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Abstract: In cells, the contributions of DEAD-box helicases (DDXs), without which cellular life is
impossible, are of utmost importance. The extremely diverse roles of the nucleolar helicase DDX21,
ranging from fundamental cellular processes such as cell growth, ribosome biogenesis, protein
translation, protein–protein interaction, mediating and sensing transcription, and gene regulation to
viral manipulation, drew our attention. We designed this project to study virus–host interactions
and viral pathogenesis. A pulldown assay was used to investigate the association between foot-
and-mouth disease virus (FMDV) and DDX21. Further insight into the DDX21–FMDV interaction
was obtained through dual-luciferase, knockdown, overexpression, qPCR, and confocal microscopy
assays. Our results highlight the antagonistic feature of DDX21 against FMDV, as it progressively
inhibited FMDV internal ribosome entry site (IRES) -dependent translation through association with
FMDV IRES domains 2, 3, and 4. To subvert this host helicase antagonism, FMDV degraded DDX21
through its non-structural proteins 2B, 2C, and 3C protease (3Cpro). Our results suggest that DDX21
is degraded during 2B and 2C overexpression and FMDV infection through the caspase pathway;
however, DDX21 is degraded through the lysosomal pathway during 3Cpro overexpression. Further
investigation showed that DDX21 enhanced interferon-beta and interleukin-8 production to restrict
viral replication. Together, our results demonstrate that DDX21 is a novel FMDV IRES trans-acting
factor, which negatively regulates FMDV IRES-dependent translation and replication.
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1. Introduction

Protein synthesis in eukaryotes is a normal mechanism to carry on a multitude of
cellular processes. Translation of mRNA is a complex process, which involves initiation,
elongation, termination, and ribosome recycling [1]. Translation initiation is of two types:
cap-dependent and cap-independent translation initiation [2]. During physiological condi-
tions, cells use the cap-dependent mechanism to translate mRNA, and eukaryotic initiation
factors (eIFs), the ternary complex (consisting of eIF2 (α, β, and γ subunits), GTP, and
Met-tRNAi), and Met-tRNAi (a transfer RNA containing the anticodon for methionine,
which initiates the translation with the help of other association factors) are recruited onto
the 40S subunits to form the 43S pre-initiation complex that attaches to the 5′ region of
the mRNA [1]. The cap structure protects the RNA from degradation by exonuclease
cleavage and is recognized by the eIFs involved in the assembly of the ribosome [3]. The
43S pre-initiation complex scans in the 5′ to 3′ direction for translation initiation codons. A
matching contact of an initiation codon with the anticodon in the Met-tRNAi switches the
scanning complex to a ‘closed conformation’ that is discernible as the 48S complex. The
60S ribosomal subunit is associated with the 48S complex, which makes the 80S complex,
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which goes through elongation, termination, and ribosome recycling [2]. During stress, the
cap-dependent translation is usually inhibited and the translation mediated by internal
ribosome entry sites (IRESs) is robust and maintained [4]. Various types of IRES structures
have been found in a variety of viruses [5]. Similarly, these structures were also found in
cellular mRNAs, which stimulate protein translation during adverse conditions such as
hypoxia, DNA damage, physiological stimuli, endoplasmic reticulum stress, and amino
acid starvation [4,6–9]. The IRES-containing viruses use IRESs as primary elements for the
translation of their proteins [9,10]. IRESs are classified into four types on the basis of their
secondary and tertiary structures, nucleotide sequence, length, and mode of action [11].
Type I and II IRESs promote their translation initiation through a variety of eukaryotic
initiation factors and IRES trans-acting factors (ITAFs) [12–18]. Type III IRESs only require
some eukaryotic initiation factors to promote their translation initiation [19–21]. Type IV
IRESs can initiate the translation without eukaryotic initiation factors [11,22–24]. Some
viral IRESs hijack a variety of cellular proteins such as eukaryotic initiation factors and,
more specifically, ITAFs to replicate efficiently inside the host cellular environment [5].
Foot-and-mouth disease virus (FMDV) contains a type II IRES [25], which is comprised
of five domains, of which domains 2 to 5 are crucial for viral IRES-dependent transla-
tion (Figure 1a) [26–29]. Cellular ITAFs have been reported to interact with the FMDV
IRES to promote or inhibit viral replication; for example, DDX3, Rab1b, Sam68, PTB, and
ITAF45 [17,18,30,31] promote FMDV IRES translation, whereas Gemin5, G3BP1, hnRNP K,
hnRNP L, DDX1, and DDX23 [26,32–36] inhibit FMDV viral translation.

So far, six RNA helicase superfamilies have been categorized based on sequence simi-
larities and conserved motifs [37]. Among these superfamilies, superfamily 2 is the largest,
containing approximately 50 RNA helicases, which have a simultaneous concomitant
function in cell metabolism. The Asp-Glu-Ala-Asp (DEAD) motif possesses fundamen-
tal catalytic properties required for ATP hydrolysis [38]. DEAD-box helicases (DDXs)
offer a wide array of services to the cells, playing roles in processes such as translation,
transcription, RNA degradation, micro-RNA biogenesis, pre-mRNA splicing, apoptosis,
gene regulation, and protein–protein interaction [38–41]. Based on these properties, it is
interesting to investigate their roles in virus replication mechanisms. The effects of different
helicases on different viruses vary; some facilitate, and others impede viral replication [38].
The RNA helicase DDX21 is located in the nucleolus [42]. The relationship between DDX21
and RNA/DNA viruses has been reported, showing various activities of DDX21 with dif-
ferent viruses. DDX21 has been shown to interfere with the pathogenic processes of human
cytomegalovirus (HCMV), influenza A virus, dengue virus, human immunodeficiency
virus, and Borna disease virus [43–48]. However, viruses take measures to counter-attack
the host proteins to replicate and flourish in the cellular environment.

The role of DDX21 in innate immunity has also been reported. DDX21 senses
DNA/RNA via pattern recognition receptors (PRRs) and induces interferon (IFN) produc-
tion during poly I:C treatment, reovirus, and influenza A virus infections [49]. During in-
fluenza virus infection, DDX21 promotes the expression of S100A9, which is responsible for
the induction of inflammatory and innate immune responses thorough the TLR4/MyD88
pathway against influenza A virus infection [50]. Recently, the other members of the
DEAD-box family, including DDX1, DDX56, DDX3, and DDX23 [35,36,51,52], have also
been reported, highlighting their immense significance in the IRES-dependent translation
of FMDV.

The viral infection could result in the cleavage or degradation of host proteins to
subvert the host antiviral responses. After cleavage by viruses, some proteins change their
behavior and promote viral replication, as observed for hnRNP K [26]. FMDV has eight
non-structural proteins: L protease (Lpro), 2A, 2B, 2C, 3A, 3B, 3C protease (3Cpro), and 3D
polymerase (3Dpol) [53]. The 2B protein of FMDV, also known as viroporin, induces pores
in host cell membranes by disturbing the Ca2+ concentration, promoting cytopathy, and
facilitating viral release [54]. Cyclophilin A is a host protein that is involved in the cellular
response against FMDV; interaction of cyclophilin A with the FMDV 2B protein antagonizes
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its antiviral activity [55]. The multifunctional protein 2C, which is considered crucial for
FMDV replication and has been found to interact with a wide range of host proteins, has
been reported to interact with the host protein Beclin 1, indicating that the virus benefits
from positive regulation of autophagy [56]. A recent study has shown that 2C interacts
with the host protein NOD2 and antagonizes its antiviral activity [57]. Similarly, the crucial
FMDV protease 3Cpro participates in the frontline defense of the virus to maintain viral
integrity by inhibiting the host IFN response [58]. Our previous study confirmed that
FMDV 3Cpro degrades DDX23 to antagonize its antiviral activity [35].

In the current study, we investigated the association between DDX21 and the FMDV
IRES. During FMDV infection, DDX21 was degraded; furthermore, an increase in DDX21
mRNA levels was observed during infection. DDX21 negatively regulates FMDV IRES-
dependent translation and replication. In addition, FMDV 2B, 2C, and 3Cpro degraded the
DDX21 protein. Collectively, our results provide evidence that DDX21 plays a significant
role in restricting FMDV replication. These results could be used for the development of
treatment strategies against FMDV.

2. Materials and Methods
2.1. Cell Lines, Viruses, and Plasmid Constructs

PK-15 porcine kidney cells (ATCC CCL-33) and BHK-21 baby hamster kidney cells
(ATCC CCL-10) were acquired from the American Type Culture Collection and cultured in
8% Dulbecco modified Eagle medium (DMEM) (Gibco Laboratories, Carlsbad, CA, USA)
supplemented with 8% fetal bovine serum (FBS) (Gibco Laboratories, Carlsbad, CA, USA)
and 1% penicillin/streptomycin (Gibco Laboratories, Carlsbad, CA, USA).

FMDV type O strain O/BY/CHA/2010 (GenBank accession no. JN998085.1) was
obtained from the O.I.E./National Foot-and-Mouth Disease Reference Laboratory of China
(Lanzhou, China) [59]. The virus was proliferated in BHK-21 cells, and TCID50 was used to
evaluate the titer.

The coding region of the DDX21 gene was amplified with primers tagged with
BamHI and EcoRI restriction sites (5′-CGGGATCCATGCCGGGGAAACTTCGT-3′ and
5′-CGGAATTCTTACTGTCCAAACGCTTTGCTAAAACT-3′) followed by digestion and
subsequent ligation into the pCMV-N-Flag vector. Similarly, the coding region of the DDX21
gene was amplified with primers tagged with EcoRI and XhoI restriction sites (forward
5′-GGAATTCATGCCGGGGAAACTTCGT-3′ and reverse 5′-CCGCTCGAGTTACTGTCCA
AACGCTTT-3′) followed by digestion and ligation into the pCMV-N-HA vector. Mam-
malian expression plasmids for the FMDV structural proteins VP-0, VP1-2, and VP3 and
non-structural proteins Lpro, 2B, 2C, 3A, 3Cpro, 3Dpol, 3C-H46Y, 3C-D84N, 3C-163G, and
3C-H205R and the dual-luciferase plasmids psiCHECK-FMDV, psiCHECK-CSFV, and
psiCHECK-SVV were previously synthesized by our laboratory [52,60,61]. The FMDV
IRES (1–459) and truncated construct plasmids D1–2 (1–85), D3–5 (81–459), D3 (81–306),
D4–5 (296–459), D4 (296–416), and D5 (407–459) were prepared in our laboratory [60]. All
constructs were verified through DNA sequencing.

2.2. Antibodies and Reagents

Monoclonal antibodies directed against DDX21 and PTBP1 were obtained from Abcam
(Cambridge, MA, USA). Monoclonal antibodies against HA and Flag tags were obtained
from Proteintech (Chicago, IL, USA). Polyclonal pig antiserum against FMDV was pro-
duced in our laboratory [60]. Horseradish peroxidase, tetramethylrhodamine (TRITC) -,
and fluorescein isothiocyanate (FITC)-conjugated anti-rabbit/mouse/pig antibodies and
chloroquine diphosphate (CQ) were obtained from Sigma-Aldrich (St. Louis, MO, USA).
The general caspase inhibitor Z-VAD(OMe)-FMK was acquired from Cell Signaling Tech-
nology (Danvers, MA, USA). The proteasomal inhibitor MG-132 was obtained from Selleck
Chemicals (Houston, TX, USA). The monoclonal antibody against actin was obtained from
Santa Cruz Biotechnology (Santa Cruz, CA, USA). BamHI, EcoRI, and XhoI were obtained
from New England Biolabs (NEB, Ipswich, MA, USA).
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2.3. Quantitative Real-Time PCR

RNAiso Plus (Takara) was used to extract RNA from PK-15 cells, followed by reverse
transcription to synthesize cDNA using 5× RT Master Mix (Takara). DDX21, FMDV,
IFN-β, IL-8, and GAPDH transcript levels were quantified through quantitative real-
time PCR (qRT-PCR). The primers specific for each gene were as follows: DDX21, 5′-
GGACCCAAAGGGCAGCAGTT-3′ and 5′-AACGACTGGGCATCCTGCCT-3′; FMDV, 5′-
CAAACCTGTGATGGCTTCGA-3′ and 5′-CCGGTACTCGTCAGGTCCA-3′; IFN-β, 5′-
TGGCTGGAATGAAACCGTCA-3′ and 5′-AATGGTCATGTCTCCCCTGG-3′; IL-8, 5′-GAA
CTGAGAGTGATTGAGAGTGGA-3′ and 5′-GTACAACCTTCTTCTGCACCCAC-3′; and
pig GAPDH, 5′-ACATGGCCTCCAAGGAGTAAGA-3′ and 5′-GATCGAGTTGGGGCTGTG
ACT-3′.

2.4. Knockdown and Overexpression

DDX21 and PTBP1 genes were knocked down using commercially synthesized small
interfering (si)RNA from GenePharma (Shanghai, China). The following duplex sequences
were used in PK-15 cells: to target DDX21, 5′-CCCUUUGAUUGAGAAACUUTT-3′ and 5′-
AAGUUUCUCAAUCAAAGGGTT-3′; to target PTBP1, 5′-GCUGGUCAGCAACCUCAAUT
T-3′ and 5′-AUUGAGGUUGCUGACCAGCTT-3′. The following negative control (NC)
siRNA sequences were used: 5′-UUCUCCGAACGUGUCACGUTT-3′ and 5′-ACGUGACAC
GUUCGGAGAATT-3′. Duplexes were delivered via RNAi Max (Invitrogen). Samples were
collected 36 h post-transfection.

PK-15 cells were transfected with mammalian expression plasmids using Lipofec-
tamine 2000 (Invitrogen) and incubated for 24 h at 37 ◦C. Samples were collected after 24 h
and used for Western blot, qPCR, and dual-luciferase assays.

2.5. TCID50

The supernatants of PK-15 cells, overexpressed/knocked down with DDX21, were
collected, centrifuged, and 10-fold diluted. The 10-fold diluted samples were added to
96-well cell culture plates with BHK-21 cells, which were incubated for 72 h at 37 ◦C.
TCID50 was calculated after 72 h by observing the cytopathic effect in the wells.

2.6. Western Blot

Cells were lysed to obtain the total protein fraction. Proteins were denatured with
1× SDS loading buffer, separated by SDS-PAGE, and transferred to PVDF membranes.
Membranes were blocked for 1 h in 5% skim milk, incubated overnight with primary anti-
bodies, washed with TBST five times, incubated with horseradish peroxidase-conjugated
secondary antibodies for 90 min, and again washed five times with TBST. Finally, the
membranes were incubated with enhanced chemiluminescence detection reagent (Thermo
Fisher Scientific, Inc., Rockford, IL, USA) to visualize protein bands.

2.7. Dual-Luciferase Assay

For overexpression assays, PK-15 cells were cultured in 24-well plates. When the
cells reached 80% confluency, they were co-transfected with 0.5 µg/well of pCMV-N-Flag-
DDX21 and 0.5 µg/well of psiCHECK-FMDV or psiCHECK CSFV/SVV using Lipofec-
tamine 2000. Transfected cells were incubated for 24 h, and samples were harvested with
passive lysis buffer. For knockdown assays, cells were transfected with siRNA targeting
DDX21 (5 µL per well) using RNAi Max and incubated for 30 h. The Firefly and Re-
nilla luciferase activities were analyzed using the Dual-Luciferase Reporter Assay System
(Promega) according to the manufacturer’s instructions.

2.8. In Vitro Transcription

Viral cDNAs corresponding to the 5′UTR (1–1112), the S-fragment (1–370), the cis-
acting replication element (cre) (371–653), the IRES (654–1112), various truncated constructs,
D1–2 (1–85), D3–5 (81–459), D3 (81–306), D4–5 (296–459), D4 (296–416), and D5 (407–459),
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and the 3′UTR (8112–8237) of the FMDV genome were amplified from the cDNA of
FMDV strain O/BY/CHA/2010 (GenBank accession no. JN998085.1) and inserted into
the pcDNA3.1 vector (Invitrogen). Next, these plasmids were linearized with BamHI,
and RNA transcripts were synthesized using the RiboMAX Large Scale RNA Production
System-SP6-T7 kit (Promega, Madison, WI, USA). Finally, RNA was labeled with biotin
using the Pierce RNA 3′ End Desthiobiotinylation Kit per the manufacturer’s instructions
(Thermo Scientific Pierce, Rockford, IL, USA).

2.9. RNA Pulldown Assay

Target proteins were pulled down using the Pierce Magnetic RNA-Protein Pull-Down
Kit (Thermo Scientific Pierce, Rockford, IL, USA) following the manufacturer’s instructions.
The experiments were performed as described in detail previously [35].

2.10. Nuclear Cytosol Fractionation Assay

PK-15 cells were cultured on 100 mm cell culture dishes. When a monolayer was
formed, cells were infected with FMDV at a multiplicity of infection (MOI) of 0.5 for
5 h. Lysates were collected and fractionated using the Nuclear/Cytosol Fractionation Kit
(BioVision, Milpitas, CA, USA) following the manufacturer’s protocol.

2.11. Confocal Microscopy

PK-15 cells were cultured on glass-bottom cell culture dishes (NEST, Jiangxi, China).
Cells were transfected with the indicated plasmids, and after 24 h, cells were infected with
type O FMDV at a MOI of 5. Immunofluorescence assays and confocal microscopy were
performed as described previously [35].

2.12. Virus Infection

DDX21 overexpression or knockdown PK-15 cells were infected with the Chinese type
O FMDV at a MOI of 0.5. The medium was changed after 1 h of infection by washing three
times with 1× PBS. Cells were incubated with DMEM supplemented with 1% FBS at 37 ◦C,
followed by sample collection at the indicated time points.

2.13. Proteasome, Lysosome, and Caspase Inhibitor Assays

PK-15 cells were grown to a monolayer in six-well plates and infected with FMDV
or Mock infected for 1 h. After 1 h, cells were washed and incubated with DMEM sup-
plemented with 1% FBS and the proteasome inhibitor MG-132 (10–20 µM), the caspase
inhibitor Z-VAD-FMK (10–50 µM), or the lysosomal inhibitor CQ (50–100 µM). After 11 h,
cells were harvested for Western blot analysis.

2.14. RNA Immunoprecipitation and RTPCR

PK-15 cells cultured on 100 mm cell culture dishes were transfected with the expression
plasmids. At 24 h post-transfection, cells were washed twice with PBS, scratched off the
plates using a cell scraper, and transferred into 1.5 mL tubes. The cells were centrifuged
at 400× g for 5 min at 4 ◦C. The RIPA buffer was added to lyse the cells. The lysate
was incubated on ice for 1 h (vortexing every 20 min). The lysate was centrifuged and
the supernatant was used for immunoprecipitation by adding the target antibodies and
incubated overnight. The protein–antibody mixture was mixed with protein G Sepharose
4 Fast Flow beads (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) and incubated for
3 h at 4 ◦C with rotation. Beads were washed three times and eluted with RNAiso Plus for
RNA extraction and RT-PCR analysis.

2.15. Statistical Analysis

Statistical analysis was performed using Student’s t-test. Experiments were performed
in triplicate. p < 0.05 was considered to indicate statistical significance (*), p < 0.01 was
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considered to indicate strong statistical significance (**), and p < 0.001 was considered to
indicate very strong statistical significance (***).

3. Results
3.1. DDX21 Co-Precipitates with the FMDV IRES

The FMDV 5′UTR is approximately 1300 nucleotides (nt) long and is composed
of different regions. The first region is the S-fragment (350 nt), which is required for
viral genome stability and replication [62]. Downstream of the S-fragment is poly(C)
(150–200 nt), which is significant for the virulence of FMDV [63]. Next, the region following
poly(C) is known as “pseudoknots (Pks)”, which is possibly associated with poly(C) [64].
Downstream of the Pks is cis-acting replication element (cre) (55 nt), also known as IRES
domain 1, which is required for viral genome RNA replication [65]. A highly crucial IRES
element (~450 nt) is located at the 3′-end of the 5′UTR, which is composed of IRES domains
2 to 5 and is important for viral IRES–dependent translation (Figure 1a) [26–29]. Host cells
strongly depend on DDXs to fulfill the basic needs of cellular metabolism. Indeed, survival
of cells without these helicases is impossible. Helicases provide favorable conditions
for the cells to proliferate and flourish. They are involved in transcription, translation,
pre-mRNA splicing, RNA degradation, gene regulation, micro-RNA biogenesis, protein–
protein interaction, apoptosis, and viral replication. Based on these characteristics of
helicases, we chose to investigate the role of DDX21 in FMDV replication. A pulldown
assay was performed to investigate the precipitation between DDX21 and the FMDV IRES.
The FMDV 5′UTR, S-fragment, cre, IRES, and 3′UTR were labeled with biotin, and PK-15
cell lysate was used to pulldown DDX21. Our Western blot results showed that, using
anti-DDX21 antibodies, DDX21 was pulled down together with the FMDV 5′UTR, IRES,
and 3′UTR, whereas no association was observed with the S-fragment and cre. Nucleolin
was used as a positive control [60], which was pulled down together with the biotinylated
FMDV IRES using anti-nucleolin antibodies (Figure 1b). To verify this interaction, we
conducted an RNA co-immunoprecipitation assay. PK-15 cells were infected with FMDV
for 3 h. Cells were lysed and the co-immunoprecipitation assay was performed using
anti-DDX21. Finally, RNA was extracted and reverse transcribed to cDNA, followed by the
amplification of desired sequences using specific primers. Primers directed against FMDV
IRES and 3′UTR amplified these regions from the total RNA and immunoprecipitated
samples (Figure 1c, lanes 2, 3, 8, and 9), confirming the pulldown results. In contrast,
primers directed against RPL13 and GAPDH could amplify these genes in total RNA
samples (Figure 1d, lanes 2 and 8), but not in immunoprecipitated samples (Figure 1d,
lanes 3 and 9). In addition, no amplification was observed in negative control (NC)
immunoprecipitated samples using anti-IgG, no antibody, or ddH2O (Figure 1c,d, lanes
4–6 and 10–12).

3.2. DDX21 Pulldown with the FMDV IRES Regions

Because DDX21 co-precipitates with the FMDV IRES, we investigated which regions of
the FMDV IRES precipitate with DDX21. The FMDV IRES structure in living cells has been
recently resolved by SHAPE, chemical, and enzymatic analyses [66,67]. According to the
M-FOLD-predicted FMDV IRES secondary structures, FMDV IRES (1–459) and truncated
construct plasmids D1–2 (1–80), D3–5 (81–459), D3 (82–306), D4–5 (307–459), D4 (308–416),
and D5 (417–459) (Figure 2a) were prepared in our laboratory [60]. These truncated FMDV
IRES domains were used to pulldown Flag-DDX21 through a RNA pulldown assay. PK-15
cells were then transfected with Flag-DDX21 and incubated for 24 h. The cell lysate was
collected in RIPA buffer and mixed with biotinylated FMDV IRES and its truncated regions.
Our Western blot results indicate that Flag-DDX21 was pulled down with the FMDV IRES
and its domains D1–2, D3–5, D3, D4–5, and D4; however, no pulldown was observed with
D5 (Figure 2b). Flag-nucleolin was used as a positive control, which showed its pull down
with FMDV IRES and domains D3–5, D4–5, and D5 (Figure 2c) [60]. These results indicate
which FMDV IRES domains took part in the association with DDX21.
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Figure 2. Regions of the FMDV IRES precipitate with the host protein DDX21. (a) Schematic diagram of FMDV IRES
domains. (b) PK-15 cells in 100 mm cell culture dishes were transfected with 10 µg of Flag-DDX21. The lysate was collected
in RIPA buffer and mixed with the in vitro synthesized biotinylated full-length FMDV IRES and domains D1–2, D3–5, D3,
D4–5, D4, and D5. Following pulldown, beads were eluted with elution buffer, and 1× SDS loading buffer was added for
Western blot analysis. (c) PK-15 cell in 100 mm cell culture dishes were transfected with 10 µg of Flag-nucleolin. The lysate
was collected in RIPA buffer and mixed with the in vitro synthesized biotinylated full-length FMDV IRES and domains
D1–2, D3–5, D3, D4–5, D4, and D5. Following pulldown, beads were eluted with elution buffer, and 1× SDS loading buffer
was added for Western blot analysis.

3.3. DDX21 Negatively Regulates FMDV Replication

We have shown that FMDV infection induced DDX21 degradation. Therefore, we
investigated the role of DDX21 in FMDV replication. Flag-DDX21 and Flag−EV (empty
vector) plasmids were transfected into PK−15 cells, which were infected with type O
FMDV at a MOI of 0.5. DDX21 overexpression significantly decreased FMDV protein at
3, 5, 7, and 9 hpi (Figure 3a). A gradual decrease in the Flag-tagged DDX21 protein level
was observed during FMDV infection (Figure S1). Likewise, a decline in FMDV mRNA
levels was observed in DDX21 overexpression cells (Figure 3b). TCID50 showed a similar
trend; the viral titer reduced compared with the Flag-EV-infected cells (Figure 3c). The
cell viability assay was performed to check whether Flag-DDX21 transfection affects the
cell viability and proliferation. The cell viability assay revealed that overexpression of
Flag-DDX21 did not affect cellular viability and proliferation (Figure S2).

We further confirmed our findings using siRNA directed against DDX21 or NC. PK-15
cells were infected with FMDV type O at a MOI of 0.5 at 36 h post-transfection. The
Western blot results show an increase in FMDV protein expression at 3, 5, 7, and 9 hpi
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(Figure 3d). Similarly, qRT-PCR results show that the FMDV mRNA levels were increased
in DDX21 knockdown cells compared with NC samples (Figure 3e). The supernatants were
collected at indicated time points and TCID50 was evaluated. The viral titer showed a
similar pattern, indicating an increased amount of virus in knockdown cells (Figure 3f).
These results suggest that DDX21 counter-attacked FMDV and restricted viral replication.
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Figure 3. DDX21 inhibits FMDV replication. (a) PK-15 cells in 12-well plates were transfected with Flag-DDX21 plasmid
(1.5 µg) and incubated for 24 h at 37 ◦C. Infection with type O FMDV was performed at a MOI of 0.5 and cells were incubated
for an additional 24 h at 37 ◦C. Samples were collected at 0, 1, 3, 5, 7, and 9 hpi. Cell lysates were analyzed by Western
blotting. (b) PK-15 cells in 12-well plates were transfected with Flag-DDX21 plasmid (1.5 µg) and incubated for 24 h at
37 ◦C. Infection with type O FMDV was performed at a MOI of 0.5 and cells were incubated for 1 h at 37 ◦C. Samples were
collected at 0, 1, 3, 5, 7, and 9 hpi using RNAiso Plus for RNA extraction and qRT-PCR analysis. (c) PK-15 cells in 12-well
plates were transfected with Flag-DDX21 plasmid (1.5 µg) and incubated for 24 h at 37 ◦C. Infection with type O FMDV
was performed at a MOI of 0.5 and cells were incubated for 1 h at 37 ◦C. Cells were washed with 1× PBS and incubated in
DMEM supplemented with 1% FBS. Samples were collected at 0, 1, 3, 5, 7, and 9 hpi. Cellular supernatants were collected,
centrifuged, and stored at −80 ◦C for TCID50 analysis. (d) DDX21 was knocked down using siRNA directed against
DDX21. Cells were incubated for 36 h, followed by FMDV type O infection. Cell lysates were analyzed by Western blotting.
(e) DDX21 was knocked down using siRNA directed against DDX21. Cells were incubated for 36 h, followed by FMDV
type O infection. RNAiso Plus was added to collect samples for RNA extraction and qRT-PCR analysis. (f) DDX21 was
knocked down using siRNA directed against DDX21. Cells were incubated for 36 h, followed by FMDV type O infection.
Cellular supernatants were collected, centrifuged, and used for TCID50 analysis. The data are presented as the mean and SD
of three separate experiments (* p < 0.05, ** p < 0.01, *** p < 0.001).

3.4. DDX21 Negatively Regulates FMDV, CSFV, and SVV IRES-Dependent Translation

The inhibitory effect of DDX21 on FMDV protein, mRNA levels, and viral titer led
us to explore FMDV (type II IRES), classical swine fever virus (CSFV) (type III IRES) [20],
and Seneca Valley virus (SVV) (type III IRES) [21] IRES-dependent translation. Figure 4a
depicts the bicistronic FMDV IRES construct (psiCHECK-FMDV). To investigate the role
of DDX21 in different viral IRES translation initiation mechanisms, PK-15 cells were co-
transfected with Flag-DDX21 or Flag-EV and psiCHECK-FMDV, psiCHECK-CSFV, or
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psiCHECK-SVV and incubated for 24 h. The hnRNP K, which negatively regulates FMDV
IRES-dependent translation, was used as a positive control [26]. The dual-luciferase assay
results indicate that Flag-hnRNP K and Flag-DDX21 decreased FMDV IRES-dependent
translation by 50.2% and 52.5%, respectively (Figure 4b). In addition, CSFV and SVV IRES
activity was decreased by 55.2% and 50.8%, respectively, in DDX21 overexpression samples
(Figure 4c). The transfection efficiency was confirmed through Western blot analyses,
which showed the protein expression of Flag-DDX21 and Flag-hnRNP K in overexpression
samples (Figure 4d). Next, DDX21 and PTBP1 were knocked down using siRNA targeting
DDX21 and PTBP1, respectively. After 30 h, the cells were transfected with psiCHECK-
FMDV, psiCHECK-CSFV, or psiCHECK-SVV. SiRNA targeting PTBP1, which positively
regulates FMDV IRES-dependent translation, was used as a positive control [68]. The
dual-luciferase assay results show that DDX21 knockdown increased FMDV, CSFV, and
SVV IRES activity by 150.5%, 140.2%, and 162.2%, respectively (Figure 4e,f). In the positive
control (PTBP1 knockdown), FMDV IRES activity decreased by 52.5% (Figure 4e). The
knockdown efficiencies of siRNAs targeting DDX21 and PTBP1 were assessed through
Western blot analyses, which showed a significant decrease in DDX21 and PTBP1 protein
expression (Figure 4g). Tables S1 and S2 show the absolute values of firefly luciferase and
Renilla luciferase. The fact that DDX21 suppressed FMDV, CSFV, and SVV IRES-dependent
translation suggested that DDX21 had broad-spectrum activity.

3.5. DDX21 Translocates to the Cytoplasm during FMDV Infection

We have shown that DDX21 was pulled down with FMDV IRES domains. Consid-
ering that FMDV replication occurs in the cytoplasm, we hypothesized that DDX21 was
translocated to the cytoplasm to interact with FMDV. To investigate this, PK-15 cells were
cultured in glass-bottom cell culture dishes and transfected with Flag-DDX21. Cells were
infected with FMDV type O or mock-infected and fixed with 4% paraformaldehyde at
3 and 7 hpi. An indirect immunofluorescent antibody test was performed with anti-DDX21
to localize DDX21 and determine its translocation during viral infection. In mock-infected
cells, DDX21 (red) resided in the nucleolus; however, upon FMDV (green) infection, DDX21
was translocated into the cytoplasm, where FMDV replication occurs (Figure 5a). These
results were further confirmed through a nuclear/cytosol fractionation assay. PK-15 cells
were transfected with Flag-DDX21. Cells were infected with FMDV type O. Cellular sam-
ples were collected at the indicated time points and the nuclear/cytosol fractionation assay
was performed. Flag-DDX21 was mainly observed in the cytoplasm of FMDV-infected
cells at 3, 5, 7, and 9 hpi; however, it was not observed in the cytoplasmic fraction at 0 and
1 hpi (Figure 5b). These results suggest that DDX21 translocated into the cytoplasm of the
FMDV-infected cell.
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Figure 4. DDX21 inhibits FMDV, classical swine fever virus (CSFV), and Seneca Valley virus (SVV) IRES-dependent
translation. (a) Schematic diagram of the bicistronic luciferase construct. (b) PK-15 cells in 24-well plates were co-transfected
with psiCHECK-FMDV and Flag-DDX21, Flag-hnRNP K (positive control), or Flag-EV (negative control). Samples were
harvested 24 h post-transfection using passive lysis buffer or 1× SDS loading buffer for Western blot analyses. The dual-
luciferase assay was performed using the Dual-Luciferase Reporter Assay System. (c) PK-15 cells in 24-well plates were
co-transfected with psiCHECK-CSFV or psiCHECK-SVV and Flag-DDX21 or Flag-EV. (d) PK-15 cells were transfected
with Flag-DDX21 or Flag-EV and Flag-hnRNP K or Flag-EV. Samples were collected 24 h post-transfection for Western blot
analyses. (e) PK-15 cells in 24-well plates were knocked down with siRNA-DDX21, siRNA-PTBP1 (positive control), or
siNC (negative control). At 30 h post-knockdown, cells were transfected with psiCHECK-FMDV. After 24 h, samples were
collected using passive lysis buffer for luciferase activity analysis. (f) PK-15 cells in 24-well plates were knocked down using
siRNA-DDX21 or siNC. After 30 h, cells were transfected with psiCHECK-CSFV or psiCHECK-SVV. After an additional
24 h, samples were collected using passive lysis buffer for luciferase activity analysis. (g) PK-15 cells were knocked down
with siRNA-DDX21, siRNA-PTBP1, or siNC. Samples were collected at 36 h post-transfection for Western blot analysis.
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Figure 5. DDX21 is translocated into the cytoplasm of FMDV-infected cells. (a) PK-15 cells were cultured in glass-bottom
cell culture dishes and transfected with Flag-DDX21, followed by mock or FMDV infection. Cells were fixed with 4%
paraformaldehyde at 3 and 7 hpi. An indirect immunofluorescencent antibody test was performed using primary anti-Flag
antibodies and secondary TRITC-conjugated antibodies (red); polyclonal pig antiserum was prepared in our laboratory [60],
which was used to detect the viral proteins with secondary FITC-conjugated antibodies (green). Nuclei were stained blue
with DAPI; the merged signal appeared yellow. (b) PK-15 cells on 100 mm dishes and transfected with 2 µg of Flag-DDX21.
Cells were FMDV-infected, and samples were collected at 0, 1, 3, 5, 7, and 9 hpi. Samples were processed using the
nuclear/cytosol fractionation assay. The nuclear and cytosol fractions were analyzed through Western blot assay.

3.6. FMDV Infection Causes Degradation of the DDX21 Protein

To evaluate DDX21 protein and mRNA expression during FMDV infection, PK-15
cells were infected with type O FMDV at a MOI of 0.5 and harvested at the indicated
time points. Our Western blot results show that DDX21 was degraded at 5, 7, 9, and 12 h
post-infection (hpi) (Figure 6a). We did not observe DDX21 degradation at 0, 1, and 3 hpi
(Figure 6a). Next, we infected PK-15 cells with type O FMDV at a MOI of 0.5 and collected
samples at the indicated timepoints using RNAiso Plus for RNA extraction. Interestingly,
the qPCR results show a significant increase in DDX21 mRNA transcript levels at 5, 7, 9,
and 12 hpi (Figure 6b) compared with mock-infected cells. Figure 3c shows the FMDV
mRNA levels over time. No viral RNA was detected in mock-infected cells. These results
suggest that FMDV infection triggered DDX21 mRNA expression, whereas the DDX21
protein was degraded during viral infection.
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Figure 6. FMDV degrades DDX21 during viral infection. (a) PK-15 cells in 12-well plates were mock-infected or infected
with type O FMDV at a MOI of 0.5, and samples were harvested at 0, 1, 3, 5, 7, 9, and 12 hpi. Collected samples were
analyzed by Western blotting. (b,c) PK-15 cells in 12-well plates were infected with type O FMDV, and cells were harvested
using RNAiso Plus reagent for RNA collection. RNA was extracted, and qRT-PCR was performed. The data are presented
as the mean and SD of three separate experiments (* p < 0.05, ** p < 0.01).

3.7. FMDV 2B, 2C, and 3Cpro Decrease DDX21 Protein Levels, and 3Cpro Catalytic Triad Active
Site Residues Are Required for DDX21 Degradation

The degradation of DDX21 by FMDV infection prompted us to investigate which
viral proteins were responsible for this degradation. PK-15 cells were transfected with
Flag-DDX21 and Flag-VP1-2, VP3, Lpro, 2B, 2C, 3A, 3Cpro, 3pol, or EV. Samples were
collected after 24 h and analyzed through Western blotting. FMDV 2B, 2C, and 3Cpro

significantly decreased DDX21 protein levels, whereas VP0, VP1-2, VP3, Lpro, 3A, and
3Dpol did not change the DDX21 protein levels (Figure 7a). The cell viability assay showed
that overexpression of FMDV structural and non-structural proteins did not affect cellular
viability and proliferation (Figure 7b). Next, we transfected PK-15 cells with HA-DDX21
and Flag-3Cpro with increasing concentrations (250, 500, 1000, or 2000 ng). With increasing
Flag-3Cpro concentration, DDX21 was more quickly degraded (Figure 7c), which indicated
that DDX21 degradation was dose-dependent. PK-15 cells were co-transfected with Flag-
DDX21 and Flag-3Cpro or its mutants H46Y, D84N, and C163G [60], in which the catalytic
residues were mutated, and the constitutively catalytically active Flag-3Cpro H205R [60].
Western blot analysis showed that wild-type 3Cpro and H205R decreased DDX21 protein
levels; however, upon transfection with 3Cpro mutants in which the catalytic residues were
mutated, i.e., H46Y, D84N, and C163G, DDX21 protein levels were not reduced (Figure 7d).
To investigate the effects of increasing concentrations of Flag-2B or 2C on DDX21 protein
levels, we co-transfected PK-15 cells with HA-DDX21 and Flag-2B or 2C. We observed a
significant decrease in DDX21 protein levels after transfection with 25 to 2000 ng of Flag-2B-
or 2C-encoding plasmids (Figure 7e,f). The significant decrease in DDX21 in the presence
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of 2B or 2C was only observed with the 2000 ng concentration in contrast to 3Cpro, in
which inhibition started at the 250 ng concentration. These results confirm that FMDV
2B, 2C, and 3Cpro were involved in the degradation of DDX21. To evaluate whether the
decrease in DDX21 was the result of a specific decrease in mRNA transcripts, PK-15 cells
were transfected with an increasing concentration of Flag-2B, Flag-2C, and Flag-3Cpro (0,
250, 500, 1000, and 2000 ng) and mRNA was extracted 24 h post-transfection. The qRT-PCR
results show that no significant change was observed in the DDX21 mRNA during the
overexpression of Flag-2B, Flag-2C, and Flag-3Cpro (Figure 7g–i). These results indicate
that DDX21 was degraded by Flag-2B, Flag-2C, and Flag-3Cpro only at the proteomic level,
which could be due to lysosomal, proteasomal, or caspase pathway dependence.

3.8. DDX21 Does Not Interact with FMDV 2B, 2C, and 3Cpro

FMDV 2B, 2C, and 3Cpro decreased DDX21 protein levels; therefore, we investigated
whether DDX21 directly interacted with these FMDV non-structural proteins. PK-15
cells were co-transfected with HA-DDX21 and Flag-2B, 2C, or 3Cpro. After 24 h, the cell
lysates were obtained in RIPA buffer, and a co-immunoprecipitation assay was performed.
Forward immunoprecipitation was accomplished with anti-HA and reverse immunopre-
cipitation was accomplished with anti-Flag-antibodies. IgG was used as a negative control.
Forward immunoprecipitation showed that DDX21 did not precipitate 2B, 2C, or 3Cpro.
Similarly, reverse immunoprecipitation showed that 2B, 2C, or 3Cpro did not precipitate
DDX21 (Figure 8a–c).

3.9. Lysosomal and Caspase Pathway-Dependent Degradation of DDX21

To explore which protein degradation pathway is responsible for the FMDV-dependent
degradation of DDX21, PK-15 cells were infected with FMDV, and after 1 h of infection,
the inhibitors CQ, MG-132, and Z-VAD(OMe)-FMK were added to inhibit the lysosomal,
proteasomal, and caspase pathways, respectively [69]. Our Western blot results show
that DDX21 protein levels were entirely restored by the use of Z-VAD-FMK (Figure 9c);
However, the DDX21 protein levels were not restored when CQ or MG-132 was used
(Figure 9a,b). These results suggest that upon FMDV infection, DDX21 was degraded
through the caspase pathway. Next, we investigated which pathways were involved in
the degradation of DDX21 by 2B, 2C, and 3Cpro. Our results indicate that 2B and 2C
degraded DDX21 via the caspase pathway (Figure 9f,i), and not via the lysosome and
proteasome pathways (Figure 9d,e,g,h); and 3Cpro degraded DDX21 via the lysosomal
pathway (Figure 9j), and not via the proteasome or caspase pathways (Figure 9k,l). These
results suggest that DDX21 was degraded through lysosomal and caspase pathways.
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Figure 7. DDX21 is degraded by FMDV 2B, 2C, and 3Cpro. (a) PK-15 cells in six-well plates were co-transfected with
Flag-DDX21 and VP0, VP1-2, VP3, Lpro, 2B, 2C, 3A, 3Cpro, 3Dpol, or Flag-EV. Cells were harvested after 24 h and 1× SDS
loading buffer was added. The samples were analyzed by Western blot. (b) After the cells were grown to 80% confluence in
96 well plates, they were transfected with Flag-VP0, VP1-2, VP3, Lpro, 2B, 2C, 3A, 3Cpro, and 3Dpol or an empty vector for
24 h. For the MTS assay, 10 µL of CellTiter 96® AQueous One Solution Cell Proliferation Assay reagent (Promega, WI, USA)
was directly added to the cells, which were then incubated for 4 h. The absorbance at 490 nm was recorded. (c) PK-15 cells
were co-transfected with HA-DDX21 (2 µg) and Flag-3Cpro (250, 500, 1000, or 2000 ng) or Flag-EV (2 µg). Cell lysates were
collected in 1× SDS loading buffer and analyzed by Western blotting. (d) PK-15 cells on six-well plates were co-transfected
with HA-DDX21 (2 µg) and Flag-3Cpro, H46Y, D84N, 163G, H205R, or Flag-EV (2 µg). Samples were collected at 24 h
post-transfection and analyzed by Western blotting. (e) PK-15 cells on six-well plates were co-transfected with HA-DDX21
(2 µg) and Flag-2B (250, 500, 1000, or 2000 ng) or Flag-EV (2 µg). Cell lysates were collected 24 h post-transfection in 1× SDS
loading buffer and analyzed by Western blotting. (f) PK-15 cells were co-transfected with HA-DDX21 (2 µg) and Flag-3Cpro

(250, 500, 1000, or 2000 ng) or Flag-EV (2 µg). Cell lysates were collected 24 h post-transfection in 1× SDS loading buffer and
analyzed by Western blotting. (g–i) PK-15 cells were cultured on a six-well plate. At 80% confluence, cells were transfected
with an increasing concentration of Flag-2B, Flag-2C, and Flag-3Cpro (0, 250, 500, 1000, and 2000 ng). Twenty-four hours
post transfection; RNA was extracted and the level of DDX21 mRNA was determined by qRT-PCR.
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Figure 8. DDX21 does not interact with FMDV 2B, 2C, and 3Cpro. (a) PK-15 cells in 100 mm cell culture dishes were
co-transfected with HA-DDX21 (8 µg) and Flag-2B (6 µg) and incubated for 24 h. Protein lysates were collected in RIPA
buffer. Forward immunoprecipitation was performed with anti-HA and reverse immunoprecipitation was performed
with anti-Flag. The immunocomplexes were analyzed by SDS-PAGE and Western blotting. (b) PK-15 cells in 100 mm cell
culture dishes were co-transfected with HA-DDX21 (8 µg) and Flag-2C (6 µg) and incubated for 24 h. Protein lysates were
collected in RIPA buffer. Forward immunoprecipitation was performed with anti-HA and reverse immunoprecipitation
was performed with anti-Flag. The immunocomplexes were analyzed by SDS-PAGE and Western blotting. (c) PK-15
cells in 100 mm cell culture dishes were co-transfected with HA-DDX21 (8 µg) and Flag-3Cpro (6 µg) and incubated for
24 h. Protein lysates were collected in RIPA buffer. Forward immunoprecipitation was performed with anti-HA and
reverse immunoprecipitation was performed with anti-Flag. The immunocomplexes were analyzed by SDS-PAGE and
Western blotting.
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Figure 9. DDX21 is degraded through the caspase pathway during FMDV infection. (a) PK-15 cells in six-well plates were
infected with FMDV type O at a MOI of 0.5 and incubated for 1 h. Cells were washed with 1× PBS three times, and CQ
was added at 50 to 100 µM to inhibit the lysosome pathway. After 11 h of incubation, samples were harvested in 1× SDS
loading buffer, and Western blot analyses were performed. (b) PK-15 cells in six-well plates were infected with FMDV
type O at a MOI of 0.5 and incubated for 1 h. Next, cells were washed with 1× PBS three times, and MG-132 was added at
10 to 20 µM to inhibit proteasome pathways. After 11 h of incubation, samples were harvested in 1× SDS loading buffer,
and Western blot analyses were performed. (c) PK-15 cells in six-well plates were infected with FMDV type O at a MOI of
0.5 and incubated for 1 h. Next, cells were washed with 1× PBS three times, and Z-VAD-FMK was added at 10 to 50 µM
for the inhibition of caspase pathways. After 11 h of incubation, samples were harvested in 1× SDS loading buffer, and
Western blot analyses were performed. (d–l) PK-15 cells in six-well plates were co-transfected with HA-DDX21 (2 µg) and
Flag-2B, 2C, 3Cpro, or Flag-EV (2 µg). At 6 h post-transfection, cells were washed with 1× PBS, CQ was added at 50 to
100 µM, MG-132 was added at 10 to 20 µM, and Z-VAD-FMK was added at 10 to 50 µM, and cells were incubated for an
additional 18 h and collected in 1× SDS loading buffer. Samples were analyzed by SDS-PAGE and Western blot.
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3.10. DDX21 Positively Regulates IFN-β and IL-8 Production

Our results show that DDX21 inhibits viral replication; therefore, we decided to
evaluate IFN-β and IL-8 production during viral infection. PK-15 cells were transfected
with Flag-DDX21 or Flag-EV, incubated for 24 h, and infected with FMDV type O. Samples
were collected at the indicated timepoints. During DDX21 overexpression, IFN-β and
IL-8 production was significantly increased compared with Flag-EV samples (Figure 10a,b).
Next, we confirmed these results through DDX21 knockdown. DDX21 was knocked
down, and at 36 h post-transfection cells were infected with FMDV type O. Samples were
collected using RNAiso Plus for RNA extraction. Our qPCR results show that during
FMDV infection, IFN-β and IL-8 mRNA levels were significantly decreased in the DDX21
knockdown cells compared with the scrambled siRNA negative control (NC) samples
(Figure 10c,d). These results suggest that DDX21 was an anti-FMDV agent, which inhibited
viral replication via an innate immune response.
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Figure 10. DDX21 induces IFN-β and IL-8 production during FMDV infection. (a,b) PK-15 cells in 12-well plates overex-
pressing Flag-DDX21 or Flag-EV were infected with FMDV type O at a MOI of 0.5. Samples were harvested with RNAiso
Plus at 0, 1, 3, 5, 7, and 9 hpi. RNA was extracted and qRT-PCR analysis was performed. (c,d) PK-15 cells in 12-well plates
were knocked down using siRNA-DDX21 or siNC, incubated for 36 h, and infected with FMDV type O. Samples were
collected at 0, 1, 3, 5, 7, and 9 hpi using RNAiso Plus. RNA was extracted, and qRT-PCR was performed. The data reflect the
means of three separate trials and error bars indicate standard deviations (SD) (* p < 0.05, ** p < 0.01, *** p < 0.001).

4. Discussion

Viruses must multiply with limited resources, even though a multitude of processes are
required for replication; hence, they depend upon the host to proliferate and flourish [70].
The hostile conditions of the host cell pose obstacles to replication.

Nevertheless, FMDV utilizes the indispensable weapon IRES to hijack a variety of
host proteins known as ITAFs to promote translation of the viral mRNA [11]. Studies
have reported new ITAFs that modulate FMDV IRES-mediated translation and replica-
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tion; however, there is still a scarcity of information to explain the viral IRES-mediated
translation mechanism. Here, we report a novel FMDV ITAF, the RNA helicase DDX21,
that co-precipitates with the FMDV IRES and whose overexpression negatively regulates
viral IRES-dependent translation and replication. In addition, DDX21 translocated into the
cytoplasm during FMDV infection; however, DDX21 was degraded through FMDV 2B, 2C,
and 3Cpro, antagonizing its antiviral activity.

DDX21 is involved in a multitude of cellular processes, including cell growth, protein
translation, ribosome biogenesis, RNA-protein and protein-protein interactions, rDNA
transcription, mediating and sensing transcription during nucleotide stress, and regulation
of a variety of genes [71–75]. The influence of DDX21 is not limited to cellular processes,
but extends to the regulation of viral pathogenesis and replication. Various reports have
shown that DDX21 responds differently to a variety of viruses; DDX21 negatively regulates
influenza A virus replication by interacting with PBP1 and inhibiting viral polymerase [43].
Similarly, DDX21 inhibits dengue virus infection by translocating to the cytoplasm and
stimulating the innate immune response [45]. In contrast, DDX21 promotes HCMV replica-
tion and protein expression, and the mRNA levels of DDX21 are increased in virus-infected
cells; DDX21 knockdown decreases viral growth in human fibroblasts. HCMV is a DNA
virus, which could explain why DDX21 promotes viral replication [47]. The current study
revealed that DDX21 was pulled down with FMDV IRES domains 1, 3, and 4, which
resulted in a reduction in FMDV mRNA levels, protein expression, and viral titer. To our
knowledge, this is the first report that describes the co-precipitation of DDX21 and the
FMDV IRES domains. Furthermore, our dual-luciferase assay showed that DDX21 not only
suppressed FMDV IRES-dependent translation, but was also involved in the suppression
of CSFV and SVV IRES-dependent translation. Based on our observations, we propose that
DDX21 acts as a broad-spectrum antagonist against RNA viruses.

Translocation of host proteins during viral infection has been reported. The translo-
cation of host proteins may promote or inhibit translation of viral proteins. For example,
during Sindbis virus infection, the host protein XRN1 is translocated to the cytoplasmic
viral replication factories and promotes viral replication [76]. The host protein FBP2, a
negative regulator of EV71 virus replication, is translocated to the cytoplasm during EV71
infection [77]. Based on the aforementioned reports, we decided to evaluate the DDX21
translocation status, and we found that DDX21 was translocated from the nucleolus to
the cytoplasm of FMDV-infected cells. One possible reason for this translocation could
be the association of DDX21 with FMDV IRES and the subsequent suppression of FMDV
IRES-dependent translation.

According to the hostile conditions inside host cells, viruses adapt themselves and
strive to combat the life-threatening host proteins [78,79]. In many circumstances, they
succeed in hunting down host proteins by taking proper measures such as cleaving or
degrading host proteins. As a result of this cleavage or degradation, viruses can subvert
the host antiviral activity [80]. FMDV uses its two proteases, Lpro and 3Cpro, to cleave
its polyprotein as well as a wide range of host proteins [81]. Surprisingly, some proteins
upregulate viral replication after cleavage by a viral protease. For example, FMDV 3Cpro

cleaves hnRNP K into a C-terminal and an N-terminal cleavage product; the C-terminus of
hnRNP K upregulates FMDV replication activity [26]. FMDV cleaves G3BP1 and G3BP2
through its L protease to antagonize and escape from the host antiviral response [82].
The third crucial non-structural FMDV protein, 2B, also known as viroporin, degrades
RIG-I to evade the host antiviral response [69]. We evaluated the protein and mRNA
levels of DDX21 during FMDV infection. DDX21 was degraded during FMDV infection,
and an increase in DDX21 mRNA levels was observed. The increase in mRNA levels
could be due to the normal cellular process where DDX21 increases its mRNA transcript to
suppress FMDV replication at the transcriptional level. Similar phenomena were previously
reported for DDX23, DDX1, and RIG-I, whose mRNA levels are higher in FMDV-infected
cells compared with mock-infected cells [35,69,83].
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Further investigation showed that DDX21 protein expression was reduced by FMDV
2B, 2C, and 3Cpro. FMDV 3Cpro cleaves NEMO, which works as an adapter molecule in
the MDA5/RIG-I pathway, to inhibit IFN production [84]. 3Cpro was reported to inhibit
host protein translation during FMDV infection [85]. The present study indicates that
FMDV 3Cpro results in DDX21 degradation, which is partly due to the enzymatic activity
of 3Cpro. Degradation of DDX21 was not observed in catalytically inactive 3Cpro mutants
such as H46Y, D84N, and 163G, although the constitutively catalytically active mutant
H205R showed degradation of DDX21 similar to wild-type 3Cpro levels. A previous
report has shown that FMDV 2B reduced the RIG-I protein expression [69]. The highly
conserved FMDV protein 2C was reported to induce apoptosis [86]. DDX21 is believed
to perform a function in the cell cycle and maintain cellular growth; therefore, 2C may
degrade DDX21 to induce apoptosis and facilitate the release of viral particles [71,87].
Therefore, we transfected cells with 2B, 2C, and 3Cpro at increasing concentrations, which
resulted in a consistent decrease in DDX21 protein levels; however, no interaction was
detected between DDX21 and the FMDV non-structural proteins 2B, 2C, and 3Cpro. A
previous study has shown that the dose-dependent increase in 3Cpro and Lpro decreased
the MDA5 mRNA level and protein expression [88]. Contrastingly, no change in RIG-
I mRNA level was observed during the expression of FMDV 2B [69]. In the current
study, the mRNA transcript of DDX21 was evaluated during the Flag-2B, 2C, and 3Cpro

transfection, which showed no significant change in the DDX21 mRNA level. No change
in the DDX21 mRNA level during the expression of FMDV 2B, 2C, and 3Cpro suggested
that the decrease in DDX21 only occurred at the proteomic level where FMDV and its
non-structural proteins 2B, 2C, and 3Cpro could possibly degrade DDX21 via lysosome,
proteasome, or caspase pathways. A recent report has shown that FMDV Lpro and 3Cpro-
dependent degradation of MDA5 is independent of lysosomal, proteasomal, or caspase
pathways [88]. Similarly, FMDV 2B-dependent degradation of RIG-I was also independent
of these pathways [69]. In the current study, we investigated the involvement of the
lysosome, proteasome, and caspase pathways in FMDV-, 2B-, 2C-, and 3Cpro-dependent
degradation of DDX21, which showed that FMDV, 2B, and 2C use the caspase pathway
to degrade DDX21. In contrast, 3Cpro utilizes the lysosomal pathway to degrade DDX21
protein. The different protein degradation pathways used by 2B, 2C, and 3Cpro suggest
that host proteins may be degraded due to the unique behavior of FMDV proteins.

It has been previously reported that DDX21 induces type I interferon responses against
RNAs. Knockdown of DDX21 significantly reduced IFN-β production following treatment
of cells with poly I:C and during reovirus and influenza A viral infection [49]. In our study,
we observed a similar trend of IFN-β production following DDX21 knockdown. Hence, it is
suggested that DDX21 activates IFN-β production against a wide range of viruses. The pro-
inflammatory cytokine IL-8 is secreted by cells during transmissible gastroenteritis virus
infection; however, knockdown of DDX1 decreased its secretion [36]. In the current study,
we showed that during FMDV infection, DDX21 knockdown decreased IL-8 production and
DDX21 overexpression increased IL-8 production, suggesting that DDX21 overexpression
promoted IL-8 secretion during FMDV infection to combat the invading pathogen.

In conclusion, our study revealed that DDX21 co-precipitates with FMDV IRES and
that overexpression of DDX21 restricted viral IRES-dependent translation and replica-
tion. DDX21 translocated into the cytoplasm of FMDV-infected cells. FMDV and its
non-structural proteins 2B, 2C, and 3Cpro reduced DDX21 expression. FMDV-, 2B-, and
2C-dependent degradation of DDX21 were due to the caspase pathway, whereas 3Cpro

used the lysosomal pathway for the degradation of DDX21. In addition, the overexpression
of DDX21 increased IFN-β and IL-8 production in FMDV-infected cells to subvert the viral
infection. Thus, DDX21 is an antagonist and a novel FMDV ITAF. These properties of
DDX21 could be utilized to develop new FMDV treatment strategies.
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