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deficiencies and chronic hunger for the ever-growing global 
populations [2, 3]. Additionally, in the pandemic era, such 
as severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), food security has further deteriorated as agricultural 
scientists have recorded a steep increase in hunger index by 
2020 [4]. The predicament becomes more complex as food 
security depends on economic growth, markedly influenced 
by global climate change [3, 4]. Therefore, it has become 
imperative to exploit next-generation plant breeding tech-
nologies to foster climate-smart crops with enhanced nutra-
ceutical properties [5, 6].

The conventional plant breeding approach has been the 
savior for ensuring food and nutritional security worldwide. 
It does it by strengthening genetic diversity and unrav-
eling novel genes [7]. The gain in genetic diversity and 
identification of novel genes through classical breeding is 
a time-consuming process involving hybridization/inter-
crossing of elite/wild cultivars with common landraces 
[8]. The new crop varieties developed through the classical 

Introduction

Global climate changes have severely impacted agricul-
tural productivity worldwide. The severe repercussions of 
climate change range from extreme temperatures (high and 
low), excess sunlight, and elevated CO2 altering rainfall’s 
geographical nature, making crops more prone to disease 
[1]. Several researchers have well-advocated climate change 
has become a prime aspect that tremendously affects plant 
growth, development, and productivity by provoking biotic 
and abiotic stresses [1, 2]. Conversely, decreased agricultural 
yield will hamper food security, leading to micronutrient 
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wide. Since conventional breeding technologies for crop improvement are limited, time-consuming, and involve laborious 
selection processes to foster new and improved crop varieties. An urgent need is to accelerate the plant breeding cycle using 
artificial intelligence (AI) to depict plant responses to environmental perturbations in real-time.
Materials and methods The review is a collection of authorized information from various sources such as journals, books, 
book chapters, technical bulletins, conference papers, and verified online contents.
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molecular mechanisms that govern plant functions under environmental cues. In addition, AIs can integrate, assimilate, and 
analyze complex OMICS data sets, an essential prerequisite for successful speed breeding protocol implementation to breed 
crop plants with superior yield and adaptability.
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accelerate breeding programs by efficiently handling the 
problem posed by big OMICS data resulting in the genera-
tion of stress-resistant/tolerant cultivars with higher genetic 
gains and yield to the farmer’s field.

Therefore, the present review aims to provide an in-depth 
understanding of concepts and procedures of how speed 
breeding can overcome the limitations of classical breed-
ing techniques. Furthermore, how AI can be integrated with 
speed breeding protocol or design and revolutionize the 
processing of big OMICS data to take a step toward digital 
agriculture. Finally, we provide comprehensive knowledge 
about the possible role of these next-generation breeding 
technologies and how they will expedite crop improvement 
programs for food and nutritional security.

Traditional breeding: the liberator

Initially, ancient farmers practiced plant breeding to increase 
the domestication of plants within their surroundings. Its 
subsequent evolution has become one of the acclaimed 
approaches for improving yield and disease susceptibility in 
crop plants [7]. The foremost step in plant breeding involved 
selecting wild cultivars with desired agronomic traits and 
then crossing or hybridizing them with local cultivars to 
incorporate superior characteristics. It followed rigorous 
selection for 5–6 generations [8, 16]. The variations among 
different progenies with ideal agronomic traits were identi-
fied based on morphological characteristics or markers such 
as plant height, branch number, yield/plant, and then ana-
lyzed using a statistical program [17]. Later, plant breed-
ers started exploiting molecular/genetic markers that allow 
robust and quick assessment of genetic variation among the 
progenies [17]. In addition, molecular markers also serve 
as an indispensable tool for underpinning genetic variation 
and structure more efficiently than the morphological and 
biochemical markers, which help in accelerating breeding 
programs and greatly facilitate their efficient conservation 
[8, 17]. Furthermore, an amalgamation of molecular tech-
niques with classical breeding helps to untapped the hidden 
genetic potential of common landraces, wild relatives, and 
varieties by expediting the identification of quantitative trait 
loci (QTLs), thereby identifying new alleles/genes that may 
be absent in the local cultivars [17].

These novel genes/alleles can be integrated into elite 
cultivars/varieties via the gene pyramiding/accumulation 
approach to increase the scope of genetic variation for 
given agronomic traits [18]. Various genetic/linkage/QTL 
maps have been made for multiple agriculturally essen-
tial crops that have helped plant breeders unlock favorable 
genetic variations in crop species by using a specific set of 
molecular markers [17]. Researchers have also performed 

breeding approach possess superior agronomic traits that 
help increase their yield potential and stress resilience [7, 
8]. However, the length of the breeding cycle required to 
complete the breeding program is the major bottleneck for 
developing desired cultivars/varieties [9]. For instance, it 
takes approx. 6–7 years to build genetically homozygous/
stable lines/cultivars in a multistep process, from parent 
selection, hybridization/crossing to data recording, analysis, 
and field evolution of individual traits [8, 9]. Additionally, 
researchers have corroborated that this period dramati-
cally influences the subsequent breeding cycle, affect-
ing net genetic gain in the newly developed cultivars and 
their release to farmer’s fields [8]. Therefore, to accelerate 
the rate of gene gain and breeding cycles, next-generation 
breeding technologies such as speed breeding powered by 
artificial intelligence (AI) are now being extensively used 
for crop improvement programs [10].

Speed breeding technology has emerged as a versatile 
suite for manipulating the growing environment of crop 
plants to accelerate their breeding generation by enhancing 
the rate of flowering and seed set under the influence of AI 
[10, 11]. In addition, speed breeding instigates rapid genera-
tion advancement via reducing breeding time and resources 
by accelerating essential cellular and metabolic processes 
[5, 6]. Speed breeding mainly works by modifying the light, 
intensity, and duration, which, upon subsequent perception 
by photoreceptors, triggers rapid reproductive development 
in plants [6]. These photoreceptors, upon perceiving light, 
regulate the natural circadian rhythm, which is the first and 
rapid responder to changing environmental conditions [12]. 
The researchers have devised speed breeding protocols by 
categorizing plants into three groups’ viz. short-day plants 
(SDP), long-day plants (LDP), and day-neutral plants (DNP) 
[6]. The speed breeding instigates rapid generation advance-
ment in SDP and DNP by providing light for more extended 
and LDP for a shorter duration [6, 13]. The main objective 
of any plant breeders is to increase the yield and resistance 
of crop plants by predicting which line/cultivars will pro-
duce the best hybrids upon their subsequent hybridization.

Furthermore, integrating classical breeding with OMICS 
techniques such as phenomics, genomics, transcriptomics, 
proteomics, and metabolomics has remarkably influenced 
the quality and quantity of data that has helped breeders 
perform unprecedented improvements in their breeding 
programs [14]. However, handling multi-omics data is a 
big challenge. They are a humungous, complex web of data 
that could hamper predicting and selecting the best lines/
cultivars for breeding programs [14, 15]. Therefore, AI in 
agriculture represents a state-of-the-art technique that can 
quickly process big multi-omics data and relate them with 
underlying biological processes under varying environmen-
tal conditions [15]. Speed breeding and AI can tremendously 
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accelerated crop improvement programs [7]. Successful 
application of genomic assisted breeding involves the selec-
tion of cultivar/wild species for the concerned biotic/abiotic 
stress-tolerant or agronomic traits, then linking the pheno-
type by performing genotyping with a specific set of mark-
ers followed rigorous selection to foster climate-ready crops 
[21]. DNA fingerprinting using high-density DNA markers 
of economically essential crops could also help relate crop 
physiology with plant phenology, identifying the best ideo-
types with special characters [17]. In addition, researchers 
have also well confirmed that the rigorous genotyping fol-
lowed by phenotyping followed by appropriate biometrical 
analysis could reveal valuable information that can lead 
to the identification of QTLs. Several researchers have 
constructed a high-density linkage/genetic map using bi-
parental of double haploids mapping population. They have 
successfully identified QTLs controlling disease resistance 
and agronomic traits in cereals and legume crops [22–24].

With the advent of next-generation sequencing tech-
niques, researchers have been able to identify and link 
QTLs for biotic/abiotic stresses and other yield-related 
traits. Next-generation sequencing technologies have expe-
dited the development of robust/specific genetic markers 
such as SNP and InDels, which have greatly facilitated the 
identification of novel genes/alleles via exploiting in geno-
typing by sequencing approaches (GBS) or by incorporating 
them with genome-wide association studies (GWAS) [22, 
23]. Several studies have corroborated that using GWAS 
with next-generation sequencing technology can signifi-
cantly improve the mapping resolution, identifying the pre-
cise location, and statistically validated QTLs/genes/alleles 
[23, 24]. For instance, GWAS reveals 90 novel marker-trait 
associations related to abiotic stress, grain yield, and other 
agronomic traits in drought-stressed synthetic hexaploid 
wheat [25]. Furthermore, association mapping with MAS 
has tremendously aided the selection of the most respon-
sive QTLs, which has accelerated the genomic selection of 
the best cultivars for their subsequent utilization in breeding 
programs [26].

Furthermore, GWAS has facilitated the identification of a 
marker-trait association between markers and several agro-
nomic traits such as fruit size, stone size, and fruit cracking 
in Ziziphus jujube plants. This study identified 21 potential 
candidate genes that can be exploited for the breeding pro-
grams and genetic selection of improved Ziziphus jujube 
plants [27]. GWAS was conducted to identify a study’s salt 
tolerance-related QTLs/genes in cotton cultivars. They per-
formed a GBS of 217 cotton cultivars and identified 12 can-
didate salt-tolerant genes that can be used in the breeding 
program for cotton improvement [28].

Moreover, genomic-assisted breeding (GAB) has also 
tremendously expedited the characterization/improvements 

whole-genome sequencing or RNA sequencing to deci-
pher genome-wide interpretation by identifying single 
nucleotide polymorphisms, solely dependent upon sample 
size [17, 18]. Adequate sample size and robust molecular 
markers are essential for constructing high-resolution QTL 
mapping with fewer genomic gaps [18]. More significant 
genomic gaps within the genetic/QTL map indicate partial 
genotyping and coverage which could be due to (i) loss of 
marker-trait association for the observed phenotype, (ii) loss 
of target gene during subsequent generation of mapping, 
(iii) non-significant genome-wide association studies and 
(iv) in-efficient population structure, linkage disequilibrium 
and marker-assisted selection [19]. Nonetheless, integrating 
these molecular approaches has led to the precise construc-
tion of a genetic/linkage map and paved the way to explore 
the hidden genetic potential of landraces, elite cultivars, 
wild relatives, and inbred lines.

Conventional breeding has been most prominently used 
to develop and breed new perennial crops by domesticating 
wild/superior cultivars from one place to another or mediat-
ing its crossing or hybridization with cultivated genotypes 
[20]. Conversely, domestication of any line/variety involves 
its establishment at the desired place, followed by rigorous 
phenotyping for selecting superior cultivars with desired 
traits [7]. In contrast, hybridization is more realistic and 
practical than domestication because if the hybridization 
of two contrasting cultivars is successful, it can develop 
hybrids having superior agronomical traits [20]. Several 
perennial crops have been improved using a comprehensive 
hybridization approach, such as sorghum (Sorghum bicolor 
× S. halepense), wheat (Triticum spp. × Thinopyrum spp.), 
rice (Oryza sativa × O. longistaminata) and buckwheat 
(Fagopyrum spp. × Fagopyrum spp.)[20]. However, both 
the conventional techniques are time-consuming and often 
involve robust data collection; researchers have now incor-
porated various molecular breeding techniques that have 
significantly expedited the traditional breeding approaches 
to develop and breed improved cultivars, which have been 
comprehensively discussed in the following section.

Advancements in molecular breeding 
techniques

Genomics-assisted tools have provided plant breeders with 
an excellent opportunity to improve plant growth and pro-
ductivity under changing environmental conditions by 
using DNA-based markers to successfully select the best 
crossbreeds via marker-aided selection [8]. Furthermore, 
in conjunction with classical breeding, plant genomics has 
provided an in-depth understanding of diversity among 
the hybrids at the phenotypic and gene-level that have 
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extensively labor-intensive and time-consuming approach 
to identifying genotypes with desired traits [34, 35]. Fur-
thermore, both conventional and mutation breeding require 
extensive crossing and rigorous phenotyping, selecting 
a superior cultivar with the desired features. Its subse-
quent integration into the breeding program requires more 
extended time and backcrossing [36].

Recently Meta-QTL (MQTL) analyses are being used 
to accelerate the process of QTL identification and their 
subsequent position by exploiting mapping data reported 
from various studies and analyzing it with a suitable com-
puter program [37]. For example, MQTL analysis using the 
BioMercator program was successfully used to dissect the 
genetic basis of complex abiotic/biotic stress traits in durum 
wheat. Researchers identified and mapped the precise loca-
tion of candidate genes for quality and disease-resistant 
characteristics [38]. Similarly, Khahani et al. [37] per-
formed GWAS to identify Meta-QTLs, ortho-MQTLs, and 
other candidate genes responsible for controlling yield and 
related traits in rice. Their study identified 1052 QTLs and 
144 MQTLs in 122 rice populations and successfully linked 
them with important agronomic traits that can be later used 
in the breeding program to foster new and improved rice 
cultivars. All the techniques mentioned above have allowed 
breeders to shuffle/reshuffle alleles/genes to generate poten-
tial combinations required to develop improved cultivars. 
Nonetheless, limitations exist for all the classical breeding 
techniques involving GBS, GWAS, and MQTL analysis are 
often associated with genetic drag, gene erosion, hybridiza-
tion incompatibility, and laborious selection process. There-
fore, functional genomic tools were later incorporated with 
gene cloning techniques to generate genetically modified 
crops aided with all the essential genes to fulfill the demand 
of ever-growing global populations.

Genetically modified (GM) crops

The conventional breeding strategies used in the early 90s 
would take 10–15 years to develop a crop variety for the 
farmer’s field. Later GBS, GWAS, and MAS revamped the 
conventional breeding techniques by using genetic markers 
to construct high-resolution genetic/linkage maps, and take 
around 6–7 years to develop a variety. Correspondingly, 
advancements in modern breeding technology allowed plant 
scientists to genetically engineer crop plants [13]. Geneti-
cally modified (GM) crops exhibit superior agronomic, 
yield, and disease-resistant traits by efficiently overcoming 
the potential barrier of conventional breeding techniques [8, 
13]. Genetic engineering mainly involves the insertion/dele-
tion of a gene or gene segment in a concerned organism using 
biotechnology and offers diverse advantages over classical 

of crop plants more precisely and rapidly by deciphering 
the allelic variations underlying agronomically essential 
traits [29]. Recent years have witnessed the progress of 
more than 100 agriculturally vital crop plants through GAB 
approaches that have improved their yield/productivity 
and tremendously accelerated their survival under extreme 
environments [30]. Various plant breeders have extensively 
exploited GAB techniques to identify prominent QTLs for 
different disease resistance traits such as bacterial blight 
(Xanthomonas oryzae pv. Oryzae), blast diseases (Magna-
porthe oryzae), barley yellow mosaic viruses, and powdery 
mildew (Blumeria gramins f. sp. hordei) [30]. Unlike cere-
als, GAB has also led to the identification of QTLs in unde-
rutilized legume crops such as cyst nematode (Heterodera 
glycines) in Glycine max and rust resistance (Puccinia ara-
chidis) in Arachis hypogaea [29, 31]. In addition, GAB has 
also been used to unravel QTLs associated with abiotic stress 
tolerance in plants and QTLs related to nutritional quality 
traits [32]. GAB has successfully identified QTLs associ-
ated with salt stress and drought stress in plants which has 
been exploited in the breeding programs for developing new 
and improved cultivars [32]. QTLs associated with grain 
protein content, amylose content, and oleic acid content 
have also been identified using GAB approaches in wheat, 
rice, and ground nut [30]. Since GAB exploits breeding by 
a design approach that includes selecting two contrasting 
cultivars, allele mining and extensive crossing to obtain the 
desired genotype are time-consuming and involve rigorous 
phenotyping [30]. Plant scientists have developed GAB ver-
sion 2.0, an expansion of GAB 1.0 that will significantly 
impact breeding for stress tolerance cultivars with high 
nutritional value in a time and cost-effective way [29]. GAB 
2.0 combines MAS, GWAS, and genome editing (CRISPR-
Cas9 system); in combination with speed breeding that can 
fast-track manipulation of the target region in the genome to 
create a novel allelic variation for crop improvements [29].

Mutation breeding has also been extensively used to cre-
ate genetic variations to accelerate the breeding of agricul-
turally important crops [33]. Mutation breeding employs 
chemicals and high-energy radiation to induce mutation 
at a specific region in the genome that exaggerates allelic/
genetic variations in the crop plants [34]. Target-induced 
local lesions in the genome (TILLING) is one of the primary 
techniques which is used to introduce mutation in a precise 
and efficient manner as compared to chemical mutagens 
such as ethyl-methane sulfonate (EMS) and methyl-meth-
ane sulfonate (MMS). TILLING approach has been used in 
various crop plants to identify novel allelic variations for 
nutritional and stress-tolerant traits [33]. Researchers have 
exploited mutation breeding to improve crop plants’ growth 
and stress tolerance, particularly wheat, rice, tomato, and 
legumes. However, they have found mutation breeding an 
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and grown for more than 20 years [41]. RNAi functions via 
three pathways (i) small interfering RNA pathway (siRNA), 
(ii) micro-RNA (miRNA) pathway, and (iii) piwi-interact-
ing RNA (piRNA) pathway. All three pathways stimulate 
defense response either by regulating the transposable ele-
ments, gene expression, or suppressing the expression of 
the germ-line transposon, thereby silencing the target gene 
[42]. The most notable breakthrough of RNAi technology 
was the development of GM maize resistance to western 
corn rootworm (Diabrotica virgifera) by over-expressing 
vATPaseA dsRNA leading to larval stunting and mortality 
[43]. Likewise, GM cotton was also developed using the 
RNAi approach by stimulating the expression of the cyto-
chrome P450 gene, which enabled various enzymatic and 
non-enzymatic antioxidants, thereby conferring resistance 
against cotton bollworm (Helicoverpa armigera) [44].

Similarly, GM cotton overexpressing hairpin RNA 
(hpRNA) differentially regulated the expression of 
CYP6AE14 in cotton bollworms, which leads to a signifi-
cant reduction in larval growth [42]. Recently, transgenic 
cotton was developed by employing the RNAi approach 
by overexpressing CYP392A4 dsRNA, which significantly 
reduced the Tetranychus cinnabarinus pest’s reproducibil-
ity [45]. Han et al. [46] developed transgenic cotton plants 
using RNAi technology that conferred resistance against 
cotton bollworm by overexpressing the HaHR3 gene, which 
is a molt regulating transcription factor and induces a high 
level of larval mortality. Additionally, the RNAi technique 
has also been used to create transgenic wheat by overex-
pressing the chitin synthase 1 (CHS1) gene, thereby confer-
ring resistance against aphids [45]. Likewise, Hou et al. [47] 
also used RNAi technology to silence the olfactory-related 
Gqα gene in transgenic wheat plants, increasing their resis-
tance to aphids. Furthermore, the exploitation of dsRNA for 
juvenile hormone and acid methyltransferase in conjunction 
with RNAi technology efficiently stimulated the resistance 
of transgenic potato plants against Leptinotarsa decemlin-
eata [48].

CRISPR-Cas system

Clustered regularly interspaced short palindromic repeats 
(CRISPR)-CRISPR-associated protein 9 (Cas 9) tech-
nologies have revolutionized the way the genome is being 
edited in the present era [49]. Being derived from bacte-
ria that stimulate antiviral defense systems, the application 
of CRISPR-Cas has also extended to the eukaryotic sys-
tem for engineering crop plants against abiotic and biotic 
stresses [49]. CRISPR-Cas system involves Cas9, a nucle-
ase protein, and single-guide RNA of 100 nucleotides long 
to cleave specific target sites, leading to the degradation of 

breeding approaches. First, it allows quick and easy ways 
to introduce, remove, or modify specific genes of interest 
without altering crop plants’ basic genetic structure of crop 
plants thus facilitating the early development of crops with 
improved traits. Second, genetic engineering is a robust 
tool that can significantly ease the integration of genes from 
different sources, whether plant or animal origin, without 
impairing GM plants’ essential physiological and metabolic 
processes. Third, genetic engineering is restricted to rooted 
plants and can successfully modify vegetatively propagated 
plants like banana and cassava, making it a powerful tool 
that efficiently uses genetic material across the genus/spe-
cies [7]. Traditionally, genetic engineering is an exaggerated 
version of the plant tissue culture technique that combines 
traditional transgenic approaches that involve isolation and 
integration of the desired gene at a random location with 
advanced gene-editing technologies that allow integration/
deletion of a gene at a precise location [39]. The former 
approach tailors crop plants using foreign DNA, whereas 
the latter enables accurate addition and deletion of foreign 
and plant origin (Cis-genic or Intra-genic plants). The cis-
genic approach involves modifying recipient plants using a 
perfect natural copy of a gene from the same plant species or 
sexually compatible donor plants [39]. In comparison, the 
intra-genic method requires modification of recipient plants 
by using genetic elements isolated from the same plant spe-
cies or sexually compatible donor plants, rearranging them 
in-vitro, and then integrating them into recipient plants [40].

Since transgenic plants are subjected to rigorous screen-
ing and selection procedures/policies before their com-
mercial application and are often restricted to specific 
geographical cultivation [40], however, various coun-
tries like Brazil, Argentina, and the USA have developed 
genetically modified crops by using genes from plant spe-
cies (Cis-genic or Intra-genic) and are approved for their 
commercial application by genetic engineering regulatory 
bodies [40]. Several lines of literature have well corrobo-
rated that transgenic plant over-expressing genes from a 
pathogen or virus origin successfully induced the plant’s 
innate immune response against insect/pathogen attack [39, 
40]. Later, the researchers identified that RNA interference 
(RNAi) led to the ectopic expression of defense responsive 
genes that have boosted their innate immunity against bio-
trophic attackers [41]. At the beginning of the 20th century, 
RNAi emerged as a promising tool for genetically tailoring 
crop plants against biotic stresses, particularly viral disease, 
as most plant viruses have a single-stranded RNA genome 
and their transgenic overexpression often leads to them the 
formation of double-stranded RNA (dsRNA), thus activat-
ing RNAi [41]. In the USA, several transgenic plants have 
been developed using the RNAi approach, such as trans-
genic tomato, tobacco, squash, and papaya, commercialized 
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protein 2 (DREB2). Likewise, Zhang et al. [53] exploited 
the CRISPR-Cas9 system to improve salt stress tolerance 
in rice seedlings by mutating the expression of the OsRR22 
gene. Their results indicated that T2 homozygous mutant 
lines exhibited enhanced salinity tolerance to wild-type 
plants.

Similarly, CRISPR-Cas9 mediated mutagenesis of the 
SlNPR1 gene differentially regulated the drought stress tol-
erance in tomato plants by positively modulating the activi-
ties of enzymatic and non-enzymatic antioxidants [50]. 
CRISPR-Cas9 system was used to generate mutation in 
the ITPK1 gene responsible for regulating inositol triphos-
phate synthesis in barley plants. They reported that mutant 
plants showed a higher level of salt tolerance than wild-type 
plants [54]. Recently, the CRISPR-Cas9 system was used to 
decipher soybean phospholipases’ structural and functional 
properties under multiple abiotic stresses. The research-
ers knocked out two essential genes, viz., GmPLA-IIε and 
GmPLA-IIζ of the phospholipase pathway, and observed 
that few of the mutant lines showed enhanced tolerance to 
flooding and drought stress, and few mutants performed well 
under Fe limiting conditions [55]. Correspondingly, tech-
nological advancements in the CRISPR Cas system have 
opened a new realm for plant breeding research to overcome 
the limitation of conventional plant breeding technology. If 
used strategically, it could improve various agronomic and 
yield-related attributes in crop plants.

Speed breeding: the redemption

Speed breeding is the most recent and fascinating breeding 
technology that significantly accelerates the pace of plant 
growth, development, and commercialization [5, 6, 31]. 
It decisively improves yield potential, nutritional content, 
and tolerance of crop plants exposed to abiotic and biotic 
stresses. Speed breeding offers a compelling advantage 
over conventional plant breeding technology as the former 
symbolically reduces the crop cycle by 1 to 2 months to 
expedite the breeding program [5]. NASA scientists inspire 
the development of a speed breeding protocol for earthly 
plants to grow wheat plants under artificial lights [5]. For 
agronomic improvements, the speed breeding experimental 
suit has been developed for various other crop species [6]. 
Comprehendingly, speed breeding imitates natural day and 
night conditions where crop plants are subjected to artificial 
lights of different combinations/wavelengths and tempera-
ture conditions for 22 h [6, 7]. The extended light source 
and controlled temperature momentously enhance crop pho-
tosynthetic activities and other physiological and metabolic 
processes, stimulating early flowering fruiting and seed 
development [7]. Increasing literature has contemplated 

viral DNA or RNA via forming complementary base pairing 
between CRISPR RNA and target RNA/DNA [49]. Vari-
ous Cas proteins have been identified in plants displaying 
sequence-specific nuclease activity to minimize the impedi-
ment and increase the specificity of the CRISPR-Cas system 
for their effective exploitation [50]. The classes of Cas pro-
teins involve six main types; classes I, III, and IV include 
Cas3, Cas10, and Csf1, showing high affinity to multiple 
effector proteins. Class II includes Cas9, whereas Class V 
involves Cas12a, Cpf1, and class VI includes Cas13a, c-d, 
which are linked to single effector proteins and are most 
readily used for genome editing [50].

The Cas 9 system was initially identified in Strepto-
coccus pyrogens, consisting of CRISPR RNA (crRNA), 
trans-activating crRNA (tracrRNA), guide RNA, and Cas9 
proteins. The mechanism by which the CRISPR Cas system 
functions in bacteria is that the bacterial genome contains a 
large amount of CRISPR locus. Around that CRISPR locus, 
several short DNA sequences known as spacer sequences 
are present [49]. These spacer sequences come in repetitive 
contact with invading nucleic acids, converting them into 
crRNA. When these crRNA contact invading nucleic acids, 
they are transcribed into tacrRNA. When these crRNA and 
tacrRNA bind with each other, they activate and guide Cas9 
protein to the target DNA sequence to be cleaved [50]. 
However, an important question arises how does Cas9 pro-
tein recognize the target sequence? It recognizes due to the 
presence of the NGG motif around the target sequence or 
protospacer sequence, also called the adjacent protospacer 
motif (PAM) sequence [49].

Nonetheless, the Cas9 system has its limitation due to its 
high level of toxicity in the target organism. The toxicity 
could be due to the over-expression of Cas9 protein or the 
unavailability of homologous DNA [49, 50]. Therefore, sci-
entists have developed a more sophisticated CRISPR-Cas 
system known as CRISPR from Prevotella and Francisella 
1 (Cpf1), which shows up to 90% more efficiency than the 
Cas9 system [50, 51].

CRISPR-Cpf1 offers the following advantages over the 
Cas9 system (i) the Cpf-1 system generates cohesive ends 
whereas Cas9 generates blunt ends; therefore, the integra-
tion of new DNA segment is easier in Cpf-1 (ii) Cpf- gen-
erate shorter crRNA than Cas9. Therefore, off-targets low 
and (iii) Cpf-1 contain RNAase III activity for preprocess-
ing crRNA, whereas Cas9 does not have this activity [51]. 
Much progress has been made in tailoring crop plants using 
the CRISPR-Cas system for increasing growth, yield, and 
survival under extreme environmental conditions [50, 51]. 
For instance, Kim et al. [52] used the CRISPR-Cas9 sys-
tem for target editing of genes involved in abiotic stress 
tolerance in wheat, such as ethylene-responsive factor 
3 (ERF3) and dehydration responsive element-binding 
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select homozygous/stable genotypes for accelerating the 
development and release of new, improved cultivars [6, 71]. 
Both intensity and quality of light are the critical param-
eters for developing an effective speed breeding protocol. 
High light intensity, elevated CO2, and adequate tempera-
ture control can tremendously enhance the photosynthesis 
rate, which reduces the days to flower in plants. Nonethe-
less, setting up a speed breeding experiment requires practi-
cal considerations of light intensities and the financial costs 
associated with energy utilization in the facility [71]. Addi-
tionally, temperature fluctuation also affects morphological 
developments in plants and thus also needs necessary adjust-
ment for optimizing SB protocols [5, 6]. The technological 

the exemplary role of speed breeding in transforming the 
present-day agricultural system around the globe by short-
ening the duration of imperative breeding processes such as 
crossing, backcrossing, gene pyramiding, MAS, and devel-
oping GM crops [5–7]. Correspondingly, researchers have 
successfully achieved 4 to 6 generations of crop plants such 
as B. napus, P. sativum, T. aestivum., H. vulgare, and C. 
arientinum in one year as compared to conventional plant 
breeding techniques, which usually achieve two generations 
per year (Table 1).

Furthermore, several lines of literature have also corrob-
orated that speed breeding can be easily blended with the 
MAS/GWAS program, which helped breeders develop and 

Table 1 Successful implementation of speed breeding techniques for rapid generation advancement in different crops
Crops Speed breeding technique Days to 

flowering
Generation 
achieved/year

Selection 
method

Trait enhanced Refer-
ences

Glycine max L. Photoperiod incandescent lights) 
and temperature

21 5 Single pod 
descent

Production of recombinant 
inbred lines

[56]

Arabidopsis 
thaliana L.

Photoperiod (LED light) and tem-
perature, growth regulators

20–26 10 - Shortening of the genera-
tion time

[57]

Arachis hypo-
gaea L.

Photoperiod (PAR light), gas 
heating

25 4 Single seed 
descent

Advancement of early gen-
eration breeding material

[58]

Triticum aesti-
vum L., Hordeum 
vulgare L.

Photoperiod (LED light) and tem-
perature, growth regulators, embryo 
rescue

24–36 9 Single seed 
descent

Rapid production of seg-
regating populations and 
pure lines

[59]

Sorghum Photoperiod (LED light), tempera-
ture and immature seed germination

40–50 6 Single seed 
descent

Rapid development of high 
yielding variety

[60]

Vicia Faba L., 
Lens culinaris L.

Photoperiod (LED light) and tem-
perature, growth regulators

29–32, 
31–33

7,8 Single pod 
descent

Early flowering and seed 
development

[61]

Amaranthus. spp Photoperiod (LED light) and 
temperature

28 6 Single seed 
descent

Rapid production of segre-
gating populations

[62]

Pisum sativum L. Photoperiod (LED light) and 
growth regulators

33 5 Development of recombi-
nant inbred lines

[63]

Oryza sativa L. Photoperiod (LED light), 
temperature

75–85 4 Single seed 
descent

Rapid development of high 
yielding variety

[64]

Trifolium subter-
raneum L.

Photoperiod incandescent lights) 
and temperature, growth regulators

32–35 6 Single seed 
descent

Rapid development of bi-
parental and multi-parental 
populations

[65]

Triticum aesti-
vum L.

Photoperiod incandescent lights) 
and temperature, embryo culture

20–25 8 Single seed 
descent

Production of recombinant 
inbred lines

[66]

Brassica napus 
L.

Photoperiod (LED light) and 
temperature

73 4 Single seed 
decent

Pod shattering resistance [5]

Cajanus cajan L. Photoperiod (LED light), tempera-
ture and immature seed germination

50–56 4 Single pod 
descent

Development of photoperi-
oid insensitive lines

[67]

Pisum sativum L. Photoperiod (LED light), tem-
perature, growth regulatorsand 
micro-nutrients

18–26 5 Single seed 
descent

Production of recombinant 
inbred lines

[68, 
69]

Triticum aesti-
vum L., Triticum 
duram L., 
Hordeum vulgare 
L. and Cicer 
arietinum L.

Photoperiod (LED light) and 
temperature

37 6–7 Single seed 
descent

Biotic stress tolerance and 
development of pure lines

[5, 6, 
70]

Glycine max L. Photoperiod (LED light) 23 5 Single seed 
descent

Effect of light intensity on 
germination rate

[71]

Avena sativa L. Photoperiod (LED light), temperature 
and micro-nutrients

21 5 Single seed 
descent

Shortening of the genera-
tion time and early panicle 
harvest

[72]
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Establishing speed breeding protocols: a 
case study

Speed breeding programs have been extensively developed 
to accelerate genetic gains in various crops cultivated under 
glasshouse/indoor conditions retrofitted with sophisticated 
soil moisture, temperature, and photoperiod analytical 
devices 45, 46]. Initially, Hickey et al. [75] used controlled 
environmental conditions to improve seed dormancy in 
fixed wheat lines grown in extended photoperiods described 
by NASA scientists [58]. They observed that extended pho-
toperiod (low-pressure sodium lamps) and controlled tem-
perature accelerated wheat plants’ seed germination rate to 
maturity. They further concluded that the controlled envi-
ronmental conditions could be effectively used in the breed-
ing program for selecting superior genotypes in off-season 
conditions for developing stress-tolerant cultivars [75]. 
O’Connor et al. [58] exploited speed breeding technology 
to accelerate the peanut breeding program a few years later. 
They used photosynthetically active region (PAR) lamps to 
expedite the growth of peanut plants by growing them under 
extended photoperiod for 24 h under controlled temperature 
conditions. Their study also confirmed the reliability of 
speed breeding technology over conventional breeding to 
quickly develop improved cultivars. Concomitantly, Watson 
et al. [5] developed a speed breeding protocol to accelerate 

advancements have significantly impacted the implementa-
tion of speed breeding experiments by providing light sys-
tems/sensors that are automatically adjusted as per need/
protocol devised at low cost [71]. The new LED lighting 
systems have offered plant scientists to precisely regulate 
the duration and intensity of light to effectively manipulate 
photosynthesis, growth, and development of crop plants 
[71, 73]. This new LED, technology-based speed breeding 
protocol has effectively optimized flowering and suppressed 
lupin and soybean plants [71, 73].

Additionally, researchers have also well confirmed that 
harnessing the light of a specific wavelength can dynami-
cally regulate phytohormone activity; for example, the light 
of far-red wavelengths promotes early flowering, whereas 
light of blue wavelength suppresses stem elongation and 
plant height, as observed in rice plants grown under speed 
breeding facility [74]. Likewise, the actual implementa-
tion of appropriate light intensity successfully regulated the 
activity of plant growth regulators in pea plants grown under 
the speed breeding protocol [74]. However, increasing light 
intensities for a prolonged period have significantly affected 
plant growth and immunity trade-off. Therefore, consistent 
efforts are required to improve the efficiency of speed breed-
ing protocols by including more plant species in the speed 
breeding operations. An illustration of establishing a speed 
breeding facility for crop improvement is depicted in Fig. 1.

Fig. 1 An outline of speed breeding protocol and its implication for accelerating breeding cycles for improving growth and yield as compared to 
the conventional breeding approach under regular photoperiod
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An asset at low expanse: opportunity and 
challenges

Speed breeding techniques are extensively used to accel-
erate conventional plant breeding programs. Nonetheless, 
the technology can negatively impact the growth and pro-
ductivity of crops and requires expertise for its successful 
implementation [5]. Furthermore, several researchers have 
confirmed that the SB protocols developed for various crop 
plants often require prolonged photoperiod, which, if not 
adequately controlled concerning temperature, moisture, 
and nutrients, results in chlorosis, necrosis, stunted growth, 
and yield loss [58, 68, 71]. Moreover, studies have also indi-
cated that a decrease in growth and productivity of certain 
crop plants under continuous light conditions could be due 
to the enhanced production of starch, abscisic acid, and eth-
ylene which ultimately lead to photooxidative damage [71]. 
One of the significant constraints for the successful imple-
mentation of speed breeding protocol in the public sector is 
the lack of adequate training and state-of-the-art facility for 
the regular farmers/plant breeder, especially in developing 
countries [5].

Additionally, the public sector plant breeders are also 
negatively affected by the un-even government policies/
programs that do not provide sufficient facilities to conduct 
speed breeding. As a result, several plant breeding research-
ers migrate to private seed companies to give better remu-
neration [72]. Besides, the development of speed breeding 
platforms requires automated infrastructure equipped with 
essential tools to carry streamline operations such as regu-
lating temperature/light, soil moisture level, and water and 
electric supplies [68].

Due to the lack of sufficient funding from the govern-
ment, it is not economically feasible for many of the public 
sectors to develop such a state-of-art facility for commer-
cializing speed breeding technology for farmers [6, 71]. 
Furthermore, environmental factors in indoor growing facil-
ities, especially temperature and light, require a continuous 
flow of water and electricity, which is another problem asso-
ciated with the successful speed breeding protocol [5, 6]. 
Several researchers have corroborated that efficient regula-
tion of temperature, moisture, and light requires consistent 
and reliable electricity and water supply source that sig-
nificantly affects public sector breeding programs [68, 70]. 
Recent data have corroborated that the total cost incurred 
for regulating the continuous supply of electricity and water 
flow is more than the actual cost required for establishing 
a speed breeding facility [72]. Correspondingly, the cost of 
electricity in speed breeding facilities may rise exponen-
tially during extreme winter or in scorching summer, which 
may impose additional weight on the total cost of running 
speed breeding facilities smoothly.

several crop generation times. They used LED lights of PAR 
under controlled environmental conditions. They obtained 
six generations/year for wheat, barley, pea, and chickpea 
and four generations/year for canola plants which can be 
further exploited in the crop improvement programs for 
developing disease-resistant/high-yielding crops.

In their study, Ghosh et al. [6] developed and standard-
ized speed breeding protocol for wheat, barley, oat pea, 
chickpea, and various Brassica species plants. Their study 
has provided an in-depth understanding of practicing speed 
breeding experimental suits under glasshouse conditions 
to generate large populations using a single seed descent 
method. They demonstrated their speed breeding experi-
ment using bench-top-cabinet and under LED supplemented 
glasshouses. They accelerated the generations of the crops 
as mentioned above by 4–6 generations/year under con-
trolled conditions of both soil moisture and temperature 
[6, 70]. Jahne et al. [71] developed a speed breeding pro-
tocol for short-day crops like Glycine max, Oryza sativa, 
and Amaranthus spp. They exploited LED lights of differ-
ent wavelength-specific for each crop for developing a large 
number of cultivars with a high rate of leaf appearances 
and low leaf numbers by adjusting photoperiod to 10 h and 
obtaining five generations/year. Likewise, Cazzola et al. [68] 
tested three different methods to identify the best rapid gen-
eration technologies for commercial varieties of pea plants. 
Their study cultivated pea plants under in-vitro conditions 
that ultimately failed to accelerate the generation time—a 
combination of an in-vitro-in-vivo system that shortened 
the generation cycle of crops at a low rate and intermedi-
ate efficiency. However, a successful result was obtained 
when they cultivated the plants under a hydroponic system 
with 22-h photoperiod using T5 fluorescent tubes under 
controlled temperature conditions. They cost-effectively get 
five generations/year [68]. Researchers have also confirmed 
that speed breeding protocol can accelerate panicle harvest 
in oat plants if practiced sophistically. Their study evalu-
ated eight genetically divergent oat genotypes under speed 
breeding conditions (22 h photoperiod). They observed a 
compelling reduction in germination and flowering time in 
oat plants compatible with the single seed descent method 
[72]. All the studies mentioned above have firmly concluded 
that practical and systematic application of speed breeding 
protocol can have tremendously accelerated leaf appear-
ance, anthesis, and maturity leading to increase grain yield 
and seed number without compromising plant health.
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[77]. Therefore, to overcome this limitation, researchers 
have diverted their attention to complementing NGS/molec-
ular breeding approach with speed breeding technology to 
rapidly accelerate the crop generations to hasten the varietal 
developmental process [76, 77].

Present-day speed breeding technology enables plant 
breeders to accelerate crop improvement programs precisely 
and straightforwardly, thereby generating plants faster and 
cheaper [77]. Single seed descent is a powerful way of 
implementing speed breeding protocol to any crop plant to 
generate a fixed population at a more incredible speed that 
is much cheaper than generating double haploids [78]. Fur-
thermore, the generated SSD populations will offer higher 
genetic gain, which will ultimately lead to the development 
of improved cultivars upon their subsequent utilization in 
the breeding program [6, 7]. Researchers have corrobo-
rated that the speed breeding protocol is beneficial for rapid 
introgression of the gene of interest into superior cultivars 
by implementing MAS and GWAS approaches [72, 76]. A 
large body of literature has also confirmed that practicing 
speed breeding protocol with classical breeding approaches 
will rapidly generate recombinant inbred lines (RILs) or 
near-isogenic lines (NILs) to accelerate the identification of 
QTLs for a specific trait [77, 78].

Conversely, the speed breeding suit can also revamp the 
accuracy and efficiency of genome editing technology by 
rapidly accelerating the generation cycle after the success-
ful transfer of Cas9 construct in plants [79]. Integration of 
speed breeding with classical breeding approaches has been 
tested and confirmed in various crop plants like chickpea, 
pea, lentils, faba bean, and pigeon pea [67, 68, 70, 80, 81]. 
These researchers, in their study, used a speed breeding 
facility to reduce the generation cycle of plants by growing 
them under extended (20–22 h) photoperiod and adequate 
temperature conditions. They achieved 5–6 generations/
year of the individual plants, which were subsequently 
analyzed by their respective high yielding/disease-resistant 
traits through a breeding program. Nonetheless, successful 
integration of both approaches requires hands-on training, 
pre-breeding research, an appropriate breeding approach, 
and the, most important diverse germplasm for the respec-
tive trait.

Artificial intelligence (AI) in plant breeding: 
accelerating the speed

Technological advancements in plant “OMICS” research 
have led to the excessive production of complex datasets. 
Deciphering the exact meaning of these complex datasets 
is of paramount importance for characterizing crop plants 
for a specific trait [10]. Concurrently, NGS technology has 

Nonetheless, efforts are to minimize the input cost by 
developing specialized equipment that can use sustainable 
solar power to supply a continuous flow of water and elec-
tricity to the facility. Conversely, researchers have built a 
speed breeding infrastructure with a fully automated system 
for land preparation, fertilization, and irrigation based on 
solar power [71]. They have also developed a speed breed-
ing ‘toolkit’ that can establish a small indoor facility retrofit-
ted with LED light and temperature controls powered by the 
solar system and equipped with backup batteries to provide 
an uninterrupted power supply at night [71]. In addition, 
several private sector organizations are now collaborat-
ing with public sector breeders to develop efficient speed 
breeding protocols for various crops by providing necessary 
facilities that are cost-efficient and knowledgeable in terms 
of learning 44, 49]. Therefore, the development of efficient 
speed breeding protocols and infrastructure is of utmost 
importance for avoiding the negative effect of prolonged 
photoperiod on the growth and development of plants.

Assimilating traditional breeding with speed 
breeding: the future

Integration of speed breeding with the classical approach 
requires extensive planning and a good selection of can-
didate cultivars with higher genetic gain to accelerate the 
breeding program for generating high-yielding/tolerant 
cultivars [71]. The choice of cultivars/inbred lines with 
higher genetic growth will allow the breeder to accelerate 
crop improvement programs and enable the early selection 
of cultivars with the superior phenotype [5, 6]. Further, the 
genomic selection can also predict prominent individuals 
by incorporating the MAS and GWAS approach to acceler-
ate the inbreeding process and subsequent commercializa-
tion in the farmer field [73, 74]. Until the 90s, phenotyping 
followed by genotyping was extremely expensive and low 
throughput, which has intimidated the crop improvement 
program to a greater extent. Later, the next-generation 
sequencing technology transformed the genomic selection 
process. Its potential application in plant breeding programs 
opened a new door for improving cultivar crop improve-
ment by empowering MAS at a low cost [76]. This NGS-
based cost-efficient approach significantly enhanced the 
genomic selection process, which led to the identification 
of several essential QTLs/genes by generating a QTL/link-
age map through the forward breeding approach [72, 76]. 
However, despite these technological breakthroughs, time is 
still a major constraint for their successful implementation 
to generate superior allelic combinations through hybridiza-
tion experiments and genetic recombination for subsequent 
selection, varietal development, and commercialization 
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sophisticated monitoring system should record tiny changes/
alterations occurring in the plants (Table 2). To overcome 
this hurdle, scientists have devised an AI-based physiologi-
cal gravimetric system that can measure the slightest change 
occurring in plants concerning soil and atmosphere called 
the soil-plant-atmosphere continuum (SPAC) [10, 13]. This 
system offers plant scientists ease of phenotyping the slight-
est variations among the complex traits at different plant 
growth and development [10, 84]. In addition, constant and 
rigorous monitoring of these phenotypic data and their sub-
sequent analysis by employing the Next-Gen AI approach 
can facilitate the identification of stress-responsive QTLs 
or QTLs related to important agronomic traits [82, 83]. A 
field phenomics suite has also been devised to accelerate 
breeding programs by providing high-resolution images for 
easy discrimination of better-performing genotypes in large 
populations [83]. The field phenomics suite incorporates a 
machine learning approach to capture high-throughput phe-
notypic data relevant to breeding programs using unmanned 
aerial vehicles (UAV) and ground-based equipment. This 
UAV and ground-based equipment are fitted with high-
resolution cameras and sensors to generate comprehensive 
data from thousands of field-grown plants [84]. The data 
generated are then analyzed by the AI or specific software 
that enables breeders to identify superior genotypes display-
ing the best agronomic/disease-resistant traits (Fig. 2). This 
advanced phenotypic tool can be combined with MAS and 
GWAS approaches to dissect plants at the molecular level to 
identify novel genes/QTLs [84, 85].

Significant progress has been made in field phenomics 
implemented recently in Glycine max to study stress-respon-
sive traits [10]. However, the barrier still exists to linking 
phenomic data generated with the help of AI to the geno-
type, leading to identifying genotype with higher genetic 
gain. Furthermore, harnessing complex traits and their sub-
sequent correlation with the environmental variables is of 
utmost requirement to remove the above barrier is also a 
significant challenge. Therefore, future research directed 
at the generation of next-gen AI is an essential prerequisite 
to bridging the phenotype-genotype gap to facilitate crop 
improvement programs. An overview of how AI and speed 
breeding can lead to improved cultivar development within 
a short period is depicted in Fig. 2.

Studying biochemical phenotype through AI

Technological advancements have made recording geno-
typic and phenotypic variation in plants more sophisticated 
and precise, leading to easy extraction of valuable informa-
tion within the complex datasets [84, 85, 104]. Concurrently, 
researchers are also on the verge of using AI to analyze 

significantly accelerated the availability of the complete 
genome sequence of desired plant species, leading to the 
production of large datasets [13]. Furthermore, in conjunc-
tion with transcriptomics and proteomics analysis, MAS 
and GWAS approach also comprehensively study plant gen-
otypes and phenotypes. Therefore, this section offers sig-
nificant insight into machine learning/artificial intelligence 
in plant breeding and improvement. In addition, the review 
also highlights recent progress made in the implementation 
of AI in crop breeding programs to analyze different pheno-
typical, biochemical, and yield-related traits resulting in the 
identification of superior genotypes.

How plant breeding can benefit from AI

The application of Next-Gen AI in plant breeding requires 
intelligent and efficient mining of breeding datasets by 
employing relevant models and definitive algorithms [10]. 
Researchers are constantly working to innovate and improve 
the efficiency of AI to enable high definition image recog-
nition for analyzing complex data sets and therefore has 
become a prime target for accelerating the crop improve-
ment process [10, 13]. AI, such as neural networks (NN) 
and deep learning (DL), are currently being exploited to 
improve the efficiency and accuracy of multi-omics data 
[82]. The mechanisms by which these two AI functions are 
often opaque involve multiple nonlinear hierarchical meth-
ods to build nodes for easy classification of datasets mim-
icking brain neurons [82, 83]. Conversely, plant breeders are 
conceptualizing a Next-Gen AI that will analyze breeding 
values and provide a comprehensive analysis of complex 
traits under changing environmental conditions [83]. Fur-
thermore, AI will also be learned and improved iteratively 
to improve data mining accuracy and efficiency to predict 
better the factors underlying disease resistance/agronomic 
traits, thereby accelerating breeding programs. Extensive 
hybridization and rigorous selection parameters have signif-
icantly altered the phenotypic plasticity of crop plants [82]. 
In addition, phenotypic plasticity of economically important 
traits is also substantially reduced upon genotypic variation 
occurring among the genotypes as a direct consequence 
of their interaction with the environment [83]. Therefore, 
current breeding programs aim extensively to improve the 
abiotic stress tolerance of crop plants by bridging the geno-
type-phenotype gap that has occurred due to alteration in the 
phenotype plasticity [83, 84].

Researchers are now integrating genotypic and envi-
ronmental data and the observed phenotype to strengthen 
the agronomic abiotic stress breeding program to identify 
the best genotype with critical agronomic traits [84]. As 
these are complex traits governed by more than genes, a 
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would take a lot of time and effort to decipher and conclude 
the final results [84]. Therefore, researchers have started 
exploiting AI to analyze large/complex datasets due to a 
lack of technological knowledge and understanding to ana-
lyze complex data sets for accurate interpretation of given 
biochemical traits [84].

Many studies have shown the potential application of 
AI to interpret biochemical data to enhance the understand-
ing of plant stress biology. For example, the application of 
AI successfully predicted genomic crossovers occurring in 
the maternal and parental maize plants and helped predict 
probable genomic regions displaying high mutation rates 
[105]. Likewise, researchers used AI to classify and charac-
terize genomic regions by analyzing the DNA methylation 
pattern of maize plants grown under stress conditions into 

complex biochemical pathway data sets to help them deci-
pher the real-time changes occurring at the molecular level 
under abiotic stress conditions [85]. Several biochemical/
metabolic changes are governed by discrete changes occur-
ring at the genomics (gene expression), proteomics (protein 
distribution), metabolomics (expression of metabolites), 
and epigenomics (DNA/histone modification) level. How-
ever, technological advancements have developed sophis-
ticated technology/instruments that have greatly facilitated 
the measurements of critical metabolic traits at the OMICS 
level [82, 83]. The data generated by these instruments, 
such as Next Generation Sequencing (NGS), Chromatin 
Immunoprecipitation (ChIP), Matrix-assisted laser desorp-
tion and ionization-Time of Flight-Mass Spectrophotometry 
(MALDI-TOF-MS), etc. are so vast and complex that it 

Table 2 Successful implementation of artificial intelligence/machine learning models in plant breeding studies
Crops Machine learning 

technique
Algorithm used Trait studied Predictable function Refer-

ences
Glycine max L. Best linear unbiased pre-

diction (BLUP), Neural 
networks (NNs), Kernel 
methods

Multilayer perceptron 
(MLP), support vec-
tor machine (SVM), 
ensemble–stacking (E–S) 
and random forest (RF), 
Stochastic gradient descent 
(SGD)

Pre-harvest, Yield 
performance

Selection of high yielding cultivars [86, 
87]

Glycine max L. Convolutional Neural 
Networks (CNNs)

Batch Normalization (BN) Seed per pod 
estimation

Prediction of seed characters under 
changing environment

[88]

Phaseolus vulgaris 
L.

Artificial neural net-
works (ANNs)

Mean square deviation 
(MSD) and mean square of 
residue (MSR)

Average yield High adaptability and phenotypic 
stability under stress conditions

[89]

Zea mays L., Triti-
cum aestivum L.

Neural networks (NNs), 
Deep NNs, CNNs

Generalized matrix factor-
ization (GMF). MLP, SVM

Yield performance, 
salt stress tolerance

Identification of best performing 
parental populations, enhanced 
genomic selection for stress 
resistance

[90–
94]

Brassica rapa L. Artificial neural net-
works (ANNs)

MLP Yield performance Prediction of seed setting [94]

Abelmoschus escul-
entus L.

Deep neural networks 
(DNNs)

Image processing (IP) Yield performance 
under salt stress

Tolerance to salt stress [95]

Carum copticum 
L., Trachyspermum 
ammi (L.) Sprague

Artificial neural net-
works (ANNs)

Multiple regression 
analysis

Oil content, physi-
cal properties of 
callus

Prediction of secondary metabolite 
production and somatic embryos

[96, 
97]

Oryza sativa L. Deep CNNs Video detection metrics Pest and disease 
resistance

Tolerance to biotic stress [98]

Lycopersicum escul-
entum L.

Artificial neural net-
works (ANNs)

IP, SVM Callus regenera-
tion and late blight 
infection

Induction of callus and disease 
resistance

[97]

Arabidopsis thaliana Deep learning SVM, Naive Bayes Stress tolerance Prediction of miRNA expression 
for enhancing stress tolerance

[99]

Daucus carota L. Random forest - Yield potential Precision agriculture for yield 
enhancement

[100]

Solanum tuberosum 
L.

Artificial neural net-
works (ANNs)

IP Agronomic traits Identification of superior genotypes [101]

Carthamus tincto-
rius L., Sesamum 
indicum L.

Artificial neural net-
works (ANNs)

Multiple regression 
analysis

Seed yield, oil 
content

Identification of superior genotypes [102]

Pennisetum glaucum Deep CNNs IP, SVM Disease 
identification

Identification of disease resistant 
genotypes

[103]
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genetic architecture, revealing the position/localization of 
essential genes governing economically crucial traits. The 
exploitation of AI could also integrate genomics, transcrip-
tomics, proteomics, and metabolomics data to analyze mac-
roscopic biochemical features controlling plant growth and 
development in response to environmental stimuli.

Integrating phenomics with genomics for 
smart breeding

One of the significant limitations of the classical breeding 
approach is its inability to provide substantial insight into 
the genomic architecture of plant species due to the lack 
of correlation between genotype and phenotype [84]. Speed 
breeding coupled with Next-Gen AI can significantly facili-
tate understanding of genomic architecture by linking phe-
nome with genome by generating genomic selection models 
for the particular crop species. These genomic selection 
models are prediction-based models developed by estimat-
ing marker-trait association via genetic markers followed by 
extensive phenotyping of test populations [83]. These mod-
els often reflect important genomic regions or loci present 
in a given haplotype and regulate the trait of interest. Most 
current breeding programs focused on developing climate-
smart crops exploit genomic selection models to analyze 

functional genes and pseudogenes [14]. Similarly, Uygun et 
al. [106] also employed AI to predict gene promoters and 
cis-regulatory elements in Arabidopsis and maize plants by 
studying the expression pattern of essential genes. Several 
studies have also affirmed the usefulness of AI in learning 
plant metabolic regulatory networks by deciphering tissue-
specific changes occurring in the biosynthetic genes, such as 
nitrogen use efficiency, starch biosynthesis, and other sec-
ondary metabolites in Arabidopsis and rice [98, 107]. Corre-
spondingly, Meena et al. [108] also exploited AI to stimulate 
the production of biofuels by enhancing biomass production 
using plant species and algal bloom, thus highlighting the 
vital contribution of AI for managing bioenergy production.

A large body of literature has well indicated the versatile 
application of AI in studying single-cell RNA sequencing, 
DNA methylation, and post-translational modifications, 
which can provide testable insight into a specific region of 
the genome or candidate gene governing secondary metab-
olite production under stress conditions [14]. Conversely, 
researchers have begun testing AI to predict complex 
genomic traits such as photosynthesis, hormonal changes, 
and yield [15]. In addition, the application of AI in breed-
ing programs could also help identify QTLs by analyzing 
a complex region of the genome associated with a specific 
trait via facilitating MAS and GWAS [17]. Furthermore, 
AI in breeding could provide an in-depth understanding of 

Fig. 2 An overview of the potential application of artificial intelligence in augmenting plant breeding technology for easy, precise, and early predic-
tion of genotypes/parental combinations for varietal development
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Conclusion and future directions

In recent decades, plant breeders have stumbled to develop 
and breed high-yielding cultivars that can withstand abiotic 
and biotic stresses. Noteworthy, speed breeding has emerged 
as a potential alternative for reducing time, space, and cost 
to develop, release, and commercialize new/improved cul-
tivars with improved accuracy and predictability. Plant 
growth and developmental conditions are the critical factors 
that govern plant performance under changing environmen-
tal conditions; speed breeding protocol technically mimics 
the natural environment artificially (light and temperature) 
to accelerate plant growth. Furthermore, molecular breeding 
techniques like MAS and GWAS can also be successfully 
integrated with speed breeding protocol to identify genes/
QTLs underlying biotic/abiotic stress tolerance, nutritional 
qualities, and high yield. Application of Next-Gen AI has 
opened a new realm for speed breeding and agriculture that 
will enable decision making and handling of big OMICS 
data with great precision, which will help get novel insight 
into plant functions under climate extremes. However, its 
application in developing countries is still lagging due to a 
lack of trained plant breeders, infrastructure facilities, and 
government support at the financial level to sustain speed 
breeding protocol for crop improvements. Implementation 
of speed breeding requires extensive planning and a con-
tinuous supply of electricity and water to maintain adequate 
light and temperature in the facility. Therefore, efforts 
should be diverted toward developing public and private 
ventures to facilitate capacity building, technology transfer, 
and finance speed breeding coupled with AI-driven research 
to facilitate crop improvement programs. These public-
private partnerships will also help create a framework for 
successfully implementing AI-augmented plant breeding 
research and innovation for the betterment of humans, ani-
mals, and the environment.
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genetic components such as SNPs and InDels associated 
with specific characteristics [84]. The models developed by 
analyzing SNP and InDels are exploited as potential tools 
for a breeding population that helps plant breeders predict 
their phenotype before reaching maturity [82].

Furthermore, the data generated by these models are 
then analyzed by AI to predict heritable components accu-
rately, decreasing the breeding cycle and increasing plant 
yield [109]. Most genomic selection models are based on 
the correlation between genotype and phenotype data gen-
erated by genetic/linkage disequilibrium mapping develop-
ment, which is challenging and prone to error [109, 110]. 
Therefore, scientists developed neural networks amalgam-
ating various AI-based algorithms to improve the accuracy 
of data interpretation of genomic selection models [82, 83]. 
These neural networks are computational models displaying 
output as neuron-like nodes linking and analyzing informa-
tion by communicating with refined production [84].

These neural networks have emerged as a successor for 
genomic selection models. Still, for most plant species, it 
has failed to analyze complex data sets and, concomitantly, 
has been unable to improve the accuracy [88]. The fall of 
neural networks helped realize that the plant scientists’ fully 
automated AI is insufficient to analyze big data; humans’ 
involvement is also critical to improving AI-based models’ 
accuracy [88, 110]. The human touch is essential because, 
from the breeder’s perspective, they can manipulate the 
complex sets of OMICS data as per the goal of a breed-
ing program in a much better way than AI alone [88, 91]. 
Therefore, researchers from the plant science community 
are developing and testing various AI-based algorithms 
capable of analyzing a large variety of data that can demar-
cate specific features as per the need of the experimental 
program. Several transfer learning approaches circumvent-
ing published data into machine learning format have shown 
promising results [91].

Additionally, a new deep transfer learning approach 
called ARIGAN (Arabidopsis rosette image generator AN) 
has been successfully used to generate synthetic rose-shaped 
plants by integrating in-silico data with field-based data 
using generative adversarial networks [111]. Furthermore, 
ARIGAN was also exploited to analyze complex multi-
omics data, which successfully rendered extensive gene 
expression data to provide a glimpse of transcriptional regu-
lation in a predictive model [111, 112]. However, research 
is still lagging regarding the black-box nature of AI models 
and their potential application in plant breeding to develop 
climate-smart crops. Therefore, efforts are required to cre-
ate a more sophisticated Next-Gen AI-based system capable 
of screening a sizeable multi-omics data set that will open 
a new realm for plant breeders, enabling them to envision a 
hunger-free world.
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