in BMPR2 in patients with
pulmonary hypertension (Aldred et al., 2007).Further experimentation
is however needed to determine the mode of action.

Two families, one sporadic de novo and one familial presenting with
a DNET did not have an identifiable mutation despite the individuals
meetingNIH criteria. DNETshave been reported as histologically proven
Table 5
Identification of NF1 and Legius syndrome based on testing sporadic childhood cases with N5 C
both RNA and DNA based testing.

Clear pathogenic
NF1 mutation
(definite NF1)

Missense or other
vus probably
disease causing
(probable NF1)

SPRED1 mutation
(Legius syndrome)

Actual testing of 71 samples 62% (n = 44)a 4.2% (n = 3) 8.4% (n = 6)
Predicted likelihood based
on 95.8% sensitivity from
RNA testing

64.9% 4.2% 8.4%

Predicted identification rate
from DNA testing

55.7%b 8.6%+ 8.4%

a Includes 4 missense mutations shown to have arisen de novo by exclusion in parents.
b The reduction from RNA testing assumes 2.9% with deep intronic splicing mutations (over

consensus splice site or missense mutations causing splicing will not be classifiable and moved
in 5/25 (20%) NF1 patients who underwent epilepsy surgery, but NF1
mutational status was not reported (Barba et al., 2013). DNETs are
slow growing low grade brain tumors with excellent prognosis follow-
ing surgery the vast majority present with seizures. We hypothesise
that DNETs may define an NF1 like syndrome caused by heterozygous
variants in a gene other thanNF1 given the highly significant association
of DNETs with absence of identifiable mutation. Thus another as yet un-
identified gene could account for the approximately 4% of patients/fam-
ilies meeting NIH criteria or some may possibly be caused by an
extragenic deletion or promoter methylation affecting RNA expression
of one copy of the NF1 gene.

A number of other researchers have employed an RNA based analysis
to identifyNF1mutations which emphasise the importance of identifying
splicing variants. Sensitivity against NIH criteria could be ascertained in
53/56 (95%) in a Spanish study (Valero et al., 2011) and 546/565 (97%)
in French study (Sabbagh et al., 2013). Another study from Barcelona
identified splicing mutations in 173/374 (46%) independent samples
with pathogenic variants of which nine (2.4%) were deep intronic (Pros
et al., 2008). The large French study (Sabbagh et al., 2013; Pasmant
et al., 2010) found a rate of patients with deletion involving the entire
NF1 locus of 4.3% with 3.9% having other MLPA rearrangements and 13/
565 (2.3%) having deep intronic splicing mutations. These results are
similar to the present study although comparison of rates of whole gene
deletions between sporadic and familial cases was not possible to discern
from the data in the manuscripts. It is unclear whether next generation
sequencing testing will add any advantages over comprehensive RNA
analysis (Balla et al., 2014; Pasmant et al., 2015). Whole gene deletions
of NF1 have been associated with a more severe phenotype including
AL with no other features of NF1 and extrapolation to reassurance of negative testing with

No mutation
(probable sporadic
CAL or other disorder)

Likelihood of a
missed mutation
assuming sensitivity
of (RNA) and (DNA)

Likelihood that
no full germline
NF1 mutation
exists

Likelihood has
NF1 if NF1
testing negative

25.4% (n = 18) –
22.5% 2.90% (95.79%) 2.9/25.4 = 11.4% 11.4%

1 in 9

27.3% 4.8%
(93.05%)

4.8/27.3 = 17.6 17.6%
1 in 6

all 1.9% of samples) will be missed and that a further 6.6% with splicing variants outside
to the VUS column.



Table 6
Missense variants that appear on the ExAC database as occurring in homozygous state.

Missense
variant

Type Number
seen

Number of
alleles tested

Number
homozygous

p.Pro678Leu Missense 36 120726 1
p.Met895Ile Missense 10 121340 1
p.Asn974Ser Missense 28 120726 1
p.Thr1324Ala Missense 5 121372 1
p.Ile2127Val Missense 40 121386 1
p.Met645Val Missense 139 121230 2
p.Ser665Phe Missense 89 121022 2
p.Asp176Glu Missense 397 120814 3
p.Ile1679Val Missense 449 121404 16
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significantly higher incidence of learning disabilities and facial
dysmorphism (Pros et al., 2008) as well as malignancy (De Raedt et al.,
2003). This may well explain a lower genetic fitness due to the severity
of the phenotype caused to account for the higher rate of these in de
novo cases (Smith et al., 2016). The predominance of the larger 1.4 MB
type 1 whole gene deletion in our UK study (18/21–86%) is similar to
other studies at 78% (54/70) (Pasmant et al., 2010).

The present study quantifies the level of reassurance a parent may
have on diagnostic testing that their child does not have NF1 if there
is no sequence variant in NF1 or SPRED1 when their child has 6 or
more CAL. Around 25% of children tested did not have an identifiable
mutation. Using a Bayesian calculation and assuming 95.8% sensitivity
for testing in an isolated case fulfilling NIH criteria there would still be
a 1 in 9 chance that their child had NF1 (Table 5). However, this rises
to 1 in 6 if only DNA testing was carried out. DNA testing would also
increase the likelihood that the parents would be given an uncertain
result with the VUS rate rising from 4.2% to 8.6% because of failure to
be able to classify missense and splicing variants outside the consensus
splicing region as functional. We also found a significant rate of 8.5% (1
in 12) for SPRED1 mutations. These were previously shown to be more
frequent in familial CAL than in sporadic cases with 19% of familial
CAL due to SPRED1 (Messiaen et al., 2009).

The present study has defined a very high sensitivity for a mutation
screening approach incorporating RNA testing in identifying a mutation
in NF1 affected individuals meeting NIH criteria with at least one non-
pigmentary criterion. This enables a great deal of reassurance to unaffect-
ed parents of children with N5 CAL as the likelihood of their child having
constitutional NF1 drops fromover 60% to as little as 11%. DNAbased test-
ing alone classifies fewer cases as having definite NF1 and a negative
screen leaves a 1 in 6 chance the child will still have NF1. Finally, among
the very small number without an identifiable mutation who do meet
NIH criteria it remains possible that a rare further second gene may be
responsible for a condition which also predisposes to DNET.
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