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Abstract
Background Lung adenocarcinoma (LUAD) accounts for the highest proportion of lung cancers; however, specific 
biomarkers are lacking for diagnosis, treatment, and prognostic assessment. Cell division cycle-associated 8 (CDCA8) 
is a cell cycle regulator with elevated expression in various cancers. However, the association between CDCA8 
expression and LUAD prognosis remains unclear.

Methods The association between CDCA8 and LUAD prognosis was evaluated based on the The Cancer 
Genome Atlas (TCGA) dataset, and CDCA8 related functions were determined using gene enrichment and gene 
ontology analyses. We also analyzed the association between CDCA8 expression and immune cell infiltration. 
Immunohistochemistry was used to determine the differential expression of CDCA8 in tumors and controls. Finally, 
we evaluated the differences in the sensitivity of different levels of CDCA8 to different anticancer drugs in LUAD.

Results CDCA8 expression was significantly higher in primary LUAD tumors than in normal tissues (P < 0.001). 
Moreover, Kaplan–Meier survival analysis demonstrated that high CDCA8 expression predicted poor survival in 
patients with LUAD (P = 0.006). The receiver operating characteristic (ROC) curves indicated that CDCA8 was an 
effective guide for the diagnosis of LUAD. Functional annotation indicated that CDCA8 might be involved in functions 
such as p53 stabilization, nucleotide metabolism, RNA-mediated gene silencing, and the G2/M phase checkpoint. 
Immune infiltration results suggested that CDCA8 was positively correlated with Th2 cells and Tgd and negatively 
correlated with Eosinophils and Mast cells (P < 0.01). In addition, elevated expression of CDCA8 may increase the 
sensitivity of patients to certain anticancer drugs.

Conclusions CDCA8 upregulation is significantly associated with poor survival and immune infiltration in patients 
with LUAD. Our study suggests that CDCA8 can be used as a biomarker for LUAD prognosis and a reference for 
personalized medication.
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Introduction
Lung cancer has become one of the most common malig-
nant tumors worldwide in recent years, with a reported 
rate of approximately 2,206,700 new cases and 1,796,100 
deaths worldwide in 2020; it accounts for 18% of all can-
cer deaths and is the leading cause of death from malig-
nant tumors worldwide [1]. Lung adenocarcinoma 
(LUAD), the most common type, is advanced in many 
patients because of the lack of early symptoms, leading 
to poor treatment and prognosis of LUAD [2]. With the 
development of detection technologies, the emergence 
of molecularly targeted drugs has transformed the treat-
ment of LUAD into standard first-line therapy [3]. How-
ever, not all patients benefit from these treatments, and 
many molecular targets have not yet been identified [4]. 
Therefore, there is an urgent need to screen novel bio-
markers for the early diagnosis and subsequent treatment 
of patients with lung cancer.

CDCA8 is a member of the Cell division cycle asso-
ciated protein (CDCA) family of genes and is associ-
ated with Aurora B, INCENP, and Survivin, which form 
an essential component of the chromosomal passenger 
complex (CPC) [5]. Structurally, CDCA8 binds directly 
to Survivin and INCENP and exhibits a triple helix-like 
structure in vitro [6]. In embryonic stem cells, CDCA8 
can be localized to the central spindle and intermediates 
through the N-terminal 141 residues already interacting 
with Survivin. It regulates the stability of mitotic granules 
during mitosis. In addition, CDCA8 is expressed at low 
levels or is not expressed in normal tissues. CDCA8 is 
aberrantly expressed in malignant tumors such as hepa-
tocellular carcinoma [7], prostate cancer [8], ovarian 

cancer [9], and melanoma [10]. It is also associated with 
a poor clinical prognosis. Recent studies have revealed 
that CDCA8 may contribute to the development of endo-
metrial cell carcinoma by mediating the cell cycle and 
the P53/Rb pathway [11]. CDCA8 silencing can promote 
tumor cell apoptosis and increase cell sensitivity to lapa-
rib and cisplatin by inhibiting the G2/M phase [12].

Although previous studies have identified CDCA8 
overexpression in a variety of cancers, including LUAD, 
our study aimed to further extend this knowledge. By 
exploring the prognostic significance of CDCA8 and its 
potential role in drug resistance and immune cell infiltra-
tion, we performed a comprehensive integrated analy-
sis. Employing bioinformatics tools, survival analysis, 
immune infiltration analysis, and drug susceptibility pre-
diction, we provided a more comprehensive insight into 
CDCA8 in LUAD. This comprehensive analysis not only 
validated the overexpression of CDCA8, but also revealed 
its potential application as a multifunctional biomarker, 
providing a new scientific basis for future therapeutic 
strategies in LUAD patients.

Materials and methods
Data download
From the TCGA database [13], a total of 598 LUAD clini-
cal data samples were obtained, including 539 LUAD 
patient tumor tissues and 59 LUAD patient para-cancer 
tissues, which were normalized in Fragments Per Kilo-
baseper Million (FPKM) format. TCGA-LUAD counts, 
sequencing results, and corresponding FPKM-formatted 
data were normalized using the limma package [14]. The 
total baseline data of TCGA-LUAD and the baseline data 
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of the different expression level groups based on CDCA8 
are summarized in Table 1.

The gene expression profile data of LUAD related data-
sets GSE10072 [15], GSE108214 [16], and GSE109821 
was downloaded from GEO database through the R 
package GEOquery [17]. From the GSE10072 data-
set, we chose to include 58 LUAD samples and 49 con-
trol samples for this study. The GSE108214 dataset was 
derived from non-small-cell lung cancer cells, including 
15 cisplatin-resistant and 7 cisplatin-sensitive samples. 
All the above-mentioned samples were enrolled in this 
study. The dataset GSE109821 was obtained from Homo 
sapiens. The data platform was GPL16791 Illumina HiSeq 
2500, the sample data for which the sequencing instru-
ment was BCM was selected, and the sample source 
was adenocarcinoma of the lung. The count sequencing 
data of 5 resistant samples and 37 sensitive samples were 
included and standardized in the FPKM format.

Differential expression analysis and prognostic analysis of 
LUAD
According to the grouping of the TCGA-LUAD dataset, 
the samples were categorized as LUAD or paracancerous. 
The DEGs in the above two groups were analyzed using 
the R package limma [14]. | logFC | > 0.5 and adj. P < 0.05 
as the critical values of DEGs. The ANOVA results were 
used to plot a volcano map using the ggplot2 R package. 

TCGA-LUAD data set the intersection by differences in 
genes, and GSE10072 map Wayne to display. The expres-
sion of CDCA8 in different groups of TCGA-LUAD and 
GSE10072 is shown in a group comparison plot.

For the prognostic analysis of CDCA8, we combined 
the clinical prognostic information of the LUAD group 
Overall Survival (OS) and OS time in TCGA-LUAD. We 
also plotted a Kaplan–Meier (KM) curve for the relation-
ship between CDCA8 expression and patient survival 
and prognosis.

Analysis of different levels of CDCA8 differential gene
To clarify the differentially expressed genes and their 
potential mechanisms, related biological features, and 
pathways in LUAD in different level groups of CDCA8, 
related biological features, and pathways, we removed 
normal samples from the dataset TCGA-LUAD and 
bound it by the median CDCA8 expression. To obtain 
the genes co-expressed with CDCA8, we sorted the 
logFC after removing the normal samples from TCGA-
LUAD, screened the top 15 saliently significant differen-
tially expressed genes, and plotted a co-expression heat 
map.

Functional enrichment and pathway enrichment analysis 
via genomic enrichment analysis
We used the R package clusterProfiler to perform GO 
annotation analysis [18] and KEGG [19] on CDCA8; the 
top 15 significantly upregulated and downregulated genes 
and the top 15 significantly differentially expressed genes 
were subjected to GO annotation analysis and KEGG 
analysis using the clusterProfiler R package [20]. The 
screening guidelines were adj.P < 0.05 and FDR < 0.05. 
P-values were corrected using the Benjamini–Hochberg 
(BH) test. Finally, the associated pathway map visualiza-
tion for KEGG enrichment analysis was demonstrated 
using the R package Pathview12 [21].

Gene Set Enrichment Analysis (GSEA)
We categorized the patients into high- and low-expres-
sion groups based on the median expression value of 
CDCA8. GSEA [22] was performed on all genes in the 
LUAD group of the TCGA-LUAD dataset based on logFC 
values using the R package clusterProfiler. The GSEA 
used in the set of parameters was as follows: the num-
ber of seeds was 2022, the number of calculations was 
1000, and the number of genes included in the genome 
was set to a minimum of 10 and a maximum of 500. 
Gene set enrichment analysis (GSEA) was performed by 
obtaining gene set c2.cp.all.v2022.1.Hs.symbols.gmt [All 
Canonical Pathways] (3050) from the Molecular Signa-
tures Database (MsigDB) [23]. The screening criteria for 
GSEA were adj. P < 0.05, FDR < 0.05, The P-values were 
corrected using BH.

Table 1 Baseline Data table based on CDCA8 high-low 
expression grouping
characteristics Low 

expres-
sion of 
CDCA8

High 
expres-
sion of 
CDCA8

p value statistic meth-
od

n 269 270
Pathologic 
stage, n (%)

0.00994016 11.3578516 Chisq 
test

Stage I 165 
(31.1%)

131 
(24.7%)

Stage II 56 
(10.5%)

69 
(13%)

Stage III 32 (6%). 52 
(9.8%).

Stage IV 10 
(1.9%)

16 (3%)

Gender, n (%) 0.0107378 6.50820172 Chisq 
test

female 159 
(29.5%)

130 
(24.1%)

Male 110 
(20.4%)

140 
(26%)

Age, n (%) 0.00287116 8.88758793 Chisq 
test

<= 65 112 
(21.5%)

145 
(27.9%)

> 65 149 
(28.7%)

114 
(21.9%)
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Protein-protein interaction (PPI) network
We constructed a CDCA8-related PPI network based on 
CDCA8 in the STRING database [24], with interaction 
scores > 0.40. The GeneMANIA website [25] was used to 
predict the function of selected genes, similar genes, and 
their interacting proteins in the PPI network, as well as to 
construct the interaction network.

Construction of regulatory network
We mapped the miRNA network interacting with 
CDCA8 by selecting data segments with a Target 
Score > 60 using the MiRDB database [26]. We then 
retained the portion of TFs that were searched in the 
CHIPBase (version 3.0) [27] and HTFtarget databases 
[28] for binding with CDCA8 and visualized them using 
Cytoscape software. The data are summarized in Supple-
mental Fig. 1 .

Immune infiltration analysis
The enrichment scores calculated using ssGSEA in the 
R package represented the extent of infiltration of each 
immune cell type in each sample [29, 30]. Box and cor-
relation Laplace plots were used to show the abun-
dance of immune cell infiltration in tumor samples from 
the CDCA8 differentially expressed group. Finally, we 
selected the two immune cells with the highest positive 
and negative correlations with the target gene CDCA8 to 
plot the correlation scatter plots.

Construction of clinical prognostic model
Based on the univariate Cox regression analysis, we eval-
uated the clinical prognostic value of CDCA8 in LUAD. 
After including variables with P < 0.001 in the multivari-
ate Cox regression analysis, a multivariate Cox regres-
sion model was constructed. Nomograms were used to 
predict 1-, 3-, and 5-year survival in patients with LUAD. 
Calibration curves were used to assess the nomogram 
accuracy and resolution.

Immune checkpoint genes (ICG), microsatellite instability 
(MSI), TMB, HLA expression analysis
We screened 50 ICGs from the published literature 
(Table S1). We then analyzed the differences in ICG 
expression between subgroups with different expression 
levels of CDCA8 in LUAD samples from TCGA-LUAD 
and plotted subgroup comparisons. We also calculated 
the Tumor Mutation Burden (TMB) of different CDCA8 
expression level groups in TCGA-LUAD samples using 
the U-test. Group differences in MSI and scores were also 
analyzed.

We searched the GeneCards genes with names begin-
ning with HLA, A total of 21 HLA family genes were 
obtained and analyzed for differences in their expres-
sion between the high and low CDCA8 groups in the 

TCGA-LUAD samples, with comparative plots between 
groups (Table S2).

Drug sensitivity analysis
By searching the GDSC database (www.cancerRxgene.
org) [31] and using the pRRophetic algorithm [32], based 
on the expression matrix of the TCGA-LUAD dataset in 
FPKM format, CDCA8 was predicted from the TCGA-
LUAD dataset by calculating the IC50 values of the sen-
sitivity of the patients with LUAD to common anticancer 
drugs or small-molecule compounds. Additionally, 
the relationship between different expression levels of 
CDCA8 and drug sensitivity in the TCGA-LUAD dataset 
was predicted. Results are presented in the form of sub-
group comparison plots.

Immunohistochemical analysis
The expression of CDCA8 in LUAD and normal lung 
gland tissues was analyzed via immunohistochemistry 
using the Human Protein Atlas (HPA) database [33]. IHC 
results for CDCA8 in human cells from the database are 
displayed.

Comparison analysis between CDCA8 resistant and 
sensitive groups
To assess changes in the CDCA8 gene in the LUAD-
resistant and LUAD -sensitive groups, we used the data-
sets GSE108214 and GSE109821. Intergroup comparison 
plots were used to show the differences between the tar-
get gene CDCA8 in the resistant and sensitive groups 
and whether the trends were statistically significant.

Statistical analysis
Data processing was performed using R software (ver-
sion 4.2.3). The Wilcoxon rank-sum test was performed 
to assess differences between the two groups. Kaplan–
Meier survival curves showed differences between sur-
vival rates. Differences in survival time were assessed 
using the log-rank test. P-values were two-sided, and sta-
tistical significance was set at P < 0.05.

Results
Differentially expressed genes in LUAD
The data from the GSE10072 dataset were split into 
LUAD and control groups. To analyze the differences 
between the LUAD and para-carcinoma groups in the 
TCGA-LUAD and GSE10072 datasets, the R package 
limma was used to obtain DEGs for both groups. The 
results were as follows: TCGA LUAD - a total of 1669 
data sets satisfied | logFC | > 0.5 and adj. P < 0.05, the 
threshold of DEGs; a total of 704 genes were up-regu-
lated; a total of 965 genes were down-regulated, accord-
ing to the variance analysis results of the dataset map 
volcano (Fig. 1A). GSE10072 datasets, a total of 453 met | 

http://www.cancerRxgene.org
http://www.cancerRxgene.org
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logFC | > 0.5 and adj. P < 0.05 threshold of DEGs, up-reg-
ulation of expressed genes at this threshold, a total of 153, 
there were 300 down-regulated genes, and a volcano map 
was drawn according to the difference analysis results of 
this dataset (Fig. 1B). To obtain the differential genes with 
the same expression changes in the TCGA-LUAD and 
GSE10072 datasets, the intersection of upregulated and 
downregulated differential genes in each of the two data-
sets was plotted as a Venn diagram (Fig. 1C-D). Among 
the upregulated genes in the two datasets, there were 132 
common genes, and among the downregulated genes in 
the two datasets, there were 256 common genes.

Differential analysis of CDCA8 expression
To explore the difference in CDCA8 expression between 
TCGA-LUAD and GSE10072, we used group compari-
son plots in the TCGA-LUAD and GSE10072 datasets 
to determine whether the expression of the target gene 
CDCA8 in the LUAD and control groups was statisti-
cally significant (Fig.  2A-B). The expression of CDCA8 
in the two datasets was significantly different (P < 0.001). 
According to the results in the TCGA datasets LUAD 
and GSE10072, CDCA8 expression in the cancer group 

was significantly increased. Subsequently, a prognostic 
survival KM curve was drawn based on the expression 
of CDCA8 and the related prognostic data (Fig. 2C). Sta-
tistical significance was set at P < 0.05. The prognosis of 
the CDCA8 high expression group was worse. Finally, we 
plotted the ROC curves of CDCA8 in the TCGA-LUAD 
and GSE10072 (Fig.  2D-E) datasets, and the results 
showed that CDCA8 was highly accurate in assessing 
tumorigenesis.

Differences between groups with different expression 
levels of CDCA8
We first analyzed variance on the LUAD genes in the 
samples by using the R package, high and low expres-
sion group FPKM data to | logFC | > 0.5 and adj. P < 0.05 
standard screening gene as a difference. Volcano map-
ping revealed the localization of CDCA8 (Fig.  3A). We 
also selected the top 15 positively correlated differentially 
expressed genes found in the results of differential analy-
sis by sorting them in ascending and descending logFC 
columns (Fig. 3B, positive correlation top 10: MAGEA4, 
DPPA2, MAGEA9B, HOXD13, GAGE2A, MAGEA10, 
MAGEB2, SP9, SLC6A15, CDH18, MAGEC1, PAGE1, 

Fig. 1 Differential analysis of gene expression between TCGA-LUAD and GSE10072. (A) Volcano plot of differential genes between the LUAD and the 
paraneoplastic in TCGA-LUAD. (B) Volcano plot of differential genes between the LUAD and the control group in GSE10072. (C) TCGA-LUAD dataset with 
improved Wayne plots of differential genes in GSE10072. (D) Venn diagram of down-regulated genes in TCGA-LUAD and GSE10072 dataset. TCGA-LUAD 
dataset: n = 539 (LUAD) and n = 59 (Normal), GSE10072 dataset: n = 58 (LUAD) and n = 49 (Normal)
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SPANXB1, CT45A1, CASP14) and the top 15 negatively 
correlated differentially expressed genes (Fig.  3C, nega-
tive correlation top 10: PGC, PCSK2 GKN2, MAB21L2 
SLC10A2, REG1A, H1-1, H4C6, SCGB3A2, H4C13, 
AMELX, H2BC3, H4C3, AL138752.2, SULT1C3) as other 
molecules, CDCA8 was used as the target molecule to 
further analyze the correlation between them, and the 
results were displayed by single gene co-expression heat 
map (Fig. 3B-C).

Functional enrichment and pathway enrichment analyses 
of CDCA8 and its co-expressed genes
Functional enrichment analysis (GO) was used to fur-
ther explore the relationship between CDCA8, 30 
co-expressed genes, and LUAD. CDCA8 and 30 co-
expressed genes were used for GO and KEGG analyses 
(Table  2), and the results were visualized using a bar 
chart (Fig.  4A). The results showed that CDCA8 and 
30 co-expressed genes were mainly enriched in nucleo-
some organization, chromatin assembly, and other 
biological processes (Fig.  4B); nucleosome, CENP-A-
containing nucleosome, CENP-A-containing chromatin, 

chromosome, centromeric core domain, DNA packaging 
complex, and other cellular components (Fig.  4C); his-
tone deacetylase binding, organic acid, and sodium sym-
porter activity; and molecular functions such as protein 
heterodimerization activity (Fig.  4D). The enriched 
KEGG pathways in LUADincluded systemic lupus ery-
thematosus, alcoholism, viral carcinogenesis(Fig. 4E).

We also analyzed the results of KEGG pathway enrich-
ment in CDCA8 and co-expressed genes for viral carci-
nogenesis, alcoholism, and systemic lupus erythematosus 
(Fig. 4F-I).

Gene set enrichment analysis
To determine the effect of the differential expression 
of CDCA8 in TCGA-LUAD, we performed a genomic 
enrichment analysis to investigate the involvement 
and related functions of all genes in the LUAD group 
(Fig.  5A). The results are listed in Table  3. The enrich-
ment results indicated that the DEGs in TCGA-LUAD 
samples were highly enriched in pyrimidine metabolism 
(Fig.  5B), stabilization of p53 (Fig.  5C), metabolism of 
nucleotides (Fig. 5D), metabolic reprogramming in colon 

Fig. 2 Differential expression analysis of CDCA8. (A)Comparison of CDCA8 expression groups in the TCGA-LUAD. (B) Comparison of differential expres-
sion groups of CDCA8 in GSE10072 dataset. (C) Prognostic KM curves between CDCA8 high and low groups and overall survival of LUAD samples. (D) ROC 
curve of CDCA8 in the TCGA-LUAD. E. ROC curve of CDCA8 in the GSE10072 dataset. TCGA-LUAD dataset: n = 539 (LUAD) and n = 59 (Normal), GSE10072 
dataset: n = 58 (LUAD) and n = 49 (Normal)
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cancer (Fig. 5E), pyrimidine metabolism (Fig. 5F), metab-
olism of polyamines (Fig.  5G), gene silencing by RNA 
(Fig. 5H) and other biologically related functions and sig-
naling pathways.

PPI network
PPI analysis of CDCA8 was performed using the STRING 
database with a minimum requirement of medium con-
fidence (0.400), and a set of 10 CDCA8-related genes 
was constructed, namely ATP5F1A, AURKB, BIRC5, 
BUB1B, CCNB1, CDC20, CDK1, INCENP, KIF20A, and 
SGO1  (Fig.  6A). Subsequently, the interaction network 
of the 11 genes was predicted and constructed using the 
GeneMANIA website (Fig. 6B) to observe co-expression 
and other related information.

LUAD dataset immune infiltration analysis
The ssGSEA algorithm was used to count 24 types of 
immune cells in the CDCA8 differentially expressed 
group of TCGA-LUAD, and the Wilcoxon test algorithm 
was used to compare differences in infiltration levels. The 
results showed that the difference in the infiltration levels 
of 19 immune cells between the two groups was signifi-
cant (P < 0.05) (Fig. 7A), in which CD8 T cells, dendritic 
cells, eosinophils, immature dendritic cells, mast cells, 

NK CD56dim cells, NK cells, central memory T cells, fol-
licular helper T cells, γ δ T cells, T helper type 17 cells, 
and T helper type 2 cells in the CDCA8 high and low 
expression groups were highly statistically significant 
(P < 0.001). The expression of aDC and pDC significantly 
differed between groups (P < 0.01). The expression levels 
of B cells, macrophages, T cells, central memory CD8 + T 
cells, and regulatory T cells differed significantly between 
the groups (P < 0.05).

Subsequently, we calculated the correlations between 
the 19 immune cells and CDCA8 and visualized them 
with a Laplace plot (Fig. 7B). We selected the two most 
positively correlated immune cell types, Th2 cells and 
Tgd, and the two most negatively correlated immune cell 
types, mast cells, and eosinophils, for correlation scatter 
plot visualization (Fig. 7C-F).

Construction of a prognostic risk model for LUAD
To determine the prognostic value of CDCA8 in the 
TCGA-LUAD dataset, we first counted the LUAD sam-
ples obtained from the TCGA-LUAD replicated dataset 
and statistically analyzed the clinical information of the 
patients. We then performed a univariate Cox regression 
analysis based on CDCA8 levels combined with clinical 
variables (stage, age, and sex), and a multivariate Cox 

Fig. 3 Differential analysis of groups with different expression levels of CDCA8. (A) Volcano map of CDCA8 differential expression. (B-C) Single gene co-
expression heat map of gene CDCA8. TCGA-LUAD dataset: n = 539 (LUAD) and n = 59 (Normal)
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prognostic model was constructed by including vari-
ables with P < 0.001 (Table 4). We then present the results 
of the univariate Cox regression in the form of a forest 
plot (Fig. 8A). We will obtain the model of the risk score 
multivariable Cox RiskScore for TCGA datasets with 
the median value - LUAD sample of high- and low-risk 
groups.

We then determined the prognostic power of the model 
by analyzing the nomograms (Fig.  8B). In addition, we 
performed 1-,3-,5-year prognostic calibration analyses 
and plotted calibration curves for the column line plots 
of the multifactorial Cox prognostic model (Fig. 8C-E).

We then used DCA to evaluate and present the results 
of the constructed multivariate Cox model in terms of 
clinical utility at 1-,3-,5-year (Fig. 8F-H). The multivariate 
Cox model we constructed was more accurate for clini-
cal prediction at the 3-year and 5-year periods than at the 
1-year. Subsequently, we built a CDCA8 Cox prognostic 

model of gene expression for the prognosis of the Cox 
model samples for visualization (Fig.  8I). We combined 
the prognostic information of patients with LUAD and 
plotted a time-dependent ROC curve (Fig. 8J) to demon-
strate the effect of risk scores from the multivariate Cox 
prognostic model on survival outcomes.

ICG, MSI, TMB, HLA analysis
We analyzed the differences in MSI and TMB between 
CDCA8 differential expression groups in the LUAD 
group based on TCGA-LUAD. There was no statistically 
significant difference in MSI in the CDCA8 differential 
expression group (P > 0.05; Fig.  9A). However, the TMB 
of the LUAD group was remarkably different from that 
of the CDCA8 differentially expressed groups (P < 0.001; 
Fig. 9B).

We also obtained information on ICGs and HLA family 
genes from published literature, the GeneCards database, 

Table 2 Result of GO and KEGG Enrichment Analysis for CDCA8 and coexpressed genes
ONTOLOGY ID GeneRatio BgRatio p value adj.p qvalue
BP GO:0045653 2023/3/28 18/18,800 2.38 e-06 0.000234 0.00018
BP GO:0034728 2023/5/28 159/18,800 3.41 e-06 0.000234 0.00018
BP GO:0065004 2023/5/28 203/18,800 1.12 e-05 0.000393 0.000301
BP GO:0031497 2023/5/28 205/18,800 1.18 e-05 0.000393 0.000301
BP GO:0006335 2023/3/28 32/18,800 1.43 e-05 0.000393 0.000301
BP GO:0034723 2023/3/28 32/18,800 1.43 e-05 0.000393 0.000301
BP GO:0006336 2023/3/28 33/18,800 1.57 e-05 0.000393 0.000301
BP GO:0034724 2023/3/28 34/18,800 1.72 e-05 0.000393 0.000301
BP GO:0045652 2023/3/28 36/18,800 2.04 e-05 0.000421 0.000323
BP GO:0071824 2023/5/28 237/18,800 2.37 e-05 0.000443 0.00034
BP GO:0006338 2023/5/28 266/18,800 4.11 e-05 0.000706 0.000541
BP GO:0030219 2023/3/28 57/18,800 8.20 e-05 0.0013 0.000996
BP GO:0045638 2023/3/28 91/18,800 0.000329 0.004845 0.003713
BP GO:0006352 2023/3/28 134/18,800 0.001018 0.013982 0.010717
BP GO:0032200 2023/3/28 162/18,800 0.001756 0.022614 0.017333
BP GO:0045637 2023/3/28 208/18,800 0.003566 0.043216 0.033124
CC GO:0000786 2023/5/29 129/19,594 1.20 e-06 2.64 e-05 1.76 e-05
CC GO:0043505 2023/3/29 18/19,594 2.34 e-06 2.64 e-05 1.76 e-05
CC GO:0061638 2023/3/29 18/19,594 2.34 e-06 2.64 e-05 1.76 e-05
CC GO:0034506 2023/3/29 19/19,594 2.78 e-06 2.64 e-05 1.76 e-05
CC GO:0044815 2023/5/29 198/19,594 9.77 e-06 7.42 e-05 4.93 e-05
CC GO:0032993 2023/5/29 220/19,594 1.63 e-05 0.000103 6.84 e-05
CC GO:0000781 2023/4/29 166/19,594 0.0001 0.000543 0.000361
CC GO:0098687 2023/5/29 366/19,594 0.000182 0.000863 0.000574
CC GO:0000775 2023/4/29 227/19,594 0.000332 0.001401 0.000932
CC GO:0000228 2023/3/29 228/19,594 0.004545 0.017271 0.011482
MF GO:0042826 2023/3/29 126/18,410 0.001004 0.025859 0.014945
MF GO:0005343 2/29 30/18,410 0.001014 0.025859 0.014945
MF GO:0046982 2023/4/29 332/18,410 0.001728 0.029371 0.016974
KEGG hsa05322 2023/4/5 136/8164 3.64 e-07 1.82 e-06 3.83 e-07
KEGG hsa05034 2023/4/5 187/8164 1.31 e-06 2.32 e-06 4.89 e-07
KEGG hsa04613 2023/4/5 190/8164 1.40 e-06 2.32 e-06 4.89 e-07
KEGG hsa05203 2023/4/5 204/8164 1.86 e-06 2.32 e-06 4.89 e-07
GO，Gene Ontology； BP，Biological Process； CC，Cellular Component； MF，Molecular Function
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and other sources. After crossing with TCGA-LUAD 
genes, a matrix consisting of 30 ICGs and their expres-
sion levels was obtained, as listed in Table S5. A matrix of 
19 HLA family genes and their corresponding expression 
levels was obtained, as listed in Table S6.

Finally, we combine TCGA - LUAD dataset CDCA8 
grouping situation of high and low expression group use 
the Mann - Whitney U test to explore immune check-
point genes expressed in CDCA8 statistical differences 
between groups (Fig.  9C). The results showed that the 
immune checkpoint genes BTLA, CD28, CD27, CD40LG, 
CD48, BTN2A2, BTNL9, CD96, and TDO2 were sig-
nificantly different between the CDCA8 differential 

expression groups (P < 0.001). HHLA2 expression was 
significantly different between the CDCA8 differential 
expression groups (P < 0.01). IDO1 and BTN3A1 were 
statistically significant between CDCA8 differential 
expression groups (P < 0.05).

Finally, we combined the TCGA-LUAD dataset 
CDCA8 grouping situation of high and low expression 
groups using the Mann–Whitney U test to explore the 
family of HLA genes expressed in CDCA8 statistical dif-
ferences between groups (Fig.  9D). The results showed 
that HLA family genes, such as HLA-DMA, HLA-DQA1, 
and HLA-DRB5, were statistically significant (P < 0.001) 
between the CDCA8 differentially expressed groups in 

Fig. 4 Enrichment analysis of the gene CDCA8. (A) CDCA8 and enrichment of expressed genes function analysis and pathway enrichment analysis his-
togram analysis results show. (B-E) Mesh plot of the results of functional enrichment analysis and KEGG analysis of CDCA8 with co-expressed genes. (F-I) 
KEGG analysis of CDCA8 and co-expressed genes
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the TCGA LUAD dataset; HLA - DQA2 was statistically 
significant in the CDCA8 differential expression group of 
the TCGA LUAD dataset (P < 0.05).

Drug sensitivity analysis of CDCA8 differential expression 
groups
To explore suitable therapeutic strategies for mRNA 
vaccination in patients with CDCA8 differential expres-
sion, we used drug sensitivity data from the GDSC 
database as a training set to predict the sensitivity of 
samples in the CDCA8 differential expression groups 

to common anticancer drugs in TCGA-LUAD. We then 
used the Mann–Whitney U test to evaluate the TCGA 
LUAD dataset CDCA8 in the LUAD group in the dif-
ferentially expressed groups LUAD sensitivity to dif-
ferent anticancer drugs. We kept CDCA8 high and low 
expression groups with relatively large differences in 
the top 20 drugs: CCT007093, Nutlin.3a, PD.0332991, 
MK.2206, AS601245, Bicalutamide, FH535, Roscovi-
tine, VX.702, Erlotinib, PF.02341066, Chr.99,021, and 
BMS. 754,807, LFM A13, AZD6244, JNK. 9 l, GDC0941, 
DMOG, PD. 0325901, and AZD8055, and the results are 

Fig. 5 GSEA enrichment analysis of LUAD samples in the TCGA-LUAD. (A) GSEA seven mountains figure display biology function. (B) WP_pyrimidine 
metabolism. (C) REACTOME_stabilization of p53. (D) REACTOME_metabolism of nucleotides. (E) WP_metabolic reprogramming in colon cancer. (F) 
KEGG_pyrimidine metabolism. (G) REACTOME_metabolism of polyamines. (H) REACTOME_gene silencing by RNA. TCGA-LUAD dataset: n = 539 (LUAD) 
and n = 59 (Normal)
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Table 3 Results of GSEA for TCGA-LUAD
ID setSize enrichmentScore NES P value adj.p q value
REACTOME_GENE_SILENCING_BY_RNA 136 0.588189 2.117929 0.002247 0.015083 0.010503
REACTOME_METABOLISM_OF_POLYAMINES 59 0.655156 2.074453 0.002008 0.015083 0.010503
KEGG_PYRIMIDINE_METABOLISM 97 0.604081 2.070613 0.002075 0.015083 0.010503
WP_METABOLIC_REPROGRAMMING_IN_COLON_CANCER 42 0.694271 2.060654 0.001988 0.015083 0.010503
REACTOME_METABOLISM_OF_NUCLEOTIDES 97 0.599061 2.053406 0.002075 0.015083 0.010503
REACTOME_STABILIZATION_OF_P53 57 0.647422 2.029098 0.002058 0.015083 0.010503
WP_PYRIMIDINE_METABOLISM 82 0.610423 2.016468 0.002041 0.015083 0.010503
REACTOME_AUF1_HNRNP_D0_BINDS_AND_DESTABILIZES_MRNA 55 0.644924 2.007902 0.002037 0.015083 0.010503
REACTOME_PRC2_METHYLATES_HISTONES_AND_DNA 70 0.615519 1.979317 0.002053 0.015083 0.010503
REACTOME_REGULATION_OF_TP53_ACTIVITY_THROUGH_PHOSPHORY-
LATION

92 0.582505 1.976902 0.002066 0.015083 0.010503

REACTOME_TRANSCRIPTIONAL_REGULATION_BY_TP53 359 0.487299 1.945361 0.002353 0.015083 0.010503
REACTOME_HDACS_DEACETYLATE_HISTONES 92 0.571373 1.939123 0.002066 0.015083 0.010503
WP_AEROBIC_GLYCOLYSIS 12 0.896771 1.930784 0.001934 0.015083 0.010503
REACTOME_DNA_DAMAGE_TELOMERE_STRESS_INDUCED_SENESCENCE 79 0.58548 1.926922 0.002058 0.015083 0.010503
REACTOME_HATS_ACETYLATE_HISTONES 140 0.52996 1.911469 0.002278 0.015083 0.010503
REACTOME_REGULATION_OF_TP53_ACTIVITY 160 0.498416 1.841011 0.002288 0.015083 0.010503
REACTOME_RMTS_METHYLATE_HISTONE_ARGININES 77 0.554635 1.821045 0.002041 0.015083 0.010503
REACTOME_TP53_REGULATES_TRANSCRIPTION_OF_GENES_INVOLVED_
IN_G2_CELL_CYCLE_ARREST

18 0.733009 1.801823 0.003817 0.021713 0.015119

REACTOME_ASSEMBLY_OF_COLLAGEN_FIBRILS_AND_OTHER_MULTI-
MERIC_STRUCTURES

61 0.56237 1.792109 0.002008 0.015083 0.010503

REACTOME_METABOLISM_OF_AMINO_ACIDS_AND_DERIVATIVES 373 0.446735 1.789221 0.002404 0.015083 0.010503
REACTOME_NEGATIVE_REGULATION_OF_NOTCH4_SIGNALING 54 0.576921 1.787628 0.002049 0.015083 0.010503
WP_PURINE_METABOLISM_AND_RELATED_DISORDERS 22 0.687951 1.77983 0.001876 0.015083 0.010503
REACTOME_REGULATION_OF_MRNA_STABILITY_BY_PROTEINS_THAT_
BIND_AU_RICH_ELEMENTS

87 0.529096 1.770848 0.002058 0.015083 0.010503

REACTOME_TP53_REGULATES_TRANSCRIPTION_OF_DNA_REPAIR_GENES 62 0.549345 1.751743 0.004024 0.021713 0.015119
REACTOME_GLYCOLYSIS 72 0.539235 1.744881 0.002041 0.015083 0.010503
REACTOME_GLUCOSE_METABOLISM 91 0.515221 1.735192 0.00211 0.015083 0.010503
TCGA，The Cancer Genome Atlas, LUAD，Lung adenocarcinoma GSEA，Gene Set Enrichment Analysis

Fig. 6 Construction of PPI network. (A) CDCA8 PPI Network. (B) Functionally similar gene interaction network of 11 genes predicted by GeneMANIA 
website
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Table 4 Result of Cox Analysis
Characteristics Total(N) HR(95% CI) Univariate 

analysis
p value Univariate 
analysis

HR(95% CI) Multivariate 
analysis

p value 
Multivari-
ate analysis

Pathologic stage 522
Stage I 292 Reference Reference
Stage II 123 2.341 (1.638–3.346) < 0.001 2.237 (1.562 3.203) < 0.001
Stage III 81 3.576 (2.459-5.200) < 0.001 3.343 (2.291–4.879) < 0.001
Stage IV 26 3.819 (2.211 6.599) < 0.001 3.592 (2.070–6.235) < 0.001
Gender 530
female 283 Reference
Male 247 1.087 (0.816–1.448) 0.569
Age 520
<= 65 257 Reference
> 65 263 1.216 (0.910–1.625) 0.186
CDCA8 530 1.229 (1.090 1.386) < 0.001 1.153 (1.018 1.306) 0.025
HR, Hazard thewire, general HR > 1 shows variable is the risk factor, HR < 1 is the protection factors. Univariate p value < 0.001 was included in the analysis

Fig. 7 Differential analysis of ssGSEA immune characteristics between CDCA8 differential expression groups. (A) There are 24 immune cells in the TCGA 
- LUAD group that are significantly different in the grouping comparison plot of the CDCA8 differential expression groups. (B) Lollipop plot of correlation 
between CDCA8 and 19 significantly different immune cells. (C-F) Scatter plot of the association of CDCA8. TCGA-LUAD dataset: n = 539 (LUAD) and n = 59 
(Normal)
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shown (Fig. 10A-T). We found that among the 20 drugs 
with significant differences, the CDCA8 low-expression 
group generally showed higher drug sensitivity than 
the CDCA8 high-expression group (Fig.  10A-T). Based 
on these results, it is speculated that patients with low 
CDCA8 expression may have a higher sensitivity to these 
drugs, which further emphasizes the importance of indi-
vidualized treatment for patients with tumors.

Immunohistochemical analysis of CDCA8 and LUAD
The immunohistochemical analysis results showed 
that the expression level of CDCA8 was higher in lung 

adenocarcinoma (LUAD) tissue (Fig.  11A) compared to 
normal lung glandular tissue (Fig. 11B).

Difference analysis of CDCA8 resistance and susceptibility 
groups
We respectively in GSE108214 and GSE109821 data 
sets, using grouping comparison chart, shows CDCA8 
gene in drug-resistant and Sensitive group of expression 
(Fig. 12A-B). In the GSE109821 dataset, the CDCA8 lev-
els were higher in the resistant group than in the sensitive 
group, but the difference was not statistically significant.

Fig. 8 TCGA - LUAD dataset multivariable Cox regression model building. (A) TCGA - LUAD dataset forest picture of single factor Cox regression model. (B) 
nomogram of multi-factors Cox regression model. (C-E) Calibration curves at 1-,3-,5-year for multivariate Cox regression model nomogram analysis. (F-H) 
DCA plots at 1-,3-,5-year of the multivariate Cox regression model. (I) Cox prognosis model of risk factors. (J) The ROC results of Cox prognostic modeling 
with OS survival outcomes in LUAD patients. TCGA-LUAD dataset: n = 539 (LUAD) and n = 59 (Normal)
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Discussion
LUAD is the most common histological subtype of 
NSCLC, and the overall survival rate of patients with 
intermediate and advanced stages of the disease is less 
than 15% because of the lack of effective early diagnostic 
methods. Therefore, screening for additional biomark-
ers related to tumor staging and prognosis is extremely 
important for early diagnosis, prognostic evaluation, 
and treatment. Uncontrolled cell proliferation caused by 
abnormalities in cell cycle-related proteins endows tumor 
cells with an enhanced ability to invade, metastasize, and 
become drug resistant. Therefore, dysregulation of cell 
cycle progression is also considered a common feature 
of cancer [34, 35]. CDCA8, a cell cycle regulatory pro-
tein located on human chromosome 1p34.2, is primar-
ily expressed in embryonic stem cells [36]. An increasing 
number of studies have confirmed that CDCA8 overex-
pression is linked to the occurrence of various malignant 
tumors, such as bladder cancer [37], rectal cancer [38], 
and breast cancer [39]. However, its clinical relevance 

as a biomarker for LUAD has not yet been thoroughly 
investigated.

We performed bioinformatics analysis of RNA-seq data 
of patient tissue samples obtained from the TCGA data-
base to assess the prognostic value of CDCA8 in LUAD. 
We found higher levels of CDCA8 in LUAD tissues than 
in the controls. Subsequently, we plotted prognostic sur-
vival curves and predicted that patients with higher lev-
els of CDCA8 had a poorer prognosis. This is consistent 
with a previous report of CDCA8 expression in hepato-
cellular carcinoma [7]. Therefore, we hypothesized that 
CDCA8 could serve as a biomarker of LUAD.

In this study, ssGSEA analysis revealed a significant 
relationship between CDCA8 expression levels and the 
infiltration abundance of 24 immune cells in LUAD. The 
results showed that a total of 19 immune cells showed 
significant differences in the infiltration levels between 
high and low CDCA8 expression groups (p value < 0.05), 
including CD8 T cells, dendritic cells, eosinophils and 
iDCs (p value < 0.001). These results suggest that the 
high expression of CDCA8 may affect the immune 

Fig. 9 Differential analysis of CDCA8 gene with MSI, TMB, Immune Checkpoint and HLA family genes in high and low risk groups. (A) TMB score. (B) im-
mune checkpoint gene. (C) the family of the HLA gene. (D) the grouping comparison chart
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Fig. 11 Immunohistochemical analysis of CDCA8. (A) CDCA8 genes in Normal tissue. (B) CDCA8 genes in LUAD immunohistochemical analysis. Data are 
obtained from the HPA database

 

Fig. 10 genes CDCA8 drug sensitivity analysis. (A) The results of the sensitivity analysis for the drug CCT007093. (B) Nutlin.3a. (C) PD.0332991. (D) MK.2206. 
(E) AS601245. (F) Bicalutamide. (G) FH535. (H) Roscovitine. (I) VX. 702. (J) Erlotinib. (K) PF. 02341066. (L) CHIR. 99,021. (M) BMS. 754,807. (N) LFM. A13. (O) 
AZD6244. (P) JNK. 9 l. (Q) GDC0941. (R) DMOG. (S) PD. 0325901. (T) AZD8055. TCGA-LUAD dataset: n = 539 (LUAD) and n = 59 (Normal)
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microenvironment and tumor progression in LUAD by 
modulating the infiltration of immune cells. In particu-
lar, the significant changes in the anti-tumor immune 
responses of CD8 T cells and DCs suggested that CDCA8 
might play an important role in regulating the functions 
of these key immune cells. Further correlation analysis 
showed that CDCA8 was positively correlated with Th2 
cells and Tgd cells and negatively correlated with mast 
cells and eosinophils [40–42]. These findings imply that 
CDCA8 may affect the tumor immune microenviron-
ment through different mechanisms, thereby regulating 
tumor growth and patient prognosis. Taken together, 
the present study reveals the critical role of CDCA8 in 
immune cell infiltration in LUAD, providing new evi-
dence for its role as a potential immunotherapeutic tar-
get. Future experimental studies will further validate 
these results and explore the specific mechanisms by 
which CDCA8 regulates immune cell function.

Dysregulation of cell cycle-associated proteins is the 
most prominent feature of malignant tumor proliferation 
[34], and cell cycle-associated proteins can regulate drug 
resistance in tumor cells in a variety of ways, e.g., regulat-
ing cell cycle progression, increasing DNA damage repair, 
and regulating stem cell self-regeneration [43–45]. Previ-
ous studies have found that CDCA8 overexpression pro-
motes cancer progression and enhanced drug resistance, 
and that drug resistance in cancer cells can be reversed 
and apoptosis induced by targeting CDCA8 inhibition 
[12, 46, 47]. In this study, the GDSC database was used to 
predict the sensitivity of CDCA8 to anticancer drugs and 
20 drugs with significant differences were selected. The 
results showed that CDCA8 may be involved in cellular 
drug resistance through multiple mechanisms. Such as 
cell cycle-associated proteins: PD.0332991 (CDK4/CDK6 
inhibitor), Roscovitine (CDKs inhibitor), LFM.A13 (PLK3 
inhibitor), Nutlin.3a (inhibits MDM2-p53 interactions). 

PI3K-mTOR signaling pathway: CCT007093 (inhib-
its mTORC1 pathway), AZD8055 (ATP-competitive 
mTOR inhibitor), MK.2206 (AKT inhibitor), GDC0941 
(PI3Kα/δ inhibitor). MAPK-MEK signaling pathway: 
VX.702 (MAPK inhibitor), AZD6244 (non-ATP com-
petitive MEK1/2 inhibitor), PD.0325901 (selective and 
non-ATP competitive MEK inhibitor). These results sug-
gest that high levels of CDCA8 lead to insensitivity to cell 
cycle-related inhibitors and resistance to inhibitors of 
cell proliferation-related pathways. Clinical selection of 
chemotherapeutic agents may be beneficial by evaluating 
CDCA8 expression levels, and development of combina-
tion therapy with CDCA8-targeted inhibitors and che-
motherapeutic agents may be effective as a therapeutic 
option for the treatment of cancer.

To further understand the link between CDCA8 and 
drug resistance, we found that patients with low lev-
els of CDCA8 had higher sensitivity to drugs compared 
to patients with high CDCA8 levels by evaluating their 
resistance to chemotherapeutic drugs. This suggests 
that combining with a targeted inhibitor against CDCA8 
could increase the sensitivity of patients to the drug and 
improve its efficacy.

Although our study provides new insights into the 
correlation between CDCA8 expression and LUAD, it 
has certain limitations. First, the evaluated dataset was 
small, and the analysis results may have been biased by 
the interference of some samples. Therefore, the sample 
size should be increased to improve the reliability of the 
results. Second, some samples were analyzed without 
considering the actual clinical situation. Finally, to verify 
the authenticity of these results, more in-depth experi-
ments are required to validate the biological functions of 
CDCA8 in vitro and in vivo.

Overall, our study revealed for the first time the prog-
nostic value of CDCA8 in LUAD. Our findings suggest 

Fig. 12 CDCA8 expression differences in sensitive resistance groups. (A) Comparison of differential expression groups of CDCA8 in GSE108214 dataset. 
(B) CDCA8 differentially expressed in GSE109821 data set grouping comparison chart, but not statistically significant (P ≥ 0.05). GSE108214 dataset: n = 15 
(resistant samples) and n = 7 (sensitive samples), GSE109821 dataset: n = 5 (resistant samples) and n = 37 (sensitive samples)
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that CDCA8 can potentially serve as a novel biomarker 
and target for improving drug sensitivity. Although this 
study revealed the potential role of CDCA8 in LUAD 
through multiple independent datasets and comprehen-
sive bioinformatics analysis, the lack of experimental vali-
dation is a limitation. Future studies need to validate the 
specific role of CDCA8 in immune cell infiltration and 
tumor progression through in vivo and in vitro experi-
ments to further confirm the preliminary findings of this 
study and explore its feasibility as a therapeutic target.
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