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Abstract

Aortic calcification in the tunica media is correlated with aortic stiffness, elastin degradation,

and wall shear stress. The study aim was to determine if aortic calcifications influence dis-

ease progression in patients with acute type A aortic dissection (ATAAD). We retrospec-

tively reviewed a total of 103 consecutive patients who had undergone surgery for ATAAD

at our institution between January 2009 and December 2019. Of these, 85 patients who had

preoperatively undergone plain computed tomography angiography (CTA) for evaluation of

their aortic calcification were included. Moreover, we assessed the progression of aortic dis-

section after surgery via postoperative CTA. Using a classification and regression tree to

identify aortic Agatston score thresholds predictive of disease progression, the patients

were classified into high-score (Agatston score� 3344; n = 36) and low-score (<3344; n =

49) groups. Correlations between aortic Agatston scores and CTA variables were assessed.

Higher aortic Agatston scores were significantly correlated with the smaller distal extent of

aortic dissection (p < 0.001), larger true lumen areas of the ascending (p = 0.009) and

descending aorta (p = 0.002), and smaller false lumen areas of the descending aorta (p =

0.028). Patients in the high-score group were more likely to have DeBakey type II dissection

(p = 0.001) and false lumen thrombosis (p = 0.027) than those in the low-score group,

thereby confirming the correlations. Aortic dissection in the high-score group was signifi-

cantly less distally extended (p < 0.001). A higher aortic Agatston score correlates with the

larger true lumen area of the ascending and descending aorta and the less distal progres-

sion of aortic dissection in patients with ATAAD. Interestingly, the findings before and after

surgery were consistent. Hence, aortic Agatston scores are associated with aortic dissec-

tion progression and may help predict postoperative residual dissected aorta remodeling.

Introduction

Aging, dyslipidemia, tobacco use, inflammatory disease, chronic kidney disease, and diabetes

mellitus are considered to be factors that predispose individuals to aortic calcification, which is
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increasingly recognized as a strong predictor of cardiovascular events and all-cause mortality

[1–3]. Interestingly, aortic calcification reportedly can be detected in the tunica media of the

human aorta before being observed in neo-intima plaques [4, 5]. Moreover, pathological

research has indicated that the average amount of calcification at all ages is higher in the tunica

media than in the intima [6, 7].

ATAAD is a life-threatening cardiovascular event that requires immediate surgical repair

[8]. Aortic dissection results from the separation of the aortic wall layers, and a tear in the inti-

mal layer allows blood to enter the tunica media, which causes progressive dissection [9]. Aor-

tic calcifications extending from the aortic intima to the media may prevent progression of

aortic dissection by restricting the separation [10]. Although several studies have investigated

the association between aortic calcifications and abdominal aortic aneurysms (AAAs) [11],

few have examined the association of aortic calcifications with ATAAD [12–14]. Aortic calcifi-

cations have been shown to increase the peak wall shear stress and decrease the biomechanical

stability of AAAs [15]. Furthermore, aortic stiffening, increased pulse pressure, reduced coro-

nary blood flow, and left ventricular hypertrophy have been found to be strongly associated

with aortic calcifications in the intima and media [16–18]. It is plausible that aortic calcifica-

tions could alter the biomechanical properties of the aorta in patients with acute type A aortic

dissection (ATAAD), thereby influencing aortic dissection progression.

The severity of coronary artery calcification is often represented by an Agatston score,

which is an independent risk marker for cardiac events, cardiac mortality, and all-cause mor-

tality [19, 20]. Even though aortic Agatston scores have been used in a large number of studies

for assessment of aortic calcification severity [21–24], no study to date has focused on aortic

Agatston scores in patients with ATAAD. Hence, we conducted this study to explore the asso-

ciation of aortic Agatston scores with disease progression in patients with ATAAD.

Materials and methods

Patients

After obtaining approval and a waiver of informed consent from our Institutional Review

Board, we retrospectively reviewed a total of 103 consecutive patients who had undergone

emergency surgery for ATAAD at Yokosuka General Hospital Uwamachi between 2009 and

2019. Eighteen patients without preoperative aortic calcification measurements by plain com-

puted tomography angiography (CTA) were excluded. The remaining 85 patients were

included in the study. We used a classification and regression tree (CART), a machine-learn-

ing algorithm for clinical decision-making that can be used to determine the breakpoint and

identify aortic Agatston score thresholds predictive of disease progression (distal extent of aor-

tic dissection) in patients with ATAAD (S1 Fig). CART is a nonparametric decision tree learn-

ing technique that produces either classification or regression trees based on whether the

dependent variable is categorical or numeric, respectively [25, 26]. The patients were divided

into two groups according to the Agatston score cutoff value identified by CART (cutoff

value = 3344): the high-score group had 36 patients with Agatston score� 3344, whereas the

low-score group had 49 patients with Agatston score < 3344. Then, we examined the associa-

tion between aortic calcifications and the extent of aortic dissection in these patient groups.

Furthermore, to investigate the early progression of aortic dissection after surgery, we also

examined the association between aortic calcifications and postoperative CTA variable of the

descending aorta in the patients, excluding those who had DeBakey type II dissection (n = 20)

and those who died before performing the postoperative CTA (n = 4). The patient selection

flowchart is illustrated in Fig 1.
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Data collection

CTA and echocardiography were performed to establish a definitive diagnosis. Upon confir-

mation of the ATAAD diagnosis, the patients were transferred to the operating room as soon

as possible. Intraoperative findings confirmed ATAAD as well. Postoperative CTA was per-

formed within 7 days after surgery to assess early aortic dissection progression after the initial

surgery and changes in CTA variables from pre- to post-surgery. Furthermore, postoperative

plain computed tomography (CT) scan was conducted 6 months after surgery to assess mid-

term changes in descending aortic dimension and diameter after surgery between the two

groups. Data on the following variables were collected from the patients’ medical records and

compared between the two groups: preoperative CTA variables, including aortic diameters,

area of the ascending aorta at the level of the right pulmonary artery, area of the descending

aorta at the level of the aortic valve, true and false lumen areas, the location of major entry, dis-

tal extent of aortic dissection, volume and surface area of total aortic calcifications, and aortic

Agatston score; postoperative CTA variables, including the totally thrombosed false lumen of

both the descending and abdominal aortas, aortic diameters, total aortic area, and true and

false lumen areas of the descending aorta at the level of the aortic valve. The location of the

major entry was identified on the preoperative CTA, and it was confirmed during surgery in

case the entry site was located in the proximal aorta (aortic root, ascending aorta) or the aortic

arch.

Measurement of aortic calcifications and areas on CTA

Aortic calcifications were measured by using Synapse Vincent software (version 5.3; Fujifilm,

Tokyo, Japan). Calcified lesions located from the sinuses of Valsalva to the aortic bifurcation

were identified with a density of>130 Hounsfeld units (HU) on preoperative plain CT. Subse-

quently, a calcium score was calculated for each region by multiplying the area by a cofactor

(i.e., cofactor 1, 130–199 HU; cofactor 2, 200–299 HU; cofactor 3, 300–399 HU; and cofactor

4,>400 HU). Finally, a total aortic Agatston score was calculated by adding the scores for all

Fig 1. Patient selection flowchart.

https://doi.org/10.1371/journal.pone.0263881.g001
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individual lesions. CT images were reconstructed at a 5-mm slice thickness on a Phillips Bril-

liance CT64 (Philips, Amsterdam, Netherlands) or TSX301B-1A (Canon, Tokyo, Japan).

As false and true lumen areas, the ratio of false lumen area to true lumen area, and false

lumen thrombosis are associated with disease prognosis, we also measured these variables to

assess their association with aortic calcification. Total aortic area and diameters as well as true

and false lumen areas were measured for the ascending aorta at the level of the right pulmo-

nary artery and for the descending aorta at the aortic valve level. These parameters, however,

were not evaluated for the descending aorta in patients with DeBakey type II dissection. Repre-

sentative images for both groups are shown in Fig 2. The area ratio of the true lumen to total

lumen was calculated as follows:

True lumen=total lumen area ratio ¼
True lumen area

Total aortic lumen area

The false lumen area was calculated as the true lumen area subtracted from the total aortic

lumen area.

Assessment of disease progression in aortic dissection on CTA

The Society for Vascular Surgery/Society of Thoracic Surgeons (SVS/STS) Aortic Dissection

Classification System was used to assess the progression of aortic dissection [27]. According to

the SVS/STS system, the distal extent score defined the zone to where the aortic dissection was

distally extended to as shown in Fig 3. The distal extent score ranged from 0 (aortic dissection

within ascending aorta) to 12 (aortic dissection extended to femoral artery), wherein lower

scores reflected less progression of the dissection.

Surgical procedure

Our surgical procedure consisted of a median sternotomy with a standard cardiopulmonary

bypass. The subclavian artery, left ventricular apex, or femoral artery was used for arterial can-

nulation. An antegrade or retrograde infusion of cold blood cardioplegic solution was

Fig 2. Representative images of aortic area measurements. (A), (B), and (C) depict representative computed

tomography images from patients in the high-score group, whereas (D), (E), and (F) are those from patients in the

control group. (C), (F) Total and true aortic lumen areas were evaluated at the (1) ascending and (2) descending aorta.

(A), (D) The delineated area on the ascending aorta was measured at the level of the right pulmonary artery. (B), (E)

The delineated area on the descending aorta was assessed at the level of the aortic valve. Total and true aortic lumen

areas are marked by broken-line and dotted-line circles, respectively. AV = aortic valve; Asc = ascending aorta;

Des = descending aorta; PA = pulmonary artery; TL = true lumen.

https://doi.org/10.1371/journal.pone.0263881.g002

PLOS ONE Aortic Agatston score correlates with the progression of ATAAD

PLOS ONE | https://doi.org/10.1371/journal.pone.0263881 February 11, 2022 4 / 14

https://doi.org/10.1371/journal.pone.0263881.g002
https://doi.org/10.1371/journal.pone.0263881


administered for myocardial protection. Surgery was performed under hypothermic circula-

tory arrest (bladder temperature, 20˚C–26˚C), and open distal anastomosis was performed

under circulatory arrest with or without antegrade selective cerebral perfusion. Basically, a

Fig 3. Scheme of distal extent score according to the Society for Vascular Surgery/Society of Thoracic Surgeons

Aortic Dissection Classification System. A. In the example illustrated, the dissection process extends distally to zone

12, which indicates the distal extent score of “12”.

https://doi.org/10.1371/journal.pone.0263881.g003
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tear-oriented surgical strategy was adopted [28]. An ascending aortic replacement was per-

formed when the entry site was located in the ascending aorta or when an entry tear could not

be identified in the ascending aorta or aortic arch (DeBakey IIIb retrograde dissection). On

the other hand, total or partial arch replacement was performed for patients with an entry site

in the aortic arch. Although aortic valves were preserved whenever possible, we performed

aortic root replacement for cases with an intimal tear extending to the sinuses of Valsalva or

those with aortic root dilation associated with annuloaortic ectasia.

Statistical analysis

Continuous data were expressed as the median (interquartile range) and compared between

the two groups by performing the Mann–Whitney U test. Categorical data were expressed as

frequencies (%) and analyzed by performing the chi-square test or Fisher’s exact test. To exam-

ine the relationship between aortic Agatston scores and CTA variables, correlation coefficients

were calculated by using the nonparametric Spearman correlation analysis. All statistical anal-

yses were performed by using EZR software (Saitama Medical Center, Jichi Medical Univer-

sity, Saitama, Japan). Values of p<0.05 were considered to be indicative of statistical

significance.

Results

Patients’ characteristics

The preoperative clinical characteristics of the patients are presented in Table 1. The patients

in the high-score group were significantly older than those in the low-score group (77.5 vs. 63

Table 1. Preoperative characteristics.

Characteristics Total (n = 85) Low-score group (n = 49) High-score group (n = 36) p-value

Age 68 (60–77) 63 (53–69) 77.5 (71–83) <0.001

Female 44 (51.8%) 20 (40.8%) 24 (66.7%) 0.028

BMI 23.8 (21–27.6) 25.3 (21.3–29.8) 22.8 (19.5–24.5) 0.002

Hypertension 73 (85.9%) 40 (81.6%) 33 (91.7%) 0.224

Diabetes mellitus 6 (7.1%) 5 (10.2%) 1 (2.8%) 0.236

Chronic kidney disease 46 (54.1%) 23 (46.9%) 23 (63.9%) 0.131

Hyperlipidemia 20 (23.5%) 11 (22.4%) 9 (25%) 0.801

Ischemic heart disease 3 (3.5%) 1 (2%) 2 (5.6%) 0.571

Peripheral artery disease 0 (0%) 0 (0%) (0%) >0.99

Smoking history 20 (23.5%) 15 (30.6%) 5 (13.9%) 0.119

Preoperative shock 12 (14.1%) 4 (8.2%) 8 (22.2%) 0.112

Cardiac tamponade 46 (54.1%) 20 (40.8%) 26 (72.2%) 0.005

Cardiopulmonary resuscitation 2 (2.4%) 2 (4.1%) 0 (0%) 0.506

Neurologic deficit 5 (5.9%) 3 (6.1%) 2 (5.6%) >0.99

Malperfusion

Paraplegia 2 (2.4%) 2 (4.1%) 0 (0%) 0.506

Limb 11 (12.9%) 7 (14.3%) 4 (11.1%) 0.753

Renal 9 (10.6%) 6 (12.2%) 3 (8.3%) 0.727

Brain 11 (12.9%) 8 (16.3%) 3 (8.3%) 0.342

Coronary 3 (3.5%) 1 (2%) 2 (5.6) 0.571

Mesenteric 11 (12.9%) 9 (18.4%) 2 (5.6%) 0.108

BMI, body mass index.

https://doi.org/10.1371/journal.pone.0263881.t001
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years, respectively; p< 0 .001). Furthermore, the body mass index was significantly lower in

the high-score group than in the low-score group (p = 0 .002). There were no significant dif-

ferences in sex, hypertension, diabetes mellitus, chronic kidney disease, hyperlipidemia, ische-

mic heart disease, peripheral artery disease, smoking history, preoperative shock status

(systolic blood pressure <80 mmHg), and neurological deficit between the two groups. Inter-

estingly, cardiac tamponade was more frequently observed in the high-score group than in the

low-score group (p = 0 .005). No significant difference was observed in each malperfusion

between the studied groups.

Correlations between Agatston scores and preoperative CTA variables

Spearman correlation coefficients were used to evaluate the relationships between Agatston

scores and preoperative CTA variables (Table 2). The Agatston scores were highly correlated

with the average CT value (p < 0.001), maximum CT value (p < 0.001), aortic calcification

volume (p < 0.001), and aortic calcification surface area (p < 0.001). Despite having no corre-

lations with the diameters and total areas of the ascending and descending aortas, the Agatston

scores were significantly correlated with the true lumen areas of the ascending and descending

aorta (p = 0.009 and p = 0.002, respectively) and with the ratios of the true lumen area to total

lumen area for the ascending and descending aortas (p = 0.009 and p < 0.001, respectively).

Although the Agatston scores did not correlate with the false lumen area of the ascending

aorta, they displayed a significant correlation with the false lumen area of the descending aorta

(p = 0.028). The results suggested that higher Agatston scores were significantly correlated

with larger true lumen areas of the ascending and descending aortas and with smaller false

lumen areas of the descending aorta. Interestingly, the correlation of Agatston scores with the

true and false lumen areas of the descending aorta appeared to be stronger than the correlation

with the true and false lumen areas of the ascending aorta.

As shown in Table 3, DeBakey type II dissection and false lumen thrombosis were more

commonly observed in the high-score group than in the low-score group (p = 0.036, p = 0.002,

respectively). Further, the distal extent score was significantly lower in the high-score group

Table 2. Correlation between Agatston score and CTA variables.

Correlations rho p-value

Distal extent score −0.494 <0.001

Asc diameter (mm) 0.184 0.094

Asc area (mm2) 0.203 0.062

True lumen area of Asc (mm2) 0.28 0.009

False lumen area of Asc (mm2) −0.103 0.357

True lumen/total lumen area ratio of Asc 0.28 0.009

Des diameter (mm) 0.057 0.647

Des area (mm2) 0.081 0.522

True lumen area of Des (mm2) 0.456 0.002

False lumen area of Des (mm2) −0.273 0.028

True lumen/total lumen area ratio of Des 0.487 <0.001

Average of CT value 0.795 <0.001

Max of CT value 0.879 <0.001

Calcification volume (mm3) 0.996 <0.001

Calcification surface area (mm2) 0.998 <0.001

CTA, computed tomography angiography; Asc, ascending aorta; Des, descending aorta.

https://doi.org/10.1371/journal.pone.0263881.t002
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than in the low-score group (5 vs. 10, p< 0.001). No significant difference was found in the

major entry location. The true lumen areas of the ascending and descending aortas were signif-

icantly larger in the high-score group than in the low-score group (731.9 vs. 480.4 mm2, p =

0.025; 376.2 vs. 250.9 mm2, p < 0.001), whereas the diameters and total areas of the ascending

and descending aortas were not significantly different between the groups. We also found that

the true lumen area/total lumen area ratios of the ascending and descending aortas were signif-

icantly higher in the high-score group than in the low-score group (0.369 vs. 0.293, p = 0.039;

0.469 vs. 0.323, p < 0.001). Furthermore, the false lumen area of the descending aorta was sig-

nificantly smaller in the high-score group than in the low-score group (421.9 vs. 519.5 mm2, p
= 0.02). Additionally, we noticed that the average CT value, maximum CT value, aortic calcifi-

cation volume, and aortic calcification surface area were significantly greater in the high-score

group than in the low-score group (p< 0.001 for all variables).

Associations between Agatston scores and postoperative CTA variables in

patients with DeBakey I or IIIb retrograde

To investigate the association between aortic calcification and early remodeling of aortic dis-

section after surgery among the 61 patients with DeBakey Ⅰ or IIIb retrograde, postoperative

CTA variables were compared between 21 patients in the high-score group and 40 patients in

Table 3. Preoperative CTA variables.

Preoperative CTA variables Total (n = 85) Low-score group (n = 49) High-score group (n = 36) p-value

DeBakey Ⅰ orⅢb retrograde 65 (76.5%) 44 (89.8%) 21 (58.3%) 0.001

DeBakey Ⅱ 20 (23.5%) 5 (10.2%) 15 (41.7%) 0.001

Distal extent score 8 (4–10) 10 (7–11) 5 (0–8) <0.001

Major entry location

Aortic root 5 (5.9%) 2 (4.1%) 3 (8.3%) 0.646

Ascending aorta 43 (50.6%) 25 (51%) 18 (50%) >0.99

Aortic arch 24 (28.2%) 16 (32.7%) 8 (22.2%) 0.337

Descending aorta 2 (2.4%) 1 (2%) 1 (2.8%) >0.99

Unidentified 11 (12.9%) 5 (10.2%) 6 (16.7%) 0.516

False lumen thrombosis 39 (45.9%) 17 (34.7%) 22 (61.1%) 0.027

Asc diameter (mm) 46.5 (43.6–50.1) 46.5 (43.3–48.8) 47.2 (44.2–51.3) 0.268

Asc area (mm2) 1752 (1554–2026) 1745 (1544–1996) 1794 (1609–2160) 0.185

True lumen area of Asc (mm2) 581 (333–993) 497 (320–782) 743 (376–1150) 0.033

False lumen area of Asc (mm2) 1110 (795–1404) 1119 (833–1442) 1083 (761–1295) 0.388

True lumen/total lumen area ratio of Asc 0.34 (0.21–0.52) 0.28 (0.2–0.47) 0.38 (0.23–0.6) 0.058

Des diameter (mm) 30.9 (29.7–34.1) 31 (29.5–33.5) 30.7 (29.9–34.3) 0.874

Des area (mm2) 800 (688–906) 805 (681–890) 763 (698–919) 0.833

True lumen area of Des (mm2) 295 (229–393) 256 (207–351) 385 (335–430) 0.002

False lumen area of Des (mm2) 483 (406–593) 518 (441–612) 413 (337–533) 0.017

True lumen/total lumen area ratio of Des 0.36 (0.29–0.48) 0.32 (0.28–0.39) 0.47 (0.38–0.58) 0.001

Average of CT value 273 (238–314) 245 (212–269) 314 (298–365) <0.001

Max of CT value 1026 (678–1507) 730 (439–986) 1600 (1264–1746) <0.001

Calcification volume (mm3) 3627 (519–9892) 629 (328–2722) 12080 (8034–20373) <0.001

Calcification surface area (mm2) 629 (104–1978) 122 (57–475) 2416 (1607–4075) <0.001

Agatston score 2171 (352–7519) 381 (162–1574) 8718 (5374–14939) <0.001

CTA, computed tomography angiography; Asc, ascending aorta; Des, descending aorta.

https://doi.org/10.1371/journal.pone.0263881.t003
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the low-score group (Table 4). No significant difference was found in the surgical procedures

between the two groups. The distal extent score after surgery was significantly lower in the

high-score group than in the low-score group (p< 0.001). The false lumens of both the

descending and abdominal aortas were more frequently totally thrombosed in the high-score

group after surgery than in the low-score group (75% [21 of 28] vs. 32.4% [12 of 37], respec-

tively; p = 0.001). Although the aortic diameter and total aortic area of the descending aorta

were not significantly different between the groups, the true lumen area and true lumen/total

lumen area ratio of the descending aorta were significantly larger in the high-score group than

in the low-score group (486 vs. 301 mm2, p = 0.001; 0.6 vs. 0.41, p = 0.003, respectively). Fur-

ther, the false lumen area of the descending aorta was significantly smaller in the high-score

group than in the low-score group (p = 0.042). Compared with preoperative CTA variables,

the postoperative true lumen dimension of the descending aorta was small in the high- and

low-score groups (p = 0.038, 0.058, respectively). However, the distal extent score after surgery

did not significantly change (S1 Table). Moreover, there was no remarkable difference in the

changes in the distal extent score and true and false lumen area of the descending aorta from

pre- to post-surgery between the two groups (S2 Table). Hence, high aortic Agatston scores

could be correlated with a slower progression of residual dissected descending aorta before

and after surgery.

Moreover, we assessed and compared the midterm changes in descending aortic diameter

and area via plain CT scan 6 months after surgery and CT variables within 7 days after surgery.

Interestingly, dilatation of the descending aortic diameter and area 6 months after surgery

were smaller in the high-score group than in the low-score group (Des diameter change: 0.98

[0.87–1.04] vs. 1.01 [0.94–1.1], p = 0.058; Des area change: 1.03 [0.88–1.13] vs. 1.11 [0.97–

1.29], p = 0.031, in fold change/CT variables within 7days after surgery) (S3 Table).

Discussion

This study demonstrated the following: 1) aortic Agatston scores significantly correlated with

the progression of aortic dissection and the true lumen areas and true lumen area/total lumen

area ratios of the ascending and descending aortas; 2) DeBakey type II dissection and false

lumen thrombosis were significantly more likely and aortic dissection was less distally

extended in the high-score group than in the low-score group; and 3) consistent with the

Table 4. Surgical procedures and postoperative CTA variables in the patients with DeBakey I or IIIb retrograde.

Postoperative CTA variables Total (n = 61) Low-score group (n = 40) High-score group (n = 21) p-value

Ascending aorta replacement 49 (80.3%) 31 (77.5%) 18 (85.7%) 0.518

Aortic arch replacement 10 (16.4%) 8 (20%) 2 (9.5%) 0.47

Aortic root replacement 2 (3.3%) 1 (2.5%) 1 (4.8%) >0.99

Concomitant AVR 5 (8.2%) 3 (7.5%) (9.5%) >0.99

Concomitant CABG 1 (1.6%) 0 (0%) 1 (4.8%) 0.344

False lumen thrombosis 38 (62.3%) 19 (47.5%) 17 (81%) 0.015

Distal extent score 9 (8–11) 10 (9–11) 8 (6–10) 0.025

Des diameter (mm) 32.3 (30.8–35.3) 32.3 (31.1–34.4) 33.2 (30.6–36.3) 0.606

Des area (mm2) 841 (748–960) 819 (760–895) 859 (715–1077) 0.495

True lumen area of Des (mm2) 379 (261–515) 315 (240–482) 486 (377–663) 0.002

False lumen area of Des (mm2) 451 (327–572) 496 (394–582) 327 (276–551) 0.024

True lumen/total lumen area ratio of Des 0.47 (0.31–0.6) 0.4 (0.29–0.53) 0.6 (0.47–0.67) 0.003

CTA, computed tomography angiography; AVR, aortic valve replacement; CABG, coronary artery bypass grafting; Des, descending aorta.

https://doi.org/10.1371/journal.pone.0263881.t004
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preoperative findings, in the postoperative CTA variables among the patients with DeBakey Ⅰ
or IIIb retrograde, the false lumens of the descending and abdominal aortas were more fre-

quently totally thrombosed and the true lumen area of the descending aorta was significantly

larger in the high-score group, although no significant difference in the surgical procedure was

noted. In the current study, the aforementioned points 1) and 2) could be the most important

findings supporting our hypothesis.

Blumenthal et al. studied the relationship between age and the amounts of calcium in the

intima and media of 540 human aortic specimens and found that calcifications were more

common in the tunica media than in the intima at all ages [29]. Moreover, pathological exami-

nations have indicated that aortic dissection initially develops in the tunica media [9]. There-

fore, aortic calcifications present between the intima and the tunica media may prevent

separation of these aortic wall layers and consequently reduce progression of the aortic dissec-

tion. Based on an in vitro study, vascular smooth muscle cell in the tunica media regulates vas-

cular microcalcification via several miRNAs and modulates vascular remodeling [30, 31].

Vascular calcification is strongly associated with elastin degradation and smooth muscle cell

phenotypic change [32, 33]. This indicates that aortic calcifications change the biomechanical

properties of the tunica media in the aorta and influence the true and false lumen dimension

and the distal extent of ATAAD in the high-score group.

In preoperative CTA, aortic dissection was significantly less distally extended in the high-

score group than in the low-score group. Accordingly, DeBakey type II and false lumen throm-

bosis were more frequently observed in the high-score group than in the low-score group.

DeBakey type II dissections were correlated with atherosclerotic disease, and the prevalence of

distally extended aortic dissection was lower in patients with non-communicating false lumens

than in those with patent false lumens, which are consistent with the results of previous studies

[34, 35]. Furthermore, there is a greater decrease in false lumen pressure in aortic dissection

with a thrombosed false lumen compared with a patent false lumen [36]. A false lumen throm-

bosis in the high-score group might cause a decrease in the false lumen pressure and slow the

disease progression. In fact, we found that the true lumen/total lumen area ratios of the

ascending and descending aorta were likely to be larger in the high-score group than those in

the low-score group on preoperative CTA. These findings suggest that the ratio of the true

lumen pressure to the false lumen pressure in the high-score group could be higher than that

in the low-score group.

Intriguingly, in the early postoperative CTA, the true lumen area of the descending aorta

was significantly larger and false lumen thrombosis was significantly more frequently observed

in the high-score group. Moreover, changes in the distal extent score and true and false lumen

area of the descending aorta from pre- to post-surgery did not significantly differ between the

groups. Hence, a lower disease progression in the high-score group before surgery could be

consistent with that after surgery. Interestingly, dilatation of the residual dissected descending

aorta was smaller in the high-score group than in the low-score group 6 months after surgery.

Several imaging findings can help predict the course of residual dissected aorta remodeling

after surgery for ATAAD. Progressive dilatation of the descending aorta, persistent intimal

tear at the residual aorta, and refilling from the false lumen of a dissected aortic arch were con-

sidered the predictors of failing residual aortic remodeling after surgical repair for ATAAD

[37, 38]. The current study showed that the aortic Agatston score could be correlated with

ATAAD progression and could help predict postoperative residual dissected descending aorta

remodeling. Although further investigation is needed to elucidate the influence of the aortic

Agatston score on clinical outcomes in patients who undergo surgical repair for ATAAD, our

primary aim was to reveal the association between the aortic Agatston score and disease pro-

gression of ATAAD in terms of CTA variables.
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The most obvious limitations of this study were its retrospective nature, small number of

participants, and single-center design, which are potential sources of bias. This study was fur-

ther limited by the lack of pathological proof and that we did not specifically determine

whether calcifications were located in the intima or in the media of the aortic wall. However, it

should be noted that we did not aim to unravel the pathology of these calcifications. Further

studies with a larger number of patients and greater emphasis on hemodynamic and bio-

mechanical parameters should be performed to evaluate these associations. These data provide

important new insights into the association between aortic calcification and the progression of

aortic dissection and potentially contribute to the development of a risk assessment system in

the patients with high Agatston scores.

Conclusions

In conclusion, we found that high aortic Agatston scores were significantly correlated with

larger true lumen areas of the ascending and descending aorta and with smaller false lumen

areas of the descending aorta in patients with ATAAD. Furthermore, compared with the

patients with the low Agatston scores, the patients with the high Agatston scores were more

likely to have DeBakey type II dissection and false lumen thrombosis, and their aortic dissec-

tion was less distally extended. In the early postoperative CTA, the true lumen area of the

descending aorta was significantly larger, and false lumen thrombosis was more frequently

observed in patients with high Agatston scores, which were consistent with preoperative find-

ings. The aortic Agatston scores could be correlated with ATAAD progression and could help

predict postoperative residual dissected descending aorta remodeling.
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